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Delay-Dependent Guaranteed Cost Control for
Uncertain Stochastic Fuzzy Systems With
Multiple Time Delays
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Abstract—This paper studies the guaranteed cost control prob-
lem for a class of uncertain stochastic nonlinear systems with
multiple time delays represented by the Takagi-Sugeno fuzzy
model with uncertain parameters. By constructing a new sto-
chastic Lyapunov-Krasovskii functional, sufficient conditions for
delay-dependent guaranteed cost control are obtained which do
not require system transformation or relaxation matrices. Con-
ditions for the existence of an optimal guaranteed cost controller
are presented in the linear matrix inequality format. Simulation
examples are provided to demonstrate the effectiveness of the
proposed approach in this paper.

Index Terms—Delay dependence, guaranteed cost control, lin-
ear matrix inequality (LMI), multiple time delays, stochastic fuzzy
systems.

I. INTRODUCTION

TABILITY analysis of stochastic systems has been well

investigated in past years, since stochastic modeling has
come to play an important role in many real systems, including
nuclear processes, thermal processes, chemical processes, biol-
ogy, socioeconomics, and immunology (see [16] and [25] for
more details). Based on the It6 stochastic differential equation,
many efforts have been devoted to extend the approaches from
deterministic systems to stochastic systems (see, e.g., [8] and
[13]). The Takagi—Sugeno (T-S) fuzzy modeling approach,
which has been extensively studied for deterministic nonlinear
systems (see [15], [18], [19], [22], and [30]), has also been
applied to stochastic nonlinear systems (see, e.g., [5], [7], and
[24]). On the other hand, time delays are often the source
of instability and encountered in various engineering systems.
Much attention has been devoted to the development of tools for
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stability analysis and controller design, and many results have
been formulated [2], [4], [9], [14], [17], [21], [26], [29], [32].
These existing results for deterministic or stochastic systems
can be divided into two categories: 1) delay-independent results
[2], [21] and 2) delay-dependent results [4], [9], [14], [17],
[26], [29], [32]. The former does not include any information
on the sizes of delays, whereas the latter category employs
such information and may be less conservative, particularly,
when the sizes of delays are small. To obtain delay-dependent
results, many approaches were developed for deterministic
systems and stochastic ones. A descriptor system approach
proposed in [9] was developed for stochastic systems [4],
[32]. By transforming the original system into a descriptor
system, the stability condition can be derived from analyzing
the stability of such a descriptor system with a constrained
Lyapunov matrix. The relaxation matrices were introduced for
deterministic systems [14], [26] and stochastic ones [29] based
on the Newton-Leibniz formula. This kind of approach not only
enhances the freedom of the solution space for the presented
stability criteria but is also subjected to the complexity in analy-
sis. Recently, a projection approach was developed for linear
uncertain time-delay systems in [17]. In addition to the simple
stabilization, there have been various efforts in assigning certain
performance criteria when designing a controller. One approach
to this problem is the so-called guaranteed cost control first
proposed in [3]. Its essential idea is to stabilize the systems
while maintaining an adequate level of performance repre-
sented by a quadratic cost function. Some important results on
guaranteed cost control have been presented (see, e.g., [6], [12],
[20], [27], [28], and [32], where [12] and [32] studied delay-
dependent guaranteed cost control problems for deterministic
and stochastic T-S fuzzy systems with time delay, respectively).
To the best of our knowledge, there exist a few previous delay-
dependent guaranteed cost control results for stochastic fuzzy
systems with multiple time delays in the literature, although
many other results on multiple-time-delay systems have been
obtained (see, e.g., [2], [4], and [31]). This motivates our
research.

In this paper, we study the guaranteed cost control problem
for stochastic fuzzy systems with multiple time delays and un-
certain parameters. By employing a new Lyapunov—Krasovskii
functional with an integral quadratic term and a new integral
inequality technique, delay-dependent stability criteria are ob-
tained such that the closed-loop stochastic fuzzy system is as-
ymptotically stable in the mean-square sense with a guaranteed
cost control performance. Then, a procedure is given to select
a suitable controller that is optimal in the sense of minimizing
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the upper bound of the guaranteed cost function. All results are
established in the form of linear matrix inequalities (LMIs) and
can be easily solved [1]. One of the advantages is that neither
system transformation nor relaxation matrices are required. In
particular, some system transformation approaches may lead to
conservatism in some cases, which has been pointed out in [11].
Another advantage is that the minimization of cost function can
be directly solved by the LMI toolbox of Matlab, while the
optimal control gain matrix can be obtained.

This paper is organized as follows. In Section II, the sto-
chastic fuzzy system with multiple time delays and uncertain
parameters is formulated. In Section III, the state feedback
guaranteed cost control approach for uncertain stochastic fuzzy
systems is developed. In Section IV, two simulation examples
are provided to demonstrate the effectiveness of the present
approach. In Section V, conclusions are given.

II. PROBLEM FORMULATION AND PRELIMINARIES

Throughout this paper, for h > 0, we let C([—h,0]; R™)
denote the family of continuous functions ¢ from [—h, 0] to
R™ with the norm ||| = sup_j<g<o |©(0)|, where | - | denotes
the Euclidean norm in R". The notation M >0 (M < 0)
is used to denote a positive (negative) definite symmetric
matrix M. Moreover, let (Q, F,{F;}+~0,P) be a complete
probability space with a filtration {F;};~¢ that satisfies the
usual conditions (i.e., the filtration contains all P-null sets and
is right continuous). Let L% ([—h,0]; R™) be the family of
Fo measurable C([—h,0]; R™)-valued random variables ¢ =
{¢(0) : —h < 6 < 0} such that sup_j,-g-o E{|C(0)]*} < o0,
where £{-} stands for the mathematical expectation operator
with respect to the given probability measure P. We will use *
to denote the transposed elements in the symmetric positions of
a matrix.

We first introduce two useful Lemmas, which will be used in
the proof of our results.

Lemma 1 (cf. [23]): For matrices A € R™*", P € R™*",
M e R™* N e R and F € R*! with P > 0, FT'F < I,
and a scalar £ > 0, the following matrix inequalities hold:

1) (MFN)TP+ PMFN <ePMMTP 4 ¢ 'NTN;
2) If P—eMMT >0, then (A+MFN)TP 1A+
MFEN) < AT(P—eMMT) A+ INTN.

