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Delay-Dependent Guaranteed Cost Control for
Uncertain Stochastic Fuzzy Systems With
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Abstract—This paper studies the guaranteed cost control prob-
lem for a class of uncertain stochastic nonlinear systems with
multiple time delays represented by the Takagi–Sugeno fuzzy
model with uncertain parameters. By constructing a new sto-
chastic Lyapunov–Krasovskii functional, sufficient conditions for
delay-dependent guaranteed cost control are obtained which do
not require system transformation or relaxation matrices. Con-
ditions for the existence of an optimal guaranteed cost controller
are presented in the linear matrix inequality format. Simulation
examples are provided to demonstrate the effectiveness of the
proposed approach in this paper.

Index Terms—Delay dependence, guaranteed cost control, lin-
ear matrix inequality (LMI), multiple time delays, stochastic fuzzy
systems.

I. INTRODUCTION

S TABILITY analysis of stochastic systems has been well
investigated in past years, since stochastic modeling has

come to play an important role in many real systems, including
nuclear processes, thermal processes, chemical processes, biol-
ogy, socioeconomics, and immunology (see [16] and [25] for
more details). Based on the Itô stochastic differential equation,
many efforts have been devoted to extend the approaches from
deterministic systems to stochastic systems (see, e.g., [8] and
[13]). The Takagi–Sugeno (T-S) fuzzy modeling approach,
which has been extensively studied for deterministic nonlinear
systems (see [15], [18], [19], [22], and [30]), has also been
applied to stochastic nonlinear systems (see, e.g., [5], [7], and
[24]). On the other hand, time delays are often the source
of instability and encountered in various engineering systems.
Much attention has been devoted to the development of tools for
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stability analysis and controller design, and many results have
been formulated [2], [4], [9], [14], [17], [21], [26], [29], [32].
These existing results for deterministic or stochastic systems
can be divided into two categories: 1) delay-independent results
[2], [21] and 2) delay-dependent results [4], [9], [14], [17],
[26], [29], [32]. The former does not include any information
on the sizes of delays, whereas the latter category employs
such information and may be less conservative, particularly,
when the sizes of delays are small. To obtain delay-dependent
results, many approaches were developed for deterministic
systems and stochastic ones. A descriptor system approach
proposed in [9] was developed for stochastic systems [4],
[32]. By transforming the original system into a descriptor
system, the stability condition can be derived from analyzing
the stability of such a descriptor system with a constrained
Lyapunov matrix. The relaxation matrices were introduced for
deterministic systems [14], [26] and stochastic ones [29] based
on the Newton–Leibniz formula. This kind of approach not only
enhances the freedom of the solution space for the presented
stability criteria but is also subjected to the complexity in analy-
sis. Recently, a projection approach was developed for linear
uncertain time-delay systems in [17]. In addition to the simple
stabilization, there have been various efforts in assigning certain
performance criteria when designing a controller. One approach
to this problem is the so-called guaranteed cost control first
proposed in [3]. Its essential idea is to stabilize the systems
while maintaining an adequate level of performance repre-
sented by a quadratic cost function. Some important results on
guaranteed cost control have been presented (see, e.g., [6], [12],
[20], [27], [28], and [32], where [12] and [32] studied delay-
dependent guaranteed cost control problems for deterministic
and stochastic T-S fuzzy systems with time delay, respectively).
To the best of our knowledge, there exist a few previous delay-
dependent guaranteed cost control results for stochastic fuzzy
systems with multiple time delays in the literature, although
many other results on multiple-time-delay systems have been
obtained (see, e.g., [2], [4], and [31]). This motivates our
research.

In this paper, we study the guaranteed cost control problem
for stochastic fuzzy systems with multiple time delays and un-
certain parameters. By employing a new Lyapunov–Krasovskii
functional with an integral quadratic term and a new integral
inequality technique, delay-dependent stability criteria are ob-
tained such that the closed-loop stochastic fuzzy system is as-
ymptotically stable in the mean-square sense with a guaranteed
cost control performance. Then, a procedure is given to select
a suitable controller that is optimal in the sense of minimizing
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the upper bound of the guaranteed cost function. All results are
established in the form of linear matrix inequalities (LMIs) and
can be easily solved [1]. One of the advantages is that neither
system transformation nor relaxation matrices are required. In
particular, some system transformation approaches may lead to
conservatism in some cases, which has been pointed out in [11].
Another advantage is that the minimization of cost function can
be directly solved by the LMI toolbox of Matlab, while the
optimal control gain matrix can be obtained.

This paper is organized as follows. In Section II, the sto-
chastic fuzzy system with multiple time delays and uncertain
parameters is formulated. In Section III, the state feedback
guaranteed cost control approach for uncertain stochastic fuzzy
systems is developed. In Section IV, two simulation examples
are provided to demonstrate the effectiveness of the present
approach. In Section V, conclusions are given.

II. PROBLEM FORMULATION AND PRELIMINARIES

Throughout this paper, for h > 0, we let C([−h, 0];Rn)
denote the family of continuous functions ϕ from [−h, 0] to
Rn with the norm ‖ϕ‖ = sup−h≤θ≤0 |ϕ(θ)|, where | · | denotes
the Euclidean norm in Rn. The notation M > 0 (M < 0)
is used to denote a positive (negative) definite symmetric
matrix M . Moreover, let (Ω,F , {Ft}t>0,P) be a complete
probability space with a filtration {Ft}t>0 that satisfies the
usual conditions (i.e., the filtration contains all P-null sets and
is right continuous). Let L2

F0
([−h, 0];Rn) be the family of

F0 measurable C([−h, 0];Rn)-valued random variables ζ =
{ζ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E{|ζ(θ)|2} <∞,
where E{·} stands for the mathematical expectation operator
with respect to the given probability measure P . We will use ∗
to denote the transposed elements in the symmetric positions of
a matrix.

We first introduce two useful Lemmas, which will be used in
the proof of our results.
Lemma 1 (cf. [23]): For matrices A ∈ Rn×n, P ∈ Rn×n,

M ∈ Rn×k,N ∈ Rl×n, and F ∈ Rk×l, withP > 0, FTF ≤ I ,
and a scalar ε > 0, the following matrix inequalities hold:

1) (MFN)TP + PMFN ≤ εPMMTP + ε−1NTN ;
2) If P − εMMT > 0, then (A+MFN)TP−1(A+
MFN) ≤ AT (P − εMMT )−1A+ ε−1NTN .

Lemma 2: For any constant positive definite symmetric ma-
trixW ∈ Rm×m, scalars β > 0 and κ > 0, and vector function
ῡ : [β − κ, β] → Rm×1, such that the integrations in the fol-
lowing are well defined, we have

κ

β∫
β−κ

ῡT (s)Wῡ(s)ds ≥




β∫
β−κ

ῡ(s)ds




T

W

β∫
β−κ

ῡ(s)ds.

