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In this paper, the problem of chaotifying the continuous-time fuzzy hyperbolic model (FHM)
is studied. By tracking the dynamics of a chaotic system, a controller based on inverse optimal
control and adaptive parameter tuning methods is designed to chaotify the FHM. Simulation
results show that for any initial value the FHM can track a chaotic system asymptotically.
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1. Introduction

It is well known that most conventional control
methods and many special techniques can be used
for chaos control [Chen & Dong, 1998] whether the
purpose is to reduce “bad” chaos or to introduce
“good” chaos. Numerous control methodologies
have been proposed, developed, tested and applied.
Due to its great potential in nontraditional ap-
plications such as those found within the context
of physical, chemical, mechanical, electrical, opti-
cal and particularly, biological and medical systems
[Schiff et al., 1994; Yang et al., 1995], making a
nonchaotic system chaos or strengthening the ex-
isting chaos, known as “chaotification” (also known
as “anticontrol”), has attracted increasing atten-

tion in recent years. The process of chaos control
is now understood as a transition from chaos to
order and sometimes from order to chaos, depend-
ing on the purpose of the application in different
circumstances.

Recent studies have shown that any discrete
map can be chaotified in the sense of Devaney
or Li–Yorke by a state-feedback controller with
a uniformly bounded control-gain sequence de-
signed to make all Lyapunov exponents of the
controlled system strictly positive or arbitrarily
assigned [Chen & Lai, 1997; Chen & Lai, 1998;
Wang & Chen, 1999, 2000a, 2000b, 2000c]. Even
if there are some research works showing that a
class of continuous stable systems can be chaotified

∗This work was supported by the National Natural Science Foundation of China (60325311, 60274017).
†Author for correspondence.

3505



October 27, 2004 17:48 01144

3506 H. Zhang et al.

[Wang et al., 2000; Wang et al., 2001; Tang et al.,
2001; Sanchez et al., 2001; Zhong et al., 2001; Yang
et al., 2002; Lü et al., 2002], the problem how to
chaotify general nonlinear systems that cannot be
linearized is still unsolved.

A systematic design procedure, the fuzzy con-
trol method, has been widely used to control chaotic
systems. Great success has been achieved in vari-
ous applications especially in situations where the
dynamics of systems are so complex that it is im-
possible to construct an accurate model [Passino &
Yurkovich, 1998; Tanaka et al., 1998; Chen & Chen,
1999; Chen et al., 1999]. In the present work we
study the chaotification of a specific fuzzy model.
First, such a study is of academic interest since
a fuzzy model is usually a nonlinear system and
its chaotification is a difficult task in general. Sec-
ond, to obtain a chaotic fuzzy model, the com-
mon method is to use fuzzy modeling approach to
model a chaotic system [Tanaka et al., 1998; Chen
et al., 1999]. On the other hand, it is natural to ask
whether a nonchaotic fuzzy system can be chaoti-
fied by control inputs. Part of the answer has been
given in [Li et al., 2002] where the continuous-time
T-S fuzzy model was chaotified under certain con-
ditions. Parallel to the T-S fuzzy model, a new
continuous-time fuzzy model, called the fuzzy hy-
perbolic model (FHM), has recently been proposed
[Zhang & Quan, 2001; Quan, 2001]. When mod-
eling a complex plant, an FHM can be obtained
without knowing much information about the real
plant, and it is easy to design a controller with an
FHM since the FHM satisfies the Lipschitz con-
dition. In this paper, we focus on how to make
an FHM chaotified