Lemma 2: For any constant positive definite symmetric ma-
trix W € R™*™ scalars § > 0 and k > 0, and vector function
0 :[B — K, B8] — R™ 1, such that the integrations in the fol-
lowing are well defined, we have

8 B 8
K / ot (s)Wo(s)ds > /B(S)ds w / o(s)ds
fe B=r Bk

The proof of Lemma 2 can be found in the Appendix.

Remark 1: Lemma 2 is similar to Lemma 1 in [10]. The
only difference between them is that the lower limit of the
integrations in the present case may be less than zero. When
Kk = (3, it becomes the same as Lemma 1 in [10].

Now, we consider a class of uncertain stochastic fuzzy
systems with multiple time delays, in which the ¢th rule is
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formulated in the following form:
Rule i :
IF zZ1 (t) is Rﬂ, ey and Zp(t) is Rip
THEN
=" (Bir + ABig(t)) #(t — hy,)dt + Diu(t)dt
k=0
+ Z e+ ACu (1)) x(t — hy)duw(t)
k=0

where ¢=1,...,7; r is the number of fuzzy rules;
z1(t), ..., 2p(t) are the premise variables; R;; are the fuzzy
sets, 7 =1,...,p; z(t) € R™ is the state vector; u(t) € R?
is the control input; hg =0; hy >0, k=1,...,m, denote
the state delay; h = max{hy,k € [1,m]}; w(¢t) is a standard
Brownian motion; and {(t) € R™ is a continuous initial func-
tion or random variable. It is assumed that the premise variables
do not depend on the input noise w(t) explicitly. B, Cix, and
D; are the known matrices with compatible dimensions. The
uncertain matrix functions AB;;(¢) and AC;;(t) satisfy the
following condition:

[AB;r(t) ACi(t)] = MiFi(t) [N1ix  Noik) 2
where M; € R™/, Ny € RF*™ and N, € R, k=
0,...,m, are known constant matrices. F;(t) is an unknown
matrix function with Lebesgue measurable elements and satis-
fies FF (t)F;(t) < I € R¥*/, where I is the identity matrix.

The uncertain stochastic fuzzy system (1) is inferred as
follows:

-3ty

x(t — hy)dt + D(8)u(t)dt

m

+ch

z(t — hy)dw(t)  (3)

where By, (0)=>_;_, 6;(2(t))(Bix+ABix(t)), Cr(0)=)_;_1 9

(2()(Cin+ACix(t)), DO)=3"1_, 8:(2(t)) D, 8;(2(t)) =05

Ez( )/ iz 0i(2(1), oi(2(t)=ITIZ, Ru(z(t), and Ri
1 S
(t

zi(t)) is the membership function of z;(t) in Ry, [ =1,....,p

)) >0 and >.._, 0;(2(t)) > 0 for all
t. Therefore, we get 9;(z(t))>0 for i=1,...,7 and Y 7,
5i(2(0) = 1.

We use the controller structure incorporating a set of fuzzy
rules expressed in the form

Assume that o;(z

Rulei: IF z1(¢)is Ri1,...,and z,(t) is Rip

THEN u(t) = K;z(t). 4)

Hence, the inferred fuzzy controller is given by

=376 (2(t) Kiz(t) (5)
=1

where K; is the local control gain matrix to be determined.



128

Substituting (5) into (3), we have the following closed-loop
form of the stochastic fuzzy system:

Z Byi(0) + AByr(6)) x(t — hy)d
k=0
+ 3 (Con(0) + ACK(9)) 2(t — hy)dw(t)  (6)
k=0

where the expressions for By (d), AByr(6), Cpx(0), and
ACy(8) are shown as

dim12i—1 0i(2(1))
x0; (2(t))(Bir + DiKj),

D1 22j=1 0i(2(1)) 65 (2(1))
XBZ‘k = Zr_ 51(Z(t))Blk,

DDA

i=1 j=1

761 (2(6) ABu(t)
i=1

S SPIACEOINE

i=1 j=1

D6 (2(t)) C
i=1
DD 6 (2(1)) 65 (2(t

i=1 j=1

Z 8; (2(t)) ACi(t)

Bue(8) = for k=0

fork=1,....m

ABy (6 2(t)) AByy(t)

Chr(9) (t) Cik

ACbk(cS) = )) AOik(t)
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Given positive definite symmetric matrices = and ¥, we shall
consider the cost function

o

J=¢ / [T (H)Za(t) + o () Pu(t)] dt

0

@)

Associated with the cost function, the guaranteed cost con-
troller is defined as follows.

Definition 2: Consider system (3). If there exist a control law
u*(t) and a scalar J* > 0 such that the resulting closed-loop
system is asymptotically stable in the mean-square sense and
the value of cost function (7) satisfies J < J*, then J* is said
to be a guaranteed cost, and u*(t) is said to be a guaranteed cost
control law for system (3).

Our objective is to develop a delay-dependent stabilization
approach, which provides the state feedback control gain matrix
as well as a positive scalar J* such that the closed-loop system
is asymptotically stable in the mean-square sense and the value
of cost function (7) satisfies J < J*.

III. MAIN RESULT

In this section, we develop our main results for the stochastic
fuzzy system (6). We now state and prove our first result.

Theorem 1: Given hy >0, k=1,...,m, the closed-loop
stochastic fuzzy system (6) is asymptotically stable in the
mean-square sense, if there exist matrices X > 0, R> 0,
Q >0,and K; (i = 1,...,r) with compatible dimensions and
scalars ;1 > 0 and €;0 > (), such that the LMIs (8), shown at
the bottom of the page, hold for 1 < ¢ < j < r where

I, :(BwX + X B + BjoX + XBY + DK, + D,K,
+ [AQTDJT+ KJTD1T+ a1M¢M¢ + 5]-1]\4ij ) e R

15 ,; = (B X + BjuX) € ™"
The stability of stochastic fuzzy system (3) is defined as ng/J =(—4X + QQ) c Rrxn
follows. o _ xn
Definition 1: For system (3) with u(t) = 0, the trivial solu- Hi’ij =2 X € R .
tion is asymptotically stable in the mean-square sense for every U5, = —2X €R
¢ € L%, ([=h, 0] R) if I, = —4hi X + 2h,R € R
;. = [XC XCly XNJ, XNi,|eREnt2D
. 2 nx(2n
fim &z (t, O = nk, = [XCh XCh XNL, XNI,] e R@r2h
_Hl,ij H2 RTERER Hgbm H}L aj e HZ}U H?,ij Hg_’ij Hll,ij T
* 11} i 0 0 IE i 0 0 11} ij ik ij 0
.0 0o .0 : : 0
« I3, ? 0 Iy, I, 1gh; 0
* * * * Hﬁ,ij 0 0 0 0 0 <0 ®)
* * * * * 0 0 0 0
* * * * * * Hg?ij 0 0 0
* * * * * * * H&ij 0 0
* * * * * * * * IT0,45 0
L % * * * * * * * * I3,
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HS,ij = —diag(X— €i2MZ‘MiT, X— EngijT, EiQI, Ejg[)
e R(2n+2f)><(2n+2f)

