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Abstract. This paper presents a global asymptotic synchronization scheme for a class
of delayed chaotic neural networks when the parameters of the drive system are fully un-
known and different from those of the response system. Using the Lyapunov stability
theory and the inverse optimal control approach, an adaptive synchronization controller is
proposed to guarantee the global asymptotic synchronization of state trajectories for two
delayed chaotic neural networks with fully unknown parameters. The present controller
can easily be implemented in practice. An illustrative example is used to demonstrate the
effectiveness of the present method.
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1 Introduction

Over the last decades, synchronization of chaotic systems has been in-
tensively investigated by many researchers. Since chaos synchronization has
potential applications in several areas such as secure communication [1-3],
chemical reactions, biological systems, information science, etc., many dif-
ferent chaos synchronization strategies have been developed, including drive-
response control [4], coupling control [5], variable structure control [6], adap-
tive control [7], impulsive control [8, 9], active control [10-12]. Neverthe-
less, in the aforementioned methods and many other existing synchroniza-
tion methods, one major difficulty seems to be caused by the requirement
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of solving some associated partial differential equations. In order to allevi-
ate this computational problem, the inverse optimal control theory has been
developed recently in nonlinear systems [13].

Recently, there is increasing interest in the study of dynamical properties
of delayed neural networks (DNNs). Most previous studies have predomi-
nantly concentrated on the stability analysis and periodic oscillations of this
kind of networks [14-16]. It has been shown that such networks can exhibit
some complicated dynamics and even chaotic behaviors. In particular, by ap-
propriately choosing the network parameters and time delays, the dynamical
behavior of these networks can be made much complicated [17-19]. However,
there are few studies in the synchronization of this class of chaotic neural net-
works with or without delays [20]. In [20], the parameters of the two neural
networks to be synchronized are known and are identical. Because system
parameters are inevitably perturbed by external factors and cannot be ex-
actly known a priori, synchronization of two delayed chaotic neural networks
with fully unknown parameters is more essential and useful in real world
applications.

In this paper, we study the global asymptotic synchronization of a class of
delayed chaotic neural networks with fully unknown parameters. The method
for the controller and the parameter adaptation is designed by the inverse
optimal control approach and the Lyapunov stability theory.

The paper is organized as follows. In Section 2, the problem considered in
this paper is described. In Section 3, an adaptive synchronization controller
that can globally asymptotically synchronize two delayed chaotic neural net-
works are designed. In Section 4, a simulation result is shown. In Section 5,
the paper is concluded with a few remarks.

2 Problem Description

A class of delayed chaotic neural networks in this paper is described by
the following differential equations:

ii(t) = —ciai(t) + Z aijg;(2;(t)) + Z bijgi(z;(t — 7))+ Ui (1)

where n denotes the number of neurons in the network, z; denotes the state
variable associated with the ith neuron, 7; > 0 denotes bounded delay and
p =max (75), ¢; > 0, a;; indicates the strength of the neuron interconnections
within the network, b;; indicates the strength of the neuron interconnections
within the network with constant delay parameter 7;, j = 1---n, and U; is
a constant input vector function. The activation function g;(x;) satisfies:
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The initial conditions of system (1) are given by x; (t) = ¢; (t) € C ([—p, 0], R),
where C ([—p,0],R) denotes the set of all continuous functions from [—p, 0]
to R .

Chaotic dynamics is extremely sensitive to initial conditions. Even in-
finitesimal changes in the initial condition will lead to an exponential di-
vergence of orbits. In order to observe the synchronization behavior in this
class of delayed chaotic neural networks, we study two chaotic neural net-
works where the drive system and the response system have identical dynamic
structure but with different parameters. The drive system’s state variables
are denoted by z; and the response system’s state variable are denoted by z;.
Suppose that the parameters of the drive system are unknown and uncertain,
and the response system is described by the following equations:

Zi(t) = —Gizi(t) + Zang zj(t)) + wagj zj(t = 75)) + Ui +uit)  (2)

where the initial conditions of system (2) are given by z; (t) = ¢;(t) €
C([-p,0],R), & , a;; and b;; are parameters of the response system which
need to be estimated, and u; (t) denotes the designed controller that will re-
alize the synchronization of system (1) and system (2). The goal of the con-
troller design is to obtain w; () so that tlg{)lo (z: (() —2;(t)) =0,i=1,---n

3 Controller Design

Let us define the synchronization error signal as e; (t) = z; (t)—x; (t), where
z; (t) and z; (t) are the ith state variable of the drive and response neural
networks, respectively. e; (t) — 0 as t — oo means that the drive neural
network and the response neural network are synchronized. Therefore, the
error dynamics between (1) and (2) can be expressed by