The proof of Lemma 2 can be found in the Appendix.
Remark 1: Lemma 2 is similar to Lemma 1 in [10]. The

only difference between them is that the lower limit of the
integrations in the present case may be less than zero. When
κ = β, it becomes the same as Lemma 1 in [10].

Now, we consider a class of uncertain stochastic fuzzy
systems with multiple time delays, in which the ith rule is

formulated in the following form:

Rule i :
IF z1(t) is Ri1, . . . , and zp(t) is Rip

THEN

dx(t) =
m∑

k=0

(Bik + ∆Bik(t))x(t− hk)dt+Diu(t)dt

+
m∑

k=0

(Cik + ∆Cik(t))x(t− hk)dw(t)

x(t) = ζ(t), t ∈ [−h, 0] (1)

where i = 1, . . . , r; r is the number of fuzzy rules;
z1(t), . . . , zp(t) are the premise variables; Rij are the fuzzy
sets, j = 1, . . . , p; x(t) ∈ Rn is the state vector; u(t) ∈ Rq

is the control input; h0 = 0; hk > 0, k = 1, . . . ,m, denote
the state delay; h = max{hk, k ∈ [1,m]}; w(t) is a standard
Brownian motion; and ζ(t) ∈ Rn is a continuous initial func-
tion or random variable. It is assumed that the premise variables
do not depend on the input noise w(t) explicitly. Bik, Cik, and
Di are the known matrices with compatible dimensions. The
uncertain matrix functions ∆Bik(t) and ∆Cik(t) satisfy the
following condition:

[∆Bik(t) ∆Cik(t)] =MiFi(t) [N1ik N2ik] (2)

where Mi ∈ Rn×f , N1ik ∈ Rf×n, and N2ik ∈ Rf×n, k =
0, . . . ,m, are known constant matrices. Fi(t) is an unknown
matrix function with Lebesgue measurable elements and satis-
fies FT

i (t)Fi(t) ≤ I ∈ Rf×f , where I is the identity matrix.
The uncertain stochastic fuzzy system (1) is inferred as

follows:

dx(t) =
m∑

k=0

Bk(δ)x(t− hk)dt+D(δ)u(t)dt

+
m∑

k=0

Ck(δ)x(t− hk)dw(t) (3)

where Bk(δ)=
∑r

i=1 δi(z(t))(Bik+∆Bik(t)), Ck(δ)=
∑r

i=1 δi
(z(t))(Cik+∆Cik(t)), D(δ)=

∑r
i=1 δi(z(t))Di, δi(z(t))=σi

(z(t))/
∑r

i=1 σi(z(t)), σi(z(t))=
∏p

l=1 Ril(zl(t)), and Ril

(zl(t)) is the membership function of zl(t) in Ril, l = 1, . . . , p.
Assume that σi(z(t)) ≥ 0 and

∑r
i=1 σi(z(t)) > 0 for all

t. Therefore, we get δi(z(t))≥0 for i=1, . . . , r and
∑r

i=1
δi(z(t)) = 1.

We use the controller structure incorporating a set of fuzzy
rules expressed in the form

Rule i : IF z1(t) is Ri1, . . . , and zp(t) is Rip

THEN u(t) = Kix(t). (4)

Hence, the inferred fuzzy controller is given by

u(t) =
r∑

i=1

δi (z(t))Kix(t) (5)

where Ki is the local control gain matrix to be determined.



128 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 1, FEBRUARY 2008

Substituting (5) into (3), we have the following closed-loop
form of the stochastic fuzzy system:

dx(t) =
m∑

k=0

(Bbk(δ) + ∆Bbk(δ))x(t− hk)dt

+
m∑

k=0

(Cbk(δ) + ∆Cbk(δ))x(t− hk)dw(t) (6)

where the expressions for Bbk(δ), ∆Bbk(δ), Cbk(δ), and
∆Cbk(δ) are shown as

Bbk(δ) =



∑r

i=1

∑r
j=1 δi(z(t))

×δj (z(t))(Bik +DiKj), for k=0∑r
i=1

∑r
j=1 δi(z(t)) δj (z(t))

×Bik =
∑r

i=1 δi(z(t))Bik, for k=1, . . . ,m

∆Bbk(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))∆Bik(t)

=
r∑

i=1

δi (z(t))∆Bik(t)

Cbk(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))Cik

=
r∑

i=1

δi (z(t))Cik

∆Cbk(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))∆Cik(t)

=
r∑

i=1

δi (z(t))∆Cik(t)

The stability of stochastic fuzzy system (3) is defined as
follows.
Definition 1: For system (3) with u(t) = 0, the trivial solu-

tion is asymptotically stable in the mean-square sense for every
ζ ∈ L2

F0
([−h, 0];Rn) if

lim
t→∞

E |x(t, ζ)|2 = 0.

Given positive definite symmetric matrices Ξ and Ψ, we shall
consider the cost function

J = E




∞∫
0

[
xT (t)Ξx(t) + uT (t)Ψu(t)

]
dt


 . (7)

Associated with the cost function, the guaranteed cost con-
troller is defined as follows.
Definition 2: Consider system (3). If there exist a control law

u∗(t) and a scalar J∗ > 0 such that the resulting closed-loop
system is asymptotically stable in the mean-square sense and
the value of cost function (7) satisfies J ≤ J∗, then J∗ is said
to be a guaranteed cost, and u∗(t) is said to be a guaranteed cost
control law for system (3).

Our objective is to develop a delay-dependent stabilization
approach, which provides the state feedback control gain matrix
as well as a positive scalar J∗ such that the closed-loop system
is asymptotically stable in the mean-square sense and the value
of cost function (7) satisfies J ≤ J∗.

III. MAIN RESULT

In this section, we develop our main results for the stochastic
fuzzy system (6). We now state and prove our first result.
Theorem 1: Given hk > 0, k = 1, . . . ,m, the closed-loop

stochastic fuzzy system (6) is asymptotically stable in the
mean-square sense, if there exist matrices X > 0, R̂ > 0,
Q̂ > 0, and K̂i (i = 1, . . . , r) with compatible dimensions and
scalars εi1 > 0 and εi2 > 0, such that the LMIs (8), shown at
the bottom of the page, hold for 1 ≤ i ≤ j ≤ r where

Π1,ij =
(
Bi0X +XBT

i0 +Bj0X +XBT
j0 +DjK̂i +DiK̂j

+ K̂T
i D

T
j + K̂T

jD
T
i + εi1MiM

T
i + εj1MjM

T
j

)
∈Rn×n

Πk
2,ij =(BikX +BjkX) ∈ Rn×n

Πk
3,ij =(−4X + 2Q̂) ∈ Rn×n

Πk
4,ij =2hkX ∈ Rn×n

Πk
5,ij = −2hkX ∈ Rn×n

Πk
6,ij = −4hkX + 2hkR̂ ∈ Rn×n

Π7,ij =
[
XCT

i0 XCT
j0 XNT

2i0 XNT
2j0

]
∈ Rn×(2n+2f)

Πk
7,ij =

[
XCT

ik XCT
jk XNT

2ik XNT
2jk

]
∈ Rn×(2n+2f)




Π1,ij Π1
2,ij . . . Πm

2,ij Π1
4,ij . . . Πm

4,ij Π7,ij Π9,ij Π11,ij

∗ Π1
3,ij 0 0 Π1

5,ij 0 0 Π1
7,ij Π1

9,ij 0

∗ ∗ . . . 0 0
. . . 0

...
... 0

∗ ∗ ∗ Πm
3,ij 0 0 Πm

5,ij Πm
7,ij Πm

9,ij 0
∗ ∗ ∗ ∗ Π1

6,ij 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ . . . 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Πm

6,ij 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π8,ij 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π10,ij 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π12,ij




< 0 (8)
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Π8,ij =−diag
(
X− εi2MiM

T
i ,X− εj2MjM

T
j , εi2I, εj2I

)
∈ R(2n+2f)×(2n+2f)

Π9,ij =
[
XNT

1i0 XNT
1j0

]
∈ Rn×2f

Πk
9,ij =

[
XNT

1ik XNT
1jk

]
∈ Rn×2f

Π10,ij = −diag(εi1I, εj1I) ∈ R2f×2f

Π11,ij =
[
2hdX 2mX 2X K̂T

i K̂T
j

]
∈ Rn×(3n+2q)

Π12,ij = −diag(2hdR̂, 2mQ̂, 2Ξ−1,Ψ−1,Ψ−1)
∈ R(3n+2q)×(3n+2q)

k =1, . . . ,m; hd =
m∑

k=1

hk.

Moreover, the control gain matrix can be chosen as Ki =
K̂iX

−1, and the guaranteed cost bound is determined as

J∗ = E
{
xT (0)X−1x(0)

}
+ E




m∑
k=1

0∫
−hk

xT (τ)Q̂−1x(τ)dτ




+ E




m∑
k=1

0∫
−hk

0∫
β

xT (τ)R̂−1x(τ)dτdβ




+ E




m∑
k=1


 0∫

−hk

x(τ)dτ


T

X−1

0∫
−hk

x(τ)dτ


 . (9)

Proof: Define the following Lyapunov–Krasovskii
functional:

V (x, t) =xT (t)Px(t) +
m∑

k=1

0∫
−hk

t∫
t+β

xT (τ)Rx(τ)dτdβ

+
m∑

k=1

t∫
t−hk

xT (τ)Qx(τ)dτ

+
m∑

k=1


 t∫

t−hk

x(τ)dτ


T

P

t∫
t−hk

x(τ)dτ (10)

where P = X−1, R = R̂−1, and Q = Q̂−1. By the Itô formula
[16], we obtain

dV (x, t) = LV (x, t)dt+ 2xT (t)P
m∑

k=0

(Cbk(δ)

+ ∆Cbk(δ))x(t− hk)dw(t) (11)

where

LV (x, t) = 2xT (t)P
m∑

k=0

(Bbk(δ) + ∆Bbk(δ))x(t− hk)

+

(
m∑

k=0

(Cbk(δ) + ∆Cbk(δ))x(t− hk)

)T

P

×
m∑

k=0

(Cbk(δ) + ∆Cbk(δ))x(t− hk)

+
m∑

k=1


hkx

T (t)Rx(t)−
t∫

t−hk

xT (τ)Rx(τ)dτ




+
m∑

k=1

(
xT (t)Qx(t)− xT (t− hk)Qx(t− hk)

)

+
m∑

k=1


2 (x(t)− x(t− hk))

T P

t∫
t−hk

x(τ)dτ


 .

(12)

Using Lemma 1 and considering the uncertain parameters (2),
we obtain

2xT (t)P
m∑

k=0

∆Bbk(δ)x(t− hk) =
r∑

i=1

δi (z(t))

× 2xT (t)PMiFi(t)N̄iψ(t)

≤
r∑

i=1

δi (z(t))
(
εi1x

T (t)PMiM
T
i Px(t)

+ ε−1
i1 ψ

T (t)N̄T
i N̄iψ(t)

)
(13)

where

N̄i = [N1i0 N1i1 · · · N1ik · · · N1im]

ψ(t)=
[
xT(t) xT(t− h1) · · · xT(t− hk) · · · xT(t− hm)

]T
.

Using Lemma 1, we can also obtain(
m∑

k=0

(Cbk(δ) + ∆Cbk(δ))x(t− hk)

)T

P

×
m∑

k=0

(Cbk(δ) + ∆Cbk(δ))x(t− hk)

≤ 1
2

r∑
i=1

r∑
j=1

δi (z(t)) δj (z(t))ψT (t)

×
(
(Wi + ∆Wi(t))

T P (Wi + ∆Wi(t))

+ (Wj + ∆Wj(t))
T P (Wj + ∆Wj(t))

)
ψ(t)

=
r∑

i=1

δi (z(t))ψT (t)

×(Wi + ∆Wi(t))
T P (Wi + ∆Wi(t))ψ(t)

≤
r∑

i=1

δi (z(t))ψT (t)

×
(
WT

i

(
P−1 − εi2MiM

T
i

)−1
Wi + ε−1

i2 N̄ T
i N̄i

)
ψ(t)

(14)

where

Wi = [Ci0 Ci1 · · · Cik · · · Cim]
∆Wi(t) = [∆Ci0(t) ∆Ci1(t) · · · ∆Cik(t) · · · ∆Cim(t)]

=MiFi(t)N̄i

N̄i = [N2i0 N2i1 · · · N2ik · · · N2im].
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Using Lemma 2, we have

−
t∫

t−hk

xT(τ)Rx(τ)dτ ≤ −h−1
k


 t∫

t−hk

x(τ)dτ


T

R

t∫
t−hk

x(τ)dτ.

(15)

Substituting (13)–(15) into (12), we have (16), shown at the
bottom of the page, where

ξ̄ T (t) =


xT (t) xT (t− h1) · · · xT (t− hm)


 t∫

t−h1

x(τ)dτ


T

· · ·


 t∫

t−hm

x(τ)dτ


T




and the rest of the notation is expressed in

Zij + Zji

=




Z1,ij Z1
2,ij Z2

2,ij · · · Zm
2,ij Z1

4,ij Z2
4,ij · · · Zm

4,ij

∗ Z1,1
3,ij Z1,2

3,ij · · · Z1,m
3,ij Z1

5,ij 0 0 0
∗ ∗ Z2,2

3,ij · · · Z2,m
3,ij 0 Z2

5,ij 0 0

∗ ∗ ∗ . . .
... 0 0

. . . 0
∗ ∗ ∗ ∗ Zm,m

3,ij 0 0 0 Zm
5,ij

∗ ∗ ∗ ∗ ∗ Z1
6,ij 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Z2
6,ij 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Zm

6,ij




(17)

and Zii = (1/2)(Zij + Zji), for i = j, with

Z1,ij =P (Bi0 +DiKj +Bj0 +DjKi)

+ (Bi0 +DiKj +Bj0 +DjKi)TP

+ εi1PMiM
T
i P + εj1PMjM

T
j P

+ ε−1
i1 N

T
1i0N1i0 + ε−1

j1N
T
1j0N1j0

+ CT
i0

(
P−1 − εi2MiM

T
i

)−1
Ci0

+ CT
j0

(
P−1 − εj2MjM

T
j

)−1
Cj0

+ ε−1
i2 N

T
2i0N2i0 + ε−1

j2N
T
2j0N2j0 + 2hdR+ 2mQ

+ 2Ξ +KT
i ΨKi +KT

j ΨKj

Zk
2,ij =P (Bik +Bjk) + ε−1

i1 N
T
1i0N1ik + ε−1

j1N
T
1j0N1jk

+ CT
i0

(
P−1 − εi2MiM

T
i

)−1
Cik

+ CT
j0

(
P−1 − εj2MjM

T
j

)−1
Cjk

+ ε−1
i2 N

T
2i0N2ik + ε−1

j2N
T
2j0N2jk

Zk,k
3,ij = −2Q+ ε−1

i1 N
T
1ikN1ik + ε−1

j1N
T
1jkN1jk

+ CT
ik

(
P−1 − εi2MiM

T
i

)−1
Cik

+ CT
jk

(
P−1 − εj2MjM

T
j

)−1
Cjk

+ ε−1
i2 N

T
2ikN2ik + ε−1

j2N
T
2jkN2jk

Zk,l
3,ij = ε−1

i1 N
T
1ikN1il + ε−1

j1N
T
1jkN1jl

+ CT
ik

(
P−1 − εi2MiM

T
i

)−1
Cil

+ CT
jk

(
P−1 − εj2MjM

T
j

)−1
Cjl

+ ε−1
i2 N

T
2ikN2il + ε−1

j2N
T
2jkN2jl (l > k)

Zk
4,ij =2P Zk

5,ij = −2P

Zk
6,ij = −2h−1

k R, k = 1, . . . ,m.

LV (x, t) ≤ 2xT (t)P
m∑

k=0

Bbk(δ)x(t− hk) +
r∑

i=1

δi (z(t))
(
εi1x

T (t)PMiM
T
i Px(t) + ε−1

i1 ψ
T (t)N̄T

i N̄iψ(t)
)

+
r∑

i=1

δi (z(t))ψT (t)
(
WT

i (P−1 − εi2MiM
T
i )−1Wi + ε−1

i2 N̄ T
i N̄i

)
ψ(t)

+
m∑

k=1


hkx

T (t)Rx(t)− h−1
k


 t∫

t−hk

x(τ)dτ


T

R

t∫
t−hk

x(τ)dτ


+

m∑
k=1

(
xT (t)Qx(t)− xT (t− hk)Qx(t− hk)

)

+
m∑

k=1


2 (x(t)− x(t− hk))

T P

t∫
t−hk

x(τ)dτ


+ xT (t)Ξx(t) + uT (t)Ψu(t)− xT (t)Ξx(t)− uT (t)Ψu(t)

≤
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t)) ξ̄T (t)Zij ξ̄(t)− xT (t)Ξx(t)− uT (t)Ψu(t)

=
r∑

i=1

r∑
j>i

δi (z(t)) δj (z(t)) ξ̄T (t)(Zij + Zji)ξ̄(t)+
r∑

i=1

δ2i (z(t)) ξ̄T (t)Ziiξ̄(t)− xT (t)Ξx(t)− uT (t)Ψu(t) (16)



ZHANG et al.: DELAY-DEPENDENT GUARANTEED COST CONTROL 131

Note that the following result has been used in (16):

uT (t)Ψu(t) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))xT (t)KT
i ΨKjx(t)

≤ 1
2

r∑
i=1

r∑
j=1

δi (z(t)) δj (z(t))xT (t)

×
(
KT

i ΨKi +KT
j ΨKj

)
x(t)

=
r∑

i=1

δi (z(t))xT (t)KT
i ΨKix(t). (18)

If Zij + Zji < 0 holds for all 1 ≤ i ≤ j ≤ r, then
LV (x, t) < 0 for every ξ̄(t) �= 0.

Because X = P−1, Q̂ = Q−1, and R̂ = R−1, we
can let K̂i = KiX . Pre- and postmultiplying diag(P−1,
P−1, . . . , P−1︸ ︷︷ ︸

m

, h1P
−1, . . . , hmP

−1) to the left-hand side

of inequality Zij + Zji < 0 [cf. (17)] and using the Schur
complement, we obtain (19), shown at the bottom of the page,
where Π̄k

3,ij =−2XQX , Π̄k
6,ij =−2hkXRX , k=1, . . . ,m,

and other notations are defined as in (8).
The inequality (19) is not a solvable LMI because of the non-

linear terms XQX and XRX in Π̄k
3,ij and Π̄k

6,ij , respectively.
Because X and Q are positive definite symmetric matrices,
we have

(X −Q−1)TQ(X −Q−1) = (X −Q−1)Q(X −Q−1) ≥ 0

then

−XQX ≤ −2X +Q−1. (20)

Similarly we have

−XRX ≤ −2X +R−1. (21)

Because R̂ = R−1 and Q̂ = Q−1, from (19)–(21), we ob-
tain (8), which guarantees Zij + Zji < 0 (1 ≤ i ≤ j ≤ r).

Moreover, from (16), we have

LV (x, t) ≤ −xT (t)Ξx(t)− uT (t)Ψu(t) < 0. (22)

Therefore, system (6) is asymptotically stable in the mean-
square sense with the control gain matrix Ki = K̂iX

−1.
Integrating inequality (11) from 0 to T > 0, taking the

mathematical expectation, and considering inequality (22), we
obtain

E {V (x(T ), T )} − E {V (x(0), 0)}

= E
{
xT (T )Px(T )

}
+ E




m∑
k=1

T∫
T−hk

xT (τ)Qx(τ)dτ




+ E




m∑
k=1

0∫
−hk

T∫
T+β

xT (τ)Rx(τ)dτdβ




+ E




m∑
k=1


 T∫

T−hk

x(τ)dτ




T

P

T∫
T−hk

x(τ)dτ




− E
{
xT (0)Px(0)

}
− E




m∑
k=1

0∫
−hk

xT (τ)Qx(τ)dτ




− E




m∑
k=1

0∫
−hk

0∫
β

xT (τ)Rx(τ)dτdβ




− E




m∑
k=1


 0∫

−hk

x(τ)dτ


T

P

0∫
−hk

x(τ)dτ




= E




T∫
0

LV (x, t)dt




≤ −E




T∫
0

(
xT (τ)Ξx(τ) + uT (τ)Ψu(τ)

)
dτ


 . (23)




Π1,ij Π1
2,ij · · · Πm

2,ij Π1
4,ij · · · Πm

4,ij Π7,ij Π9,ij Π11,ij

∗ Π̄1
3,ij 0 0 Π1

5,ij 0 0 Π1
7,ij Π1

9,ij 0

∗ ∗ . . . 0 0
. . . 0

...
... 0

∗ ∗ ∗ Π̄m
3,ij 0 0 Πm

5,ij Πm
7,ij Πm

9,ij 0

∗ ∗ ∗ ∗ Π̄1
6,ij 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π̄m
6,ij 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π8,ij 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π10,ij 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π12,ij




< 0 (19)
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Because system (6) is asymptotically stable in the mean-square
sense, when T → ∞, we have

E
{
xT (T )Px(T )

}
→ 0

E




m∑
k=1

T∫
T−hk

xT (τ)Qx(τ)dτ


 → 0

E




m∑
k=1

0∫
−hk

T∫
T+β

xT (τ)Rx(τ)dτdβ


 → 0

E




m∑
k=1


 T∫

T−hk

x(τ)dτ




T

P

T∫
T−hk

x(τ)dτ


 → 0.

Hence, we have

E




∞∫
0

(
xT (τ)Ξx(τ) + uT (τ)Ψu(τ)

)
dτ




≤ E
{
xT (0)Px(0)

}
+ E




m∑
k=1

0∫
−hk

xT (τ)Qx(τ)dτ




+ E




m∑
k=1

0∫
−hk

0∫
β

xT (τ)Rx(τ)dτdβ




+ E




m∑
k=1


 0∫

−hk

x(τ)dτ


T

P

0∫
−hk

x(τ)dτ


 (24)

that is

J = E




∞∫
0

(
xT (τ)Ξx(τ) + uT (τ)Ψu(τ)

)
dτ




≤E
{
xT (0)X−1x(0)

}
+ E




m∑
k=1

0∫
−hk

xT (τ)Q̂−1x(τ)dτ




+ E




m∑
k=1

0∫
−hk

0∫
β

xT (τ)R̂−1x(τ)dτdβ




+ E




m∑
k=1


 0∫

−hk

x(τ)dτ


T

X−1

0∫
−hk

x(τ)dτ




=J∗. (25)

This completes the proof. �
Note that the guaranteed cost bound in Theorem 1 depends

on the choice of guaranteed cost controller. The guaranteed
cost controller that minimizes the guaranteed cost is called an
optimal guaranteed cost controller in [28]. Based on Theorem 1,

the design problem of the optimal guaranteed cost controller is
formulated as follows.
Theorem 2: Consider the stochastic fuzzy system (6) with

cost function (7). If the following optimization problem

min {tr(Γ0) + tr(Γ1) + tr(Γ2) + tr(Γ3)}

s.t.




(i) inequality (8)

(ii)

[
−Γ0 ZT

0

Z0 −X

]
< 0

(iii)
[
−Γ1 ZT

1

Z1 −R̂

]
< 0

(iv)
[
−Γ2 ZT

2

Z2 −Q̂

]
< 0

(v)
[
−Γ3 ZT

3

Z3 −X

]
< 0

(26)

has a solution set Θ=(εi1, εi2,X, R̂, Q̂, K̂i,Γ0,Γ1,Γ2,Γ3, 1≤
i ≤ j ≤ r), where tr(·) denotes the trace of a matrix, then
controller (5) is an optimal guaranteed cost controller, which
ensures the minimization of the guaranteed cost bound (9) for
system (6), where

Z0ZT
0 = E

{
x(0)xT (0)

}

Z1ZT
1 = E




m∑
k=1

0∫
−hk

0∫
β

x(τ)xT (τ)dτdβ




Z2ZT
2 = E




m∑
k=1

0∫
−hk

x(τ)xT (τ)dτ




Z3ZT
3 = E




m∑
k=1

0∫
−hk

x(τ)dτ


 0∫

−hk

x(τ)dτ


T


 .

Proof: By Theorem 1, (i) in (26) is clear.
By the Schur complement, it follows that (ii), (iii), (iv), and

(v) in (26) are equivalent to ZT
0 X

−1Z0 < Γ0, ZT
1 R̂

−1Z1 <

Γ1, ZT
2 Q̂

−1Z2 < Γ2, and ZT
3 X

−1Z3 < Γ3, respectively. On
the other hand

E
{
xT (0)X−1x(0)

}
=tr

(
E
{
xT (0)X−1x(0)

})
=tr

(
X−1E

{
x(0)xT (0)

})
=tr

(
X−1Z0ZT

0

)
=tr

(
ZT

0 X
−1Z0

)
< tr(Γ0) (27)
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and similarly

E




m∑
k=1

0∫
−hk

0∫
β

xT (τ)R̂−1x(τ)dτdβ




= E




m∑
k=1

0∫
−hk

0∫
β

tr
(
xT (τ)R̂−1x(τ)

)
dτdβ




= tr


R̂−1E




m∑
k=1

0∫
−hk

0∫
β

x(τ)xT (τ)dτdβ






= tr
(
R̂−1Z1ZT

1

)
< tr(Γ1) (28)

E




m∑
k=1

0∫
−hk

xT (τ)Q̂−1x(τ)dτ




= E




m∑
k=1

0∫
−hk

tr
(
xT (τ)Q̂−1x(τ)

)
dτ




= tr


Q̂−1E




m∑
k=1

0∫
−hk

x(τ)xT (τ)dτ






= tr
(
Q̂−1Z2ZT

2

)
< tr(Γ2) (29)

E




m∑
k=1


 0∫

−hk

x(τ)dτ


T

X−1

0∫
−hk

x(τ)dτ




= tr


X−1E




m∑
k=1

0∫
−hk

x(τ)dτ


 0∫

−hk

x(τ)dτ


T






= tr
(
X−1Z3ZT

3

)
< tr(Γ3). (30)

Hence, it follows from (26) that

J∗ < tr(Γ0) + tr(Γ1) + tr(Γ2) + tr(Γ3).

Then, the minimization of tr(Γ0) + tr(Γ1) + tr(Γ2) + tr(Γ3)
implies the minimization of the guaranteed cost for the sto-
chastic fuzzy system (6). The optimality of the solution of the
optimization problem (26) follows from the convexity of the
objective function and of the constraints.

This completes the proof. �
In the preceding discussion, we presented sufficient condi-

tions for delay-dependent guaranteed cost control of stochastic
fuzzy systems with multiple time delays. When k = 1, simpler
results can be obtained in parallel to Theorems 1 and 2.

The closed-loop stochastic fuzzy system with single delay is
described as follows:

dx(t) = (Bb0(δ) + ∆Bb0(δ))x(t)dt+ (Bb1(δ) + ∆Bb1(δ))
× x(t− h)dt+ (Cb0(δ) + ∆Cb0(δ))x(t)dw(t)
+ (Cb1(δ) + ∆Cb1(δ))x(t− h)dw(t) (31)

where

Bb0(δ) + ∆Bb0(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))

× (Bi0 + ∆Bi0(t) +DiKj)

Bb1(δ) + ∆Bb1(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))

× (Bi1 + ∆Bi1(t))

=
r∑

i=1

δi (z(t)) (Bi1 + ∆Bi1(t))

Cb0(δ) + ∆Cb0(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))

× (Ci0 + ∆Ci0(t))

=
r∑

i=1

δi (z(t)) (Ci0 + ∆Ci0(t))

Cb1(δ) + ∆Cb1(δ) =
r∑

i=1

r∑
j=1

δi (z(t)) δj (z(t))

× (Ci1 + ∆Ci1(t))

=
r∑

i=1

δi (z(t)) (Ci1 + ∆Ci1(t)) .

Bi0, Bi1, Ci0, Ci1, and Di are known constant matrices
with compatible dimensions; Ki, i = 1, . . . , r, are control gain
matrices, which are defined in (5); and the matrix functions
∆Bi0(t), ∆Bi1(t), ∆Ci0(t), and ∆Ci1(t) represent norm-
bounded parameter uncertainties and satisfy

[∆Bi0(t) ∆Bi1(t) ∆Ci0(t) ∆Ci1(t)]

= MiFi(t) [N1i0 N1i1 N2i0 N2i1] (32)

where Mi, N1i0, N1i1, N2i0, and N2i1 are known constant
matrices with compatible dimensions, and Fi(t) is as defined
in (2).
Corollary 1: Given h > 0, the closed-loop stochastic fuzzy

system (31) is asymptotically stable in the mean-square sense
if there exist matrices X > 0, Q̂ > 0, R̂ > 0, and K̂i (i =
1, . . . , r) with compatible dimensions and scalars εi1 > 0 and
εi2 > 0, such that the following LMIs hold for 1 ≤ i ≤ j ≤ r:


Π1,ij Π2,ij Π4,ij Π7,ij Π9,ij Π11,ij

∗ Π3,ij Π5,ij Π1
7,ij Π1

9,ij 0
∗ ∗ Π6,ij 0 0 0
∗ ∗ ∗ Π8,ij 0 0
∗ ∗ ∗ ∗ Π10,ij 0
∗ ∗ ∗ ∗ ∗ −Π12,ij


<0 (33)
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where

Π1,ij =Bi0X+XBT
i0+Bj0X+XBT

j0+DjK̂i+DiK̂j

+K̂T
i D

T
j +K̂T

j D
T
i +εi1MiM

T
i +εj1MjM

T
j ∈Rn×n

Π2,ij =Bi1X+Bj1X∈Rn×n

Π3,ij = −4X+2Q̂∈Rn×n

Π4,ij =2hX∈Rn×n

Π5,ij = −2hX∈Rn×n

Π6,ij = −4hX+2hR̂∈Rn×n

Π7,ij =
[
XCT

i0 XCT
j0 XNT

2i0 XNT
2j0

]
∈Rn×(2n+2f)

Π1
7,ij =

[
XCT

i1 XCT
j1 XNT

2i1 XNT
2j1

]
∈Rn×(2n+2f)

Π8,ij = −diag
(
X − εi2MiM

T
i ,X − εj2MjM

T
j , εi2I, εj2I

)
∈R(2n+2f)×(2n+2f)

Π9,ij =
[
XNT

1i0 XNT
1j0

]
∈Rn×2f

Π1
9,ij =

[
XNT

1i1 XNT
1j1

]
∈Rn×2f

Π10,ij = −diag(εi1I, εj1I)∈R2f×2f

Π11,ij =
[
2hX 2X 2X K̂T

i K̂T
j

]
∈Rn×(3n+2q)

Π12,ij =diag(2hR̂, 2Q̂, 2Ξ−1,Ψ−1,Ψ−1)∈R(3n+2q)×(3n+2q).

Moreover, the control gain matrix can be chosen as Ki =
K̂iX

−1, and the guaranteed cost bound is given by

J∗ = E
{
xT (0)X−1x(0)

}
+ E




0∫
−h

xT (τ)Q̂−1x(τ)dτ




+ E




0∫
−h

0∫
β

xT (τ)R̂−1x(τ)dτdβ




+ E




 0∫

−h

x(τ)dτ


T

X−1

0∫
−h

x(τ)dτ


 . (34)

Corollary 2: Consider the stochastic fuzzy system (31) with
cost function (7). If the following optimization problem:

min {tr(Γ0) + tr(Γ1) + tr(Γ2) + tr(Γ3)}

s.t.




(i) inequality (33);

(ii)
[
−Γ0 ZT

0

Z0 −X

]
< 0

(iii)
[
−Γ1 ZT

1

Z1 −R̂

]
< 0

(iv)
[
−Γ2 ZT

2

Z2 −Q̂

]
< 0

(v)
[
−Γ3 ZT

3

Z3 −X

]
< 0

(35)

has a solution set Θ=(εi1, εi2,X, R̂, Q̂, K̂i,Γ0,Γ1,Γ2,Γ3,1 ≤
i ≤ j≤r), then controller (5) is an optimal guaranteed cost

controller, which ensures the minimization of the guaranteed
cost bound (34) for system (31), where

Z0ZT
0 = E

{
x(0)xT (0)

}

Z1ZT
1 = E




0∫
−h

0∫
β

x(τ)xT (τ)dτdβ




Z2ZT
2 = E




0∫
−h

x(τ)xT (τ)dτ




Z3ZT
3 = E




0∫
−h

x(τ)dτ


 0∫

−h

x(τ)dτ


T


 .

Remark 2: We have presented delay-dependent sufficient
conditions for guaranteed cost control in terms of the convex
LMI format. Next, we make a comparison with the existing
delay-dependent results in [12]. Guan and Chen [12] have
pointed out that some existing approaches cannot provide suffi-
cient conditions based on the convex LMI format; furthermore,
the global minimum of the aforementioned minimization prob-
lem cannot be found using a convex optimization algorithm,
and the suboptimal solutions have to be chosen. Therefore, their
approach may lead to a heavy computational burden. However,
the approach in this paper can lead to convex LMI conditions
such that the global minimum solution can be directly solved
by the LMI toolbox in Matlab. Therefore, our approach not
only reduced the computational cost of solution process but also
enhanced the control performance of the closed-loop system.

IV. ILLUSTRATIVE EXAMPLES

In this section, a system with a single time delay and a system
with two time delays are used to illustrate the effectiveness of
the present approach in Examples 1 and 2, respectively.
Example 1: Consider the following stochastic nonlinear

delayed system:

dx1(t) = (−0.1125x1(t)−0.0125x1(t−0.3)−0.02x2(t)

− 0.67x3
2(t)−0.005x2(t−0.3)+u(t)

)
dt

+
(
0.5x1(t)−0.4x2(t)+0.4x3

2(t)
)
dω(t)

dx2(t) =x1(t)dt+
(
0.15x1(t)+0.9x2(t)+0.4x3

2(t)
)
dω(t).

(36)

Similar to [19], assume that x1(t) and x2(t) are measurable
and x1(t) ∈ [−1.5, 1.5] and x2(t) ∈ [−1.5, 1.5]. The nonlinear
terms of system can be represented as

−0.67x3
2(t)=R11(x2(t))·0·x2(t)−R12(x2(t))·1.5075x2(t)

0.4x3
2(t)=R11(x2(t))·0·x2(t)−R12(x2(t))·(−0.9)x2(t).
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TABLE I
DATA OF 100 EXPERIMENTS FOR THE GUARANTEED COST VALUE

Solving these equations, we obtain

R11 (x2(t)) = 1− x2
2(t)/2.25

R12 (x2(t)) = 1−R11 (x2(t)) = x2
2(t)/2.25

where R11(x2(t)) and R12(x2(t)) can be interpreted as mem-
bership functions of fuzzy sets. Using these fuzzy sets, the
stochastic nonlinear system with time delay can be expressed
by the following stochastic fuzzy model:

Rule 1 : IF x2(t) is R11

THEN

dx(t)=[(B10+∆B10(t))x(t)+B11x(t−h)] dt

+D1u(t)dt+(C10+∆C10(t))x(t)dw(t)

Rule 2 : IF x2(t) is R12

THEN

dx(t)=[(B20+∆B20(t))x(t)+B21x(t−h)] dt

+D2u(t)dt+(C20+∆C20(t))x(t)dw(t)

where x(t) = [x1(t) x2(t)]T .

System parameters B10, B20, B11, B21, C10, C20, D1, and
D2 can be solved by the following equations:

[
−0.1125x1(t)− 0.02x2(t)− 0.67x3

2

x1

]

= R11(x2(t))B10x(t) +R12(x2(t))B20x(t)

=
(
1− x2

2(t)
2.25

)
B10x(t) +

x2
2(t)
2.25

B20x(t)

[
0.5x1(t)− 0.4x2(t) + 0.4x3

2(t)
0.15x1(t) + 0.9x2(t) + 0.4x3

2(t)

]

= R11 (x2(t))C10x(t) +R12 (x2(t))C20x(t)

=
(
1− x2

2(t)
2.25

)
C10x(t) +

x2
2(t)
2.25

C20x(t)

[
−0.0125x1(t− 0.3)− 0.005x2(t− 0.3)

0

]

= R11 (x2(t))B11x(t− 0.3) +R12 (x2(t))B21x(t− 0.3)

[
u(t)
0

]
= R11 (x2(t))D1u(t) +R12 (x2(t))D2u(t).
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TABLE II
SOME STATISTICS OF THE GUARANTEED COST

PERFORMANCE OF REGULATION

Then, we have

B10 =
[
−0.1125 −0.02

1 0

]
C10 =

[
0.5 −0.4
0.15 0.9

]

B20 =
[
−0.1125 −1.5275

1 0

]
C20 =

[
0.5 0.5
0.15 1.8

]

B11 = B21 =
[
−0.0125 −0.005

0 0

]
D1 = D2 =

[
1
0

]
[ ∆B10(t) ∆C10(t) ] =M1F (t) [N110 N210 ]

[ ∆B20(t) ∆C20(t) ] =M2F (t) [N120 N220 ]

M1 = M2 =
[
−0.1125

0

]
N110 = N120 = [ 1 0 ]

N210 = N221 = [ 0 1 ] .

The time delay is h = 0.3. Assume that the initial function
x1(t) is a random constant value in [0,1] and that x2(t) = 0 for
t ∈ [−0.3, 0] and uncertain function F (t) = sin(t).
Remark 3: In the preceding T-S model, uncertain parameters

∆B10, ∆B20, ∆C10, and ∆C20 are introduced, because we
consider the robust control performance of the system. The
form of uncertain function F (t) does not affect the stability
result of the robust control systems as long as it satisfies the
condition FT (t)F (t) ≤ I . �

Given Ξ = diag(1, 1) and Ψ = 1, applying Corollary 2, we
performed 100 experiments and presented the corresponding
data in Table I. Table II provides the statistic analysis perfor-
mances of guaranteed cost function value J .

The computation formulas are given as follows:

maximum value max(J)= max
1≤i≤100

(Ji)

minimum value min(J)= min
1≤i≤100

(Ji)

average value ave(J)=

(
100∑
i=1

Ji

)/
100

standard deviation std(J)=

√√√√(
100∑
i=1

(Ji−ave(J))2
)/

100

and median value med(J) can be solved in two steps.

1) Arrange those values of Ji, i = 1, . . . , 100, from
minimum to maximum: J1 ≤ J2 ≤ · · · ≤ J50 ≤ J51 ≤
J100.

2) Then, med(J) = (J50 + J51)/2.

When the initial function x1(t) = 0.5 and x2(t) = 0 for
t ∈ [−0.3, 0] and Ξ = diag(1, 1) and Ψ = 1, based on Corol-
lary 2 again, we can get ε11 = 0.1092, ε12 = 0.2534, ε21 =

1.2320, ε22 = 1.3813, X =
[

0.2928 −0.0622
−0.0622 0.0226

]
, R̂ =

Fig. 1. Response of state via state feedback (solid line: x1, dashed line: x2).

Fig. 2. Curve of control input via state feedback.

Fig. 3. Membership functions (dashed line: rule 1, solid line: rule 2).

[
0.2473 −0.0474
−0.0474 0.0168

]
, Q̂ =

[
0.4172 −0.0874
−0.0874 0.0314

]
, K̂1 =

[−0.9975 −0.0010], and K̂2 = [−0.9998 −0.0001], with
the resulting control gain matrices K1 = [−8.2178 −22.6455]
and K2 = [−8.2159 −22.5998].

The simulation results on guaranteed cost control based on
state feedback are shown in Fig. 1. With control law u(t) =
R11(x2(t))K1x(t) +R12(x2(t))K2x(t), the closed-loop sys-
tem is asymptotically stable in the mean-square sense, and the
guaranteed cost bound is J∗ = 5.1292. Fig. 2 shows the curve
of the control signal.
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TABLE III
DATA OF 100 EXPERIMENTS FOR THE GUARANTEED COST VALUE

Example 2: Consider a stochastic system with two time
delays that is described by two fuzzy rules as follows:

Rule 1 : IF x1(t) is R11

THEN

dx(t)=
2∑

k=0

(B1k+∆B1k(t))x(t−hk)dt+D1u(t)dt

+
2∑

k=0

(C1k+∆C1k(t))x(t−hk)dw(t)

Rule 2 : IF x1(t) is R12

THEN

dx(t)=
2∑

k=0

(B2k+∆B2k(t))x(t−hk)dt+D2u(t)dt

+
2∑

k=0

(C2k+∆C2k(t))x(t−hk)dw(t)

where x(t) = [x1(t) x2(t)]T . The fuzzy membership func-
tions R11 and R12 are defined as in Fig. 3. The system
parameters are given as

B10 =
[
−7.3 0.1
0.3 −7.4

]
B11 =

[
−0.1 −0.01
0.01 −0.1

]
B12 =

[
−0.1 −0.01
0.01 −0.1

]
C10 =

[
0.1 −0.1
0.2 0.5

]
C11 =

[
−0.2 −0.3
0.1 −0.5

]
C12 =

[
−0.2 −0.3
0.1 −0.5

]
B20 =

[
−7.3 −0.4
0.3 −8.9

]
B21 =

[
−0.09 0.02
0.01 −0.1

]
B22 =

[
−0.09 0.02
0.01 −0.1

]
C20 =

[
0.1 0.1
0.3 −0.6

]
C21 =

[
0.3 −0.2
0.2 0.6

]
C22 =

[
0.3 −0.2
0.2 0.6

]
D1 =D2 =

[
1
0.5

]
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TABLE IV
STATISTICS ANALYSIS OF THE GUARANTEED COST

PERFORMANCE OF REGULATION

and uncertain parameters are described by

[∆B10(t) ∆B11(t) ∆B12(t) ∆C10(t) ∆C11(t) ∆C12(t)]

= M1F1(t)[N110 N111 N112 N210 N211 N212]

[∆B20(t) ∆B21(t) ∆B22(t) ∆C20(t) ∆C21(t) ∆C22(t)]

= M2F2(t)[N120 N121 N122 N220 N221 N222]

with

M1 =
[
0.2 0.1
0.3 0.5

]
N110 = N111 = N112 =

[
0.5 1
−0.2 0.6

]

N210 = N211 =
[

1 0.5
0.2 −0.6

]
M2 =

[
0.2 0.3
−0.3 0.4

]

N120 = N121 = N122 =
[
−0.5 0.9
0.2 −0.3

]

N220 = N221 =
[

0.9 0.5
−0.2 0.3

]
N212 = N222 = [0]2×2.

The time delays are h1 = 0.25 and h2 = 0.5. Assume that
the initial function ζ(t) = [x1(t) x2(t)]T is a random con-
stant value in [0, 2] for t ∈ [−0.5, 0] and uncertain
functions F1(t) = F2(t) = sin(t). Applying Theorem 2, we
performed 100 experiments and recorded the corresponding
data in Table III. We can also calculate the statistics of guar-
anteed cost function value J as in Example 1, as shown in
Table IV.

When ζ(t) = [x1(t) x2(t)]T = [0.5 1]T for t ∈ [−0.5, 0],
Ξ = diag(1, 1), and Ψ = 1, based on Theorem 2, a feasible so-
lution is given as follows: ε11 = 0.0516, ε12 = 1.0015, ε21 =

0.0.0629, ε22 = 0.6285, X =
[

0.0615 −0.0166
−0.0166 0.0658

]
, R̂ =[

0.0253 −0.0142
−0.0142 0.0220

]
, Q̂ =

[
0.0198 −0.0126
−0.0126 0.0198

]
, K̂1 =

[−0.9998 −0.5000], and K̂2 = [−0.9925 −0.4973], with the
resulting control gain matrices K1 = [−19.6567 −12.5763]
and K2 = [−19.5165 −12.4999].

The simulation results of the guaranteed cost control based
on state feedback are shown in Fig. 4. With control law u(t) =
R11(x2(t))K1x(t) +R12(x2(t))K2x(t), the closed-loop sys-
tem is asymptotically stable in the mean-square sense, and the
guaranteed cost bound is J∗ = 311.8885. Fig. 5 shows the
control curve. It is easy to see that all the time responses of
states are satisfactory.

V. CONCLUSION

In this paper, a class of uncertain stochastic fuzzy sys-
tems with multiple time delays is studied. A delay-dependent
guaranteed cost control approach was developed such that the
designed state feedback controller can guarantee that the

Fig. 4. Response of state via state feedback (solid line: x1, dashed line: x2).

Fig. 5. Curve of control input via state feedback.

closed-loop system is asymptotically stable in the mean-square
sense and the value of cost function is not larger than a bound.
The present approach does not require system transformation or
relaxation matrices. All results were presented in the solvable
form of LMIs. Simulation examples were given to illustrate the
design procedures and the effectiveness of the approach.

APPENDIX

Proof of Lemma 2: Since W is a positive definite
symmetric constant matrix, for any nonzero c = [c1, c2, . . . ,
cm+1]T

∆= [c1, qT ]T , we have
(
c1ῡ(s) +W−1q

)T ×
W

(
c1ῡ(s) +W−1q

)
≥ 0, i.e., c1ῡ

T (s)W (c1ῡ(s)) +
c1q

T ῡ(s) + c1ῡ
T (s)q + qTW−1q ≥ 0, which is equivalent to

cT
[
ῡT (s)Wῡ(s) ῡT (s)

ῡ(s) W−1

]
c ≥ 0. (37)

Since c is an arbitrary nonzero vector, from inequality (37), it
follows that

[
ῡT (s)Wῡ(s) ῡT (s)

ῡ(s) W−1

]
≥ 0. (38)
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Integrating (38) from β − κ to β yields


β∫
β−κ

ῡT (s)Wῡ(s)ds

(
β∫

β−κ

ῡ(s)ds

)T

β∫
β−κ

ῡ(s)ds κW−1


 ≥ 0.

Using the Schur complement, we have

β∫
β−κ

ῡT (s)Wῡ(s)ds− 1
κ




β∫
β−κ

ῡ(s)ds




T

W

β∫
β−κ

ῡ(s)ds ≥ 0

or

κ

β∫
β−κ

ῡT (s)Wῡ(s)ds ≥




β∫
β−κ

ῡ(s)ds




T

W

β∫
β−κ

ῡ(s)ds.

This completes the proof. �
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