Iy Jij [XleO XNl]O] c Rn><2f
5, = [XN{y XN{;] € R
Iy, = —diag(enl,ej11) € RS
Mg = [2haX 2mX 2X KT KJ| e RoGmtao

H127ij = —diag(thR7 QWQ, 25_1, \I’_l, \I/_l)
e R(3n+2q) % (3n+2q)

., My hd = zm:hk.
k=1

Moreover, the control gain matrix can be chosen as K; =
K; X1, and the guaranteed cost bound is determined as

k=1,..

=& {z"(0)X 'z(0)}

+£&

Proof: Define the following Lyapunov—Krasovskii

functional:
V(z,t) =2 (t)Pa(t) + > / (7)Rx(7)drdj
k=1 _h, t4
+ Z (1) Qx(7)dr
k=14 ",
m t T ¢
+ z(r)dr | P x(7)dr (10)

where P = X!, R=R!, and Q = QL. By the It formula

[16], we obtain

dV(z,t) = LV (z,t)dt + 22T (t)P f: (Cor(0)
k=0

+ ACwk(6)) z(t — hy)dw(t) (11)

where

LV (x,t) =22" ()P Y (Buk(8) + ABu(5)) x(t — hx)
k=0

+ (i (Coi(8) + ACh(0)) z(t — hk)> P

k=0
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(Coi(8) + ACpi(0)) z(t — hy)

M-

b
I
<)

+ Z (hka:T(t)Ra:(t) — / xT(T)Rx(T)dT)
k=1 t—hy,

+ 2 (T OQu(t) = 2" (t = hi)Qu(t — )
k=1

+Z( t) — a(t — )"

P /t x(7)d7>.

t*hk
12)
Using Lemma 1 and considering the uncertain parameters (2),
we obtain

T(t)P> " ABu(0)
k=0

x(t — hg)

Za

x 22T (t )PMiFi( )NW( )

T

< D8 (2(t) (saz” () PMM] Pa(t)

i=1
+e T NNy (1)) (13)
where
N;=[Nyio N1 -+ Niig = Niim]
w(t):[a:T(t) xT(t —hy) - xT(t —hg) - mT(t — hm)]T.

Using Lemma 1, we can also obtain

m T
(Z (Cui(8) + ACH(0)) w(t — m)) p

k=0

xZ(C’bk(é)
< 2226

X ((Wi AW ()T
+ (W, + AW, ()"

+ AC’bk(é)) I(t — hk)
2(0) T (1)
P (W; + AW;(t))
P (W; + AW;(£))) % (1)

TP (Wi + AW;(t)) 9 (t)

1
X (W'T(Pfl - €i2MiMiT)_1Wi + gﬁlﬁfiTM)w(t)

(14)
where
Wi =[Cio Cix -+ Cit, -+ Cim]
AW, (t) = [ACio(t) AC;(t) -+ ACik(t) -+ AC;m(t)]
= M, F;(t)N;
N; =[Najo Noj1 -+ Noje -+ Najp).
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Using Lemma 2, we have

t ¢ Ty
- /xT(T)Rx(T)dT < —h! /x(T)dT R /(E(T)d’]’.
t—hg t—hyg t—hyg

15)

Substituting (13)—(15) into (12), we have (16), shown at the
bottom of the page, where

EX(t) = |a"(t) 2"(t—h) (t = hm)
t T t T
/ x(T)dr / x(1)dr
t—hy t—hm

and Z;; = (1/2)(Z” + Zji)’ for ¢ = j, with

Z145 =P(Bio + D;K; + Bjo + D K;)
+ (Bio + D;K; + Bjo + D;K;)" P
+ e PM;M;" P+ £ PM; M P
+ e NijoN1io + €51 Nijo N1jo

-1
Cio

+ CT (P L &‘iQMZ‘MiT)
— -1
—+ Cj() (P L EngijT) CjO
+ €55 NajoNaio + €53 Najo Najo + 2ha R + 2mQ
+ 22+ K/ VK, + K] VK;
Zg,ij =P(B;; + Bjk) + Ei_lle;()Nlik + 5;11N£0N1jk
+ CT (P L EiQMiMZ-T)71 Cik
-1
+CT (P 1 EjQMijT) Cjk
+ €59 NQZ;ONQik + E;leQTjONij

kk 1T 1T
Zy = —2Q + ;1 Ny Nvik + €51 NijpNujin

Zij + Zji +Ch (P - 81'2.7\41']\4?)71 Cik
- 1 2 m 1 2 -
Z1,ij ZZ,ij Z2,z’j ZQ,ij Z4 Jij Z4,ij T Z4,ij +0T (P’l e '2M'M-T)71 Ci
¥ Zyl Zyh - ZyT Zb. 00 000 " SRR
* *’ ! Zg’?j- . Zg,i_l 0 7 Z52 i 0 0 + E,L-_;sz;kNZik + 5;21N2TjkN2jk:
’ ’ ’ K, - -
* * x . : 0 0o . 0 3,ij =& Ny N + 6jllNlTjkNljl
=l * x x x Zm o0 0 0z, +CL (P =M MF) gy
* * * % % Zg. 00 0 P -1
* * * * * * Zg ij 0 0 + Cjk (P - 5j2Mij ) le
. i 0 + €55 Nosje Nogt + EEQINQTJ-,CNle (1> k)
L * * * * Zgn” i Z!f’” =2P Zflf’” = 2P
(17) ZE = —2h 'R, k=1,...,m.
LV (x,t) <227 (t)P Z B (6)z(t — hi) + Z 5; (2()) (eanx” (t) PM; M Pa(t) + eq ¢ () NF N (t))
+ 30 (2(0)) T (1) (W (P = eaM ME) MW, + e NTNG) (1)
i=1
+ 5 [ha @) Rt — it / 2(r)dr | R / ar|+3 (@ — 2T — h)Qalt — )
k=1 e e k=1
m t
+ 2(x(t) — x(t — hy))" P / z(r)dr | + 2T ()Zx(t) + u” () Vu(t) — T ()22 (t) — uT (t)Vu(t)
k=1 7
k
<Y D6 (2(1)) 65 (=) €7 (8) Zis(1) (t)Zx(t) (t)Wu(t)
i=1 j=1
T T

—uT (t)Tu(t) (16)
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Note that the following result has been used in (16):

=D 8 (=) 8 (=(1) 2"

i=1 j=1

9D SLAEDILAE

i=1j=1

(KUK a(t)

(£)) 2" (1)

x (KIUK; + K] VK;) (t)
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Moreover, from (16), we have

LV (z,t) < —2T (H)Z2(t) — u” () Pu(t) < 0. (22)

Therefore, system (6) is asymptotically stable in the mean-
square sense with the control gain matrix K; = K; XL

Integrating inequality (11) from O to 7T > 0, taking the
mathematical expectation, and considering inequality (22), we
obtain

= Zé DK UK (1), A8) &V (@(T), )} — £V (2(0),0)}
m T
_ T
If Zi+Z;<0 holds for all 1<i<j<r, then =E{"(DP(T)} + €13 / 2" (7)Qu(r)dr
LV (x,t) < 0 for every £(t) # 0. k=11p,
Because X = Pl Q=Q' and R=R! we m 0 T
can let K; = K;X. Pre- and postmultiplying diag(P~!, + & Z / / 27 (7)Rx(r)drdf
Pt PP h,P!) to the left-hand side 1 ol
—hg
Lome . T T T
of inequality Z;; + Z;; <0 [cf. (17)] and using the Schur m
Complerr_lent we obtain (19), shown at the bottom of the page, +& Z / z(r)dr | P / z(T)dr
where II 31 =-2XQX, Ik =2 XRX, k=1,....m k=1 \p"p, 77,
and other notations are deﬁned as in (8). 0
The inequality (19) is not a solvable LMI because of the non- T i T
linear terms X QX and X RX in II%, .i; and Hgij, respectively. —E{z" (0)Px(0)} - £ Z z' (7)Qu(T)dr
Because X and () are positive definite symmetric matrices, F=1
we have m 00
& / /zT(T)Rx(T)deﬂ
X-Q QX -Q)=X-QMHRX-Q ") =0 ;hk ﬁ
then m y ’ 0
—E0> / z(r)ydr | P / a(r)dr
~XQX < -2X+Q L (20) F=1 \ 7, “hu
T
Similarly we have _¢ /EV(m 1t
—~XRX < —2X+R 1) °
Because R =R and Q = Q!, from (19)-(21), we ob- <-=£ /(%“T(T) (1) + u” (7)Qu(r)) dr (23)
tain (8), which guarantees Z;; + Z;; <0 (1 <i<j<r). 0
—Hl,ig H% g H72n13 H}L KX H;rlnzj H71ij Hgyij Hllﬂ]
* I} i 0 0 I ij 0 H%’ij i ij 0
* * 0 0 0
* * * I:IQ"U 0 g, 17, Ighs
* * * * l:[é i 0 0 0 <0 (19)
* * * * * Hglw 0 0 0
* * * * * * Ilg 45 0 0
* * * * * * * Hlo,ij 0
L % * * * * * * * Iz,
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Because system (6) is asymptotically stable in the mean-square
sense, when 1" — oo, we have

m 0 0
+ELY / / " (7)Ra(7)drdp
k=1 % %
m 0 0
+& Z /x( P/x(T)dT (24)
k=1 \ %, T
that is
J=£ /(wT(T)Ex(T) +u”(7)Tu(r)) dr
0
<&{z"(0)X 'z(0)}
m 0
+EY [ 2T (NQ  a(r)dr
k=1,
m 0 0
+& Z//IT(T)R Lo(r)drds
k=1, 73
m 0 T 0
+EQLN /x(T)dT X*l/x(T)dT
k=1 \_h, —hy
=J" (25)
This completes the proof. ]

Note that the guaranteed cost bound in Theorem 1 depends
on the choice of guaranteed cost controller. The guaranteed
cost controller that minimizes the guaranteed cost is called an
optimal guaranteed cost controller in [28]. Based on Theorem 1,

the design problem of the optimal guaranteed cost controller is
formulated as follows.

Theorem 2: Consider the stochastic fuzzy system (6) with
cost function (7). If the following optimization problem

min {tr(To) + tr(T'y) + tr(T'2) + tr(T'3)}

(i)  inequality (8)
(ii) _ZFOO fgﬂ <0
r_ T
st d () I Zrll %} <0 (26)
(iv) :_ZI; fzﬂ <0
) _23 Zgﬂ <0

has a solution set © = (g1, €52, X, R,Q,K; Ty,T1,I5,T3,1<
i < j <r), where tr(-) denotes the trace of a matrix, then
controller (5) is an optimal guaranteed cost controller, which
ensures the minimization of the guaranteed cost bound (9) for
system (6), where

202 =€ {z(0)2”

[ [

—hy

(0)}

NE

m\o

lelT =& x(T T)dTdf

>
I |

1

m 0
ZQZzT:g Z/.’E

k=1 —hy

T

/ x(7)dr

k=1 e

m 0
227 =¢ Z/x
—hy

Proof: By Theorem 1, (i) in (26) is clear.

By the Schur complement, it follows that (ii), (iii), (1V) and
(v) in (26) are equivalent to ZOTX 1z < Ty, Zl R~ 1z, <
Iy, 22 Q 1z, < Ty, and ZTX 125 < Ty, respectively. On
the other hand

tr (€ {2"(0) X '2(0)})

T(0)})

& {J;T(O) }

X 'e{z(0)z

=tr (X 'Z0Z])

(
tr(
(X
=tr (2§ X '2)

< t2(To) 27)
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and similarly

“ha
= SN r (27 (r x T
5{;h/[/t («" ()R 2 (7)) drag
w00
tr(Alé’{ //x() (t)drdg
k=10, 7
—tr ( Aflzlle) < te(Ty) 28)
m 0
2T (MO Ya(r)dr
£ Z/ (0 e (r)d }
m 0
= r (27 (1)Q 'x(r T
—s{éh/kt (2" ()Q " a(r)) d }
G
=tr (Q‘ E{I;_h/k x(r)x’ (1)dr )
—tr (@ 12,27 ) < tr(Dy) (29)
m 0 T 0
x(T)ar -t z(T)ar
el 1
m O 0 T
=tr | X '¢& Z/x(r)dT /x(T)dT
k=1, e
= tr (X 12;27) <htr(F3) ' (30)

Hence, it follows from (26) that

J < tI‘(Fo) + tI‘(Fl) + tr(Fg) + tr(Fg).

Then, the minimization of tr(I'y) + tr(T'y) + tr(I'2) + tr(I's)
implies the minimization of the guaranteed cost for the sto-
chastic fuzzy system (6). The optimality of the solution of the
optimization problem (26) follows from the convexity of the
objective function and of the constraints.

This completes the proof. ]

In the preceding discussion, we presented sufficient condi-
tions for delay-dependent guaranteed cost control of stochastic
fuzzy systems with multiple time delays. When k£ = 1, simpler
results can be obtained in parallel to Theorems 1 and 2.

The closed-loop stochastic fuzzy system with single delay is
described as follows:

de(t) = (Buo(5) + AByo(6)) 2(t)dt + (Boy (5) + ABy (5))
x z(t — h)dt + (Cro(5) + ACo(6)) 2(t)dw(t)
+ (Cp1(0) + ACy1(6)) x(t — h)dw(t) 3D
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where

8) =Y bi(=(t)) 8 (=())

i=1 j=1

By (0) + AByo(

DD 8 (=(1)) 65 (=(1))

i=1 j=1

Bbl(é) —+ ABbl (5) =
X (Bij1 + ABj1(t))

PACON

Bil + ABM (t))

=D > i(=(1) 8 (=(1))

i=1 j=1

Cbo(é) + Acbo(é)
x (Cio + ACio(t))

=Y 8 (=) (
i=1

Cio + ACio())

DD Gi(=(1) 65 (=(1))

i=1 j=1

Cbl((S) + A0b1(5) =
X (Cﬂ + AC’ll(t))

= 376 (:(0)

B,o, B;1, Cio, C;1, and D; are known constant matrices
with compatible dimensions; K;, ¢ = 1, ..., r, are control gain
matrices, which are defined in (5); and the matrix functions
AB;o(t), AB;1(t), ACi(t), and AC;(t) represent norm-
bounded parameter uncertainties and satisfy

AB;1(t) AC;(t)
= M;Fi(t) [N1io

Ci + AC;H (1)) .

[AB;o(t) AC; (1))

Niii Naio Naa]  (32)
where M;, Ni;9, N1j1, Nojg, and No;; are known constant
matrices with compatible dimensions, and F;(t) is as defined
in (2).

Corollary 1: Given h > 0, the closed-loop stochastic fuzzy
system (31) is asymptotically stable in the mean-square sense
if there exist matrices X > 0, Q >0, R>0, and K; (1=
1,...,r) with compatible dimensions and scalars £;; > 0 and

€i2 > 0, such that the following LMIs hold for 1 < < j < r:

Iy o5 Ioy; Iy Mg Iguy  Ilppgy
# Ty Tsy IO, T 0
* * Hﬁ,ij 0 O O
I A A o <0 63
* * * * Hl(),’ij 0
* * * * * —1II19 i
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where

Iy ;= BioX + X Bjy+BjoX+XBJ;+D; Ki+ DK
+ KDY + KT DF +e M; M ;1 M; M} € R™"
M ;=B X +Bj; X € R™"
I3, = —4X+2Q € R™"
Iy;;=2hX € R™"

H5,ij: _2hX€RTL><n

HG,ij: _4hX+2hReRnxn,

I7,ij= [XCzO XC]Z;) XNQZ;O XNZZZO] c R (2n+2f)

H%,ij: [Xcﬂ XCﬁ XN2721 Xsz;l] ERnx(QnJer)

H&M:—4&%@X—EQALM?V¥—gﬂNQMfﬁmjﬁﬂn
c R@n+2f)x(2n+2f)

Iy Jij = [XN%;O Xqu;O] €R7L><2f

Hg i [Xlel XNlj;l] eRnfo

My = —diag(eil, e 1) € RS

Muy=[2hX 2X 2X KT KT|eRrmr2o
M9 =diag(2hR, 2Q, 2271, U1 1) g REn+20)x(3n+2q)

Moreover, the control gain matrix can be chosen as K; =
K; X1, and the guaranteed cost bound is given by

0

Edx 0)}+& 2T (1)Q ra(r)dr
{
0 0
+& xT(r (7)drdp
17"
T 0

(34)

= “h

Corollary 2: Consider the stochastic fuzzy system (31) with
cost function (7). If the following optimization problem:

min {tr(To) + tr(Ty) + tr(T2) + tr(T3)}

(i)  inequality (33);
(ii) __Zl;o Zy }
o[-y
st d W 2, } (35)
i) | L ﬂ <0
| 22 —Q
w |5 E | <o
| 25 —X

has a solution set © = (g1, €42, X, R,Q,K; Ty,T1,I5,T3,1<
1 < j<r), then controller (5) is an optimal guaranteed cost

controller, which ensures the minimization of the guaranteed
cost bound (34) for system (31), where

202 =€ {2(0):7(0)}

00
zzl=¢ /:I: T)dTdS
B
0
2,27 =¢ /Z‘(T);ET
“h
0 0 T
2327 =¢ /x(T)dT /:c(T)dT

—h —h

Remark 2: We have presented delay-dependent sufficient
conditions for guaranteed cost control in terms of the convex
LMI format. Next, we make a comparison with the existing
delay-dependent results in [12]. Guan and Chen [12] have
pointed out that some existing approaches cannot provide suffi-
cient conditions based on the convex LMI format; furthermore,
the global minimum of the aforementioned minimization prob-
lem cannot be found using a convex optimization algorithm,
and the suboptimal solutions have to be chosen. Therefore, their
approach may lead to a heavy computational burden. However,
the approach in this paper can lead to convex LMI conditions
such that the global minimum solution can be directly solved
by the LMI toolbox in Matlab. Therefore, our approach not
only reduced the computational cost of solution process but also
enhanced the control performance of the closed-loop system.

IV. ILLUSTRATIVE EXAMPLES

In this section, a system with a single time delay and a system
with two time delays are used to illustrate the effectiveness of
the present approach in Examples 1 and 2, respectively.

Example 1: Consider the following stochastic nonlinear
delayed system:

dxy(t) = (—0.112521 () —0.012521 (t —0.3) —0.0222(%)
— 0.675(t)—0.005z(t—0.3)+u(t)) dt
+ (0.5z1 (t) —0.425(t) +0.425(t)) dw(t)
doo(t) =1 (t)dt+ (0.1521 (t) +0.922 () +0.423 (¢) ) dw(t).
(36)
Similar to [19], assume that x1(¢) and x5 (t) are measurable
and x;(t) € [-1.5,1.5] and z3(t) € [—1.5,1.5]. The nonlinear
terms of system can be represented as

—0.6723(t) =R11 (22(t))-0-25(t) —Ria(x2(t))-1.50752(t)

04.13% (t) :Rll (332 (t)) '0'1‘2 (t) —R12($2 (t)) . (—0.9)1‘2 (t)
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TABLE 1
DATA OF 100 EXPERIMENTS FOR THE GUARANTEED COST VALUE
times | state(z1) | J times | state(xq) | J times | state(xq) | J
1 02311 11269 36 0.8462 150957 || 71 0.3003 2.0204
2 0.6068 77764 37 0.5252 5.8272 72 0.8385 14.8212
3 0.486 49866 38 02026 0.8675 73 0.5681 6.8208
4 0.8913 16.7895 || 39 0.6721 95452 74 03704 2.897
5 0.7621 122611 40 0.8381 148079 || 75 0.7027 10.4303
6 0.4565 44024 a1 0.0196 8.15E-03 || 76 0.5466 63121
7 0.0185 0.0072 Iy} 0.6813 9.8106 77 0.4449 41794
3 0.8214 142521 43 03795 3.0418 78 0.6946 10.1967
9 0.4447 41761 44 0.8318 146148 || 79 0.6213 8.168
10 0.6154 7.9969 45 05028 53412 80 0.7948 133405
11 0.7919 132439 || 46 0.7095 10.6305 81 0.9568 19.3499
12 0.0218 179634 || 47 0.4289 3.8887 82 0.5226 57696
13 0.7382 115129 || 48 0.3046 1.9637 83 0.8801 16.3726
4 0.1763 0.6567 49 0.1897 0.759 84 0.173 0.6312
15 0.4057 34768 50 0.1934 0.7899 85 0.9797 20.2531
16 0.9355 184947 || 51 0.6822 9.8379 86 02714 1.5566
17 0.9169 177728 || 52 03028 1.9355 87 0.2523 13441
13 0.4103 3.5556 33 05417 6.1991 88 0.8757 16.2097
19 0.8936 16.878 54 0.1509 0.4805 89 0.7373 11.4848
20 0.0579 0.0707 35 0.6979 10.2873 90 0.1365 0.3936
21 0.3529 2.6201 56 0.3784 3.0241 91 0.0118 0.0029
22 0.8132 139802 || 57 0.86 155916 | 92 0.8930 16.8873
23 0.0099 0.002 58 0.8537 15362 93 0.1901 0.8378
24 0.1389 0.4077 59 0.5936 7.4203 04 0.2987 1.8826
25 0.2028 0.8683 60 0.4966 5205 95 0.6614 92412
26 0.1987 0.8343 61 0.8998 171122 || 96 0.2844 1.709
27 0.6038 7.6984 62 0.8216 142598 || 97 0.4692 46531
28 02722 15638 63 0.6449 37872 03 0.0648 0.0886
29 0.1988 0.8351 64 0.818 141422 || 99 0.9883 20.63
30 0.0153 0.0049 65 0.6602 9.2069 100 | 0.3828 71674
31 0.7468 117652 || 66 0342 2.4699
32 0.4451 41835 67 02897 1.7737
33 0.9318 183504 || 68 03412 2.4587
34 0.466 45886 69 0.5341 6.0271
35 0.4186 3.6073 70 0.7271 11.1701
Solving these equations, we obtain System parameters Big, Bag, Bi1, B21, Cho, Ca, D1, and

Dy, can be solved by the following equations:

Rip (2o(t)) =1 — x3(t)/2.25
[—0.11251‘1(15) —0.02z2(t) — 0.673

ng (l‘g(t)) =1- Rll (.Ig(t)) = x%(t)/2.25 I

where R11(x2(t)) and Ri2(z2(t)) can be interpreted as mem- = Rua(22(t)) Broz(t) + Raa(22(t)) Booz(?)

bership functions of fuzzy sets. Using these fuzzy sets, the ) )
stochastic nonlinear system with time delay can be expressed _ (1 T3 (t)) Broa(t) + z3(t) Boox(t)

by the following stochastic fuzzy model: © 225 2.25

) . 0.5z1(t) — 0.4z2(t) + 0.423(t)
Rule 1 IF 5 (t) is Ry [0.15951@) +0.925(t) + 0.423(t)
THEN

da(t) = [(Bro+ ABro(t)) 2(t) + Buz(t—h)] dt = R (@2(t)) Croz(t) + Rz (w2(1)) Cooal?)

+ Dyu(t)dt+(Cro+ACho(8)) a(t)duw (t) _ (1 - ”;2;’2) Cront) + 20 )

Rule 2 : IF i) (t) is ng

THEN [—0.01251‘1(1& —0.3) — 0.005z2(t — 0.3)

0
dz(t) =[(Bao-+ABao(t)) x(t) + Bora(t—h)] dt

+ Dzu(t)dt+(020+AC’20(t)) x(t)dw(t) = Rll (132 (t)) Blll’(t — 03) + R12 (1172 (t)) Bgll‘(t — 03)

where z(t) = [z1(t) a2(t)]" [uét)} = Roan (r2(0) Drect) + Rz (22(0)) Prelt)
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TABLE 1II
SOME STATISTICS OF THE GUARANTEED COST
PERFORMANCE OF REGULATION

[ min(J) [ max(J) [ ave(J) [ std(J) | median(J) |
[ 0002 | 2063 | 74421 | 6.1427 | 50271 |

Then, we have

—0.1125 —-0.02 0.5 —-04
Bio = [ 1 0 } Cro = [0.15 0.9 ]
—0.1125 —1.5275 0.5 0.5
Bao = [ 1 0 } Coo = [0.15 1.8}
—0.0125 —0.005 1
B11=Bz1={ 0 0 ] D1:D2:|:O:|
[AB1o(t) ACio(t)] = M1F(t) [Ni1o Noio]
[ABgo(t) ACy(t)] = MaF(t) [Ni2o Nazo]
—0.1125
M1M2[ 0 ] Nip = Nigo=[1 0]

Noig = Nog1 = [0 1].

The time delay is h = 0.3. Assume that the initial function
x1(t) is arandom constant value in [0,1] and that z5(¢) = 0 for
t € [—0.3, 0] and uncertain function F'(t) = sin(¢).

Remark 3: In the preceding T-S model, uncertain parameters
ABig, ABsy, AC1g, and ACy are introduced, because we
consider the robust control performance of the system. The
form of uncertain function F'(t) does not affect the stability
result of the robust control systems as long as it satisfies the
condition FT(¢t)F(t) < I. |

Given E = diag(1,1) and ¥ = 1, applying Corollary 2, we
performed 100 experiments and presented the corresponding
data in Table 1. Table II provides the statistic analysis perfor-
mances of guaranteed cost function value J.

The computation formulas are given as follows:

maximum value max(J) = | max O(Ji)
ASAS

minimum value min(J) = 1<H‘1<i11100(Ji)
1S

100
average value ave(.J) = (Z Ji>/100
i=1

100
standard deviation std(J) = (Z (J,-—ave(J))2>/lOO

=1

and median value med(J) can be solved in two steps.

1) Arrange those values of J;, ¢=1,...,100, from
minimum to maximum: J! < J2 < ... < J50 < 5l <
JlOO'

2) Then, med(J) = (J% + J51)/2.

When the initial function x(t) = 0.5 and x2(t) =0 for

t € [-0.3, 0] and = = diag(1,1) and ¥ = 1, based on Corol-
lary 2 again, we can get €11 = 0.1092, €19 = 0.2534, €91 =

0.2928 —0.0622]
1.2320, €22 = 1.3813, X'=| 600 00226 |© =

0.6

State

20 05 1 15 2 25 3
Time (sec)

Fig. 1. Response of state via state feedback (solid line: 1, dashed line: x2).

Control

15 2 25 3

Time (sec)
Fig. 2. Curve of control input via state feedback.
1
0.8+
0.6
0.4r
02r
95 5
Fig. 3. Membership functions (dashed line: rule 1, solid line: rule 2).

0.4172 —0.0874 -

02473 —0.0474] 5 _ P
—0.0474 0.0168 |~ |—-0.0874 0.0314 |> "'~
[~0.9975 —0.0010], and Ky = [0.9998 —0.0001], with

the resulting control gain matrices Ky = [—8.2178 —22.6455]
and Ky = [—8.2159 —22.5998].

The simulation results on guaranteed cost control based on
state feedback are shown in Fig. 1. With control law u(t) =
Ra1(z2(t)) K1x(t) + Riz(x2(t)) Kaz(t), the closed-loop sys-
tem is asymptotically stable in the mean-square sense, and the
guaranteed cost bound is J* = 5.1292. Fig. 2 shows the curve
of the control signal.
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TABLE III

DATA OF 100 EXPERIMENTS FOR THE GUARANTEED COST VALUE
times State(x1) State(x2) J times State(x1) State(x2) J
1 0.8658 0.4519 235.6765 51 0.5948 0.0983 70.7521
2 1.0596 1.2811 737.419 52 1.3864 1.3002 966.4405
3 0.4181 0.7596 191.1987 53 1.966 1.1053 1273.067
4 1.5667 1.3617 1147.266 54 0.7518 0.0198 947339
5 1.7487 0.03 508.432 55 1.5877 1.8399 1576.808
6 1.5359 1.9417 1631.082 56 1.6894 0.7355 805.0326
7 1.9802 1.5777 1693.996 57 1.2416 1.4626 930.8259
8 0.8773 0.9966 472.337 58 0.3878 1.8096 719.93
9 0.6401 1.9202 941.1683 59 1.1384 1.2636 773.016
10 1.4533 0.8239 700.4928 60 0.4688 1.0976 3444478
11 1.4891 0.5359 570.168 61 1.8632 0.6704 890.66
12 0.8798 1.8668 1052.442 62 1.2546 1.3982 942.5434
13 1.3667 0.4251 451.305 63 0.7944 0.8273 352.903
14 1.2144 1.2598 821.372 64 1.3104 1.6752 1203.796
15 0.741 1.1503 486.833 65 1.1893 1.1315 722.035
16 0.0544 0.6254 73.234 66 1.4331 1.0226 809.0723
17 0.0257 0.7679 103.276 67 1.5528 0.9787 862.8219
18 1.3662 0.1857 359.938 68 0.3718 1.4013 460.984
19 0.0707 1.2248 270.901 69 1.4071 0.9699 7584267
20 1.2171 0.0315 248.523 70 0.2292 1.3297 370.031
21 0.0327 0.3801 27.079 71 0.7307 0.2801 141.354
22 1.1738 0.1152 253.273 72 1.3479 1.9989 1523.01
23 1.4353 1.3853 1064.923 73 1.9233 0.1177 647.356
24 0.1682 0.9087 174.953 74 0.7206 1.097 449.635
25 0.3072 1.3513 408.484 75 0.5235 1.1947 414.094
26 1.3984 1.455 1090.517 76 0.0986 1.1421 2443782
27 0.2421 0.9015 191.284 77 1.4017 1.9246 1496.301
28 1.4318 1.7857 1398.068 78 1.501 1.48 1192.496
29 0.5462 0.5095 149.198 79 0.8637 1.2685 616.495
30 1.7312 0.4647 684.595 80 1.6061 0.1678 477.596
31 1.6097 1.8168 1577.857 81 1.8909 1.8319 1853.929
32 0.0995 0.1568 8.9454 82 1.204 0.5071 402.6291
33 1.6877 0.3478 601.345 83 1.7469 1.0268 1037.628
34 0.3416 1.9886 824.404 84 1.4653 0.8445 720.088
35 0.8796 0.6801 325.724 85 1.9227 0.1441 658.77
36 0.6284 0.7302 248.445 86 1.1068 0.584 387.149
37 0.7865 1.1831 527.1755 87 1.3604 0.1069 331.837
38 0.9172 1.7397 977.1637 38 0.7133 0.9966 396.28
39 1.8685 0.5289 812.154 89 0.8689 1.1249 537.551
40 0.3206 1.7457 645.1055 90 1.2332 0.2267 311.357
41 0.4758 1.2917 444.194 91 1.7965 1.5091 1460.503
42 1.9338 1.3299 1429.081 92 1.5822 1.6299 1385.145
43 1.7408 0.0199 499.615 93 1.34 0.4018 427.489
44 0.274 1.6375 556.103 94 0.5462 1.2525 4543748
45 0.6922 0.3321 143.01 95 1.0737 0.119 214.7259
46 03112 0.3822 64.716 96 0.1779 0.5426 74.7015
47 0.8449 1.712 908.999 97 1.818 1.1925 1219.259
48 0.9805 1.6319 933.7022 98 1.1943 0.3229 326.509
49 0.9014 0.8244 398.1939 99 1.6242 1.2202 1082.588
50 1.8032 0.0112 532.406 100 1.403 0.1844 377.392
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Example 2: Consider a stochastic system with two time
delays that is described by two fuzzy rules as follows:

Rule 1 :IF :Z?1(t) is Rn

where z(t) = [x1(t) x2(t)]T. The fuzzy membership func-
tions R1; and Rio are defined as in Fig. 3. The system
parameters are given as

[—-7.3 0.1 ] [—-0.1 —0.01
THEN Bo=193 —74] Pn=lo0 —0.1}
2 - N "
—0.1 —0.01 0.1 —0.1
dr(t)=Y (Bix+ABy(t) x(t—hg)dt+Dyu(t)dt — —
(1) = 3B ABue(t) ot i+ Diu() Ba=[om Zon| =0y o5
2 O — [—0.2 —0.3] O = [—-0.2 -0.3
+ ) Cra+ACHK(E) 2(t—hy)dw(t) "Tlo1 -05] “PT 01 -05
k=0 B [—7.3 —04] B [—0.09 0.02
Rule 2 : IF 2 (t) is R12 207103 -89 271001 —01
THEN B [—0.09 0.02 oo |01 01
2 271001 -01 207103 —06
dx(t) =" " (Bok+ABoy(t)) w(t—hy )di+Dyu(t)dt o [03 —02] 03 —0.2
k=0 27102 06 27102 06
) i
+ ) Cont ACo(E) (t—hy)duw(t) Dy =Dy — {015]
k=0 :
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TABLE 1V
STATISTICS ANALYSIS OF THE GUARANTEED COST
PERFORMANCE OF REGULATION

[ min(J) | max(J) [ ave(J) [ std(J) [ median(J) |
[ 89454 | 1853.929 | 6643873 | 442231 | 546827 |

and uncertain parameters are described by

[AB1o(t) AB11(t) ABja(t) AC1o(t) ACt1(t) ACHa(b)]
= M F(t)[N11o0 N111 N1z Nojg Nojp Nojo)
[AB2g(t) ABai(t) ABaa(t) ACy(t) ACa(t) AC(t)]

:M2F2(t)[N120 N121 N122 N220 N221 N222]

with
=[5 63] wo= == [ 5, o]
Naz10 = Nop1 = {0%2 O(fﬁ] M, = {O(f?; 8431]
Moy = N = N = [ 08 99
0.9 0.5

Noog = Nag1 = [ ] Ni12 = Naga = [0]2x2.

—-0.2 0.3
The time delays are h; = 0.25 and he = 0.5. Assume that
the initial function ((t) = [x1(t) a2(t)]7 is a random con-
stant value in [0, 2] for t & [-0.5, 0] and uncertain
functions Fj(t) = F»(t) = sin(t). Applying Theorem 2, we
performed 100 experiments and recorded the corresponding
data in Table III. We can also calculate the statistics of guar-
anteed cost function value J as in Example 1, as shown in
Table IV.

When ((t) = [z1(t) 22(t)]T =1[0.5 1]T for t € [-0.5,0],
= = diag(1,1), and ¥ = 1, based on Theorem 2, a feasible so-
lution is given as follows: €17 = 0.0516, €12 = 1.0015, €21 =

0.0615 —0.0166] -
0.0.0629, £99 = 0.6285, X = {_0.0166 0,065 } R=
0.0253 —0.0142 O— 0.0198  —0.0126] . _
—0.0142  0.0220 | ¢~ | —0.0126 0.0198 |* "t~

[—0.9998 —0.5000], and K5 = [—0.9925 —0.4973], with the
resulting control gain matrices K = [—19.6567 —12.5763]
and Ky = [—19.5165 —12.4999).

The simulation results of the guaranteed cost control based
on state feedback are shown in Fig. 4. With control law u(t) =
Ri1(z2(t)) K12(t) + Riz2(x2(t)) Koz(t), the closed-loop sys-
tem is asymptotically stable in the mean-square sense, and the
guaranteed cost bound is J* = 311.8885. Fig. 5 shows the
control curve. It is easy to see that all the time responses of
states are satisfactory.

V. CONCLUSION

In this paper, a class of uncertain stochastic fuzzy sys-
tems with multiple time delays is studied. A delay-dependent
guaranteed cost control approach was developed such that the
designed state feedback controller can guarantee that the

1.2

1 1.5 2 2.5 3

Time (sec)
Fig. 4. Response of state via state feedback (solid line: 1, dashed line: x2).
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Fig. 5. Curve of control input via state feedback.

closed-loop system is asymptotically stable in the mean-square
sense and the value of cost function is not larger than a bound.
The present approach does not require system transformation or
relaxation matrices. All results were presented in the solvable
form of LMIs. Simulation examples were given to illustrate the
design procedures and the effectiveness of the approach.

APPENDIX
Proof of Lemma 2: Since W is a positive definite
symmetric constant matrix, for any nonzero ¢ = [cy, ca, .. .,
A _ 1T
cmi1)t = e, ¢7)F, we (c10(s) + W) x
W (c10(s) + Wtq) >0, vl (s)W (c19(s)) +
c1q70(s) + 197 (s)qg + ¢"W—1q > 0, which is equivalent to

have
ie.,

=T
”W(fi) (37)

o [T
o(s)

]020.

Since c is an arbitrary nonzero vector, from inequality (37), it
follows that

(38)

|:UT(S)W’U(S)
o(s) w-t
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Integrating (38) from 8 — k to (3 yields

F F 4
[ o7 (s)Wo(s)ds [ o(s)ds
B—k B—k >0
8 2
| o(s)ds kW1
B—k
Using the Schur complement, we have
8 [ T
/ ol (s)Wo(s)ds — — / o(s)ds| W / 0(s)ds >0
K
B—K —K B—k
or
8 8 T
K / o (s)Wo(s)ds > / o(s)ds| W / 0(s)ds
B—k B—k B—k
This completes the proof. |
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