éit) = —cies(t +Zamf] 1 ))+Zbijfj(€j(t—7j))

+ (¢ — +Z aij — aij) 9;(2;(t)) 3)

n

+ ) (bij = bij)gi(z(t — 75)) + wi(t)

j=1

where f;(e;(t)) = g;(e;(t) + z;(t)) — g;(z;(t)) and f;(0) = 0, or by the
following compact form

é(t) = — Ce(t) + Af(e(t)) + Bf(e(t — 7)) + Cz (t) + Ag (2 (t))
+ Bg(z(t = 1)) + u(t) (4)
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b

where C' = diag(cy -+~ cn), A = [aij], 00> B = bijlysn, 7= (11 -, ™),

C:Y = dlag [Ci —EiJan = dlag [éi]nxvﬂ A = [dij —aij]an = [&ij]an, B
[bij — bijlnxn = [Dijlnxn, fle(t)) = (fi(ex(t)), ..., fulen(®)T, fle(t — 7))
(filer(t —=71)), ..., fulen(t —m))T, and u(t) = (uy(t), ..., un(t)7.

Lemmal [21]. For all matrices X, Y € R™** and Q € R™ " with Q

QT > 0, the following inequality holds:
XTYy +YTXx < XTQx +YTQ Y. (

Ut
~

Theorem 1. For system (4), if the controller is chosen as
u(t) = — (AA" + BBT +25%) e (t) (6)
and the parameter adaptation update law is chosen as
@ =e;(t)zi (t),
aij = —e; (t) g5 (25 (1)),
bij = —ei (t) g5 (2 (t = 7)),

i,j = 1,---,n, then systems (1) and (2) will be globally asymptotically
synchronized, where ¥ = diag(dy, ..., d,).

(7)

Proof:
Define
e 2 [eT(t),él,u- Sl A11, G Ands s G
l;ll;"' al;lna"' al;nla"' ;l;nn}T-
We choose

Its time-derivative can be derived as follows:

V(e) =eT (t)e(t) + %BT (t) B2%e (t) — %eT (t—71)%%(t—71)

+3 b+ S agag+ Y byby 9)
1=1

i=1,j=1 i=1,j=1

=—e (t)Ce(t) + " (t)(Af(e()) + Bf(e(t — 7)) +e* () u(t)

+eT (1) (cz (t) + Ag (z(t) + By (z (t— 7'))) + %eT (t) X%e (1)
— el (t—7)X%(t—7)— Zn:éléz + i 05 + Zn: bi;bij
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where

LV 2 =T () Celt) + €T (1) (Af(e(t) + Bf(e(t — 7)) (10)
+ el (1) (cz (t)+ Ag (2 (t)) + By (= (t — 7))) + %eT (t)X2e (1)
—%e (t—71)%%(t—7) chcz—&— Z a”a”—&— Z b”bw

i=1,7=1 i=1,7=1
and

LV 2T ().
Applying Lemma 1 with Q = I, we get

(11)

V() < — 7 (1) Oelt) + 3¢ (1) AATe(t) + L 7 (e0) F(e()
43¢ (1) BBTe(t) + 3 £ (e(t — 1) f(elt 7))

+ %eT (£) 52 () — %eT (t =) 52 (t—7) + e (1) ult)

+eTw(A<>+Ag<<»+Bg<u—r»)

_chcz+ Z awa”—i- Z bz]bzg

<~ ¢ (1) Celt) + 5e (t) AATe(t) + éeT () S2e(t)
1 T T T 2
+§ (t) BB e(t) + 3¢ (t—71)5%(t—1)
+ 56T ()5 (1) — 56 (= 1) SPe(t— 1)+ 7 (B ult)

'Mﬁ

_|_

&iei () zi (t) — &) + Z agj (i + e (1) g (2 (1))

1 i=1,j=1

(2

Ms

+

[

by (511 + € (t) gj (25 (t — Tj))) :

I
-

J=1
Substituting (7) into the above equality, we obtain

V(e) < el () (—c + %AAT + %BBT + z?) e(t) + e (1) u(t).

(12)
If we denote 1
R (e) = 3 (AAT + BBT +25?) (13)

where 3 > 2 is a constant, we have

u=—BR(e)"(L,V)" = — (AAT + BBT +25%) e (t). (14)
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Substituting (14) in (12), we obtain

V(e) < —el (1) (C + %AAT + %BBT + z2> e(t)

IN

1 1
—Amin <C + 5AAT + 5BBT + 22) llell® (15)
<0

which implies V < 0 for all e # 0.This means that the proposed controller
(14) can globally asymptotically synchronize the system (1) and the system
(2). This completes the proof of the theorem.

The optimal stabilization guarantees several desirable properties for closed-
loop systems, including stability margins. In a direct approach we would have
to solve the Hamilton-Jacobi-Bellman (HJB) equation, which is not an easy
task. Besides, the achieved robustness is largely independent of the particular
choice of two functions, denoted i(¢) > 0 and R(¢) > 0. But in the inverse
approach, a stabilizing feedback is designed first and then shown to optimize
a cost functional of the following form [13]

t

J(u) = tlim 28V (e (t)) + / (l (e(r)+ uTR (e (1)) u) dry, [>2
0
(16)
The stabilizing feedback problem of system (4) has been solved under
the control of (6) and (7). So we need to find a positive real-valued function
R(e) and a positive definite function I(g), such that the cost functional J(u)
is minimized.
Theorem 2. If we choose
I(e) = =28LsV + B (LyV) R (e) (LgV)" (17)
and .
R(e)=p(AAT + BBT +2%%)  ,3>2 (18)

the cost functional (16) for system (4) under the parameter update laws (7)
and the state feedback (6) will be minimized.

Proof: Based on the basic idea of the inverse optimal control theory, we
will prove that R(e) is symmetric and positive definite, and I(¢) is radically
unbounded, i.e., R(¢) = RT (¢) > 0 and I(¢) > 0 for all € # 0 and I(g) —
+00 as € — oo. It is clear that R(e) chosen according to (18) satisfies the
requirement. Using (6), (7), (10), (11) and (18), we obtain

1(e) = —2BeT (t) (—c + %AAT + %BBT + 22> e(t)

+ Be” (t) (AAT + BBT +25%) e () (19)
=28eT (1) Ce(t).
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This means that [(¢) is radially unbounded. Substituting (14) into (9), we
get

V(e)=LsV —B(LV)R ' () (LyV)" . (20)
Multiplying it by —23, we obtain
—2BV (£) = —2BL;V +26% (LyV) R™ () (LyV)" . (21)

Considering (14) and (17), we get from (21)
I(e)+uTR(e)u=—28V (). (22)
Substituting (22) into (16), we have

t

J(u) = lim { 28V (s(t))+/(—25V (5(7))) dr

t—o0
0

= Jlim {28V (e (1)) + (=28V (¢ (1)) + 26V (¢ (0)))} (23)
— 28V (= (0)).

Thus, the minimum of the cost function is Juyn (u) = 26V ((0)) for the
optimal control law (6) and (7). The theorem is proved.

4  Simulation

Consider a two-dimensional delayed cellular neural networks [18] model
of the form (1), with:

(10 [1+m/4 20
C‘[o 1]"4_{ 0.1 1—|—7r/4}’

[ —1.3v2r/4 0.1 B
b= [ 0.1 ~1.3v2r/4 } » 7=1h
and g(z(t)) = 0.5(|x(t) + 1| — |z(t) — 1]). The chaotic behavior of the drive
system is shown in Fig.1, which is plotted with the initial condition

[z1(s), z2(s)] =[0.01, 0.1]

for —1 < s < 0. The curves of the drive system’s state x; and x5 are shown
in Fig.2.

In this simulation, the initial values of “unknown” parameter vectors of
the response system are selected as:

C(0) = [ 161 1(.)1 ] A0 = { 1.10%1?/4 1.123;/4 ] ’

Hon | —1.29v2m/4 0.11
BO) = [ 0.11 —1.29v2r/4 } '
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Figure 1: Chaotic behavior of the drive system
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Figure 2: The curves of the drive system state 1 and 2
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The chaotic behavior of the response system is shown in Fig.3, which is
plotted with the initial condition

[21(s), 22(5)] = [2, —0.2]

for —1 < s < 0. The synchronization error curves of the response system and
the drive system are shown in Fig.4. The curves of C, A and B are shown,
respectively, in Fig.5, Fig.6, and Fig.7. Obviously, the synchronization er-
rors converge asymptotically to zero and the adaptive parameters converge
asymptotically to some constants.

0.5F
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0.5}

=20 20

Figure 3: Chaotic behavior of the response system
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Figure 4: The error curves of the states z; and x;
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Figure 7: The curves of B

5 Conclusions

This paper deals with the global asymptotic synchronization problem
for a class of delayed chaotic neural networks with fully unknown parame-
ters. Using the Lyapunov stability theory and the inverse optimal control
approach, an adaptive synchronization controller is proposed to guarantee
the global asymptotic synchronization of state trajectories for two delayed
chaotic neural networks with fully unknown parameters. The designed con-
troller can easily be implemented in practice. An illustrative example is used
to demonstrate the effectiveness of the presented method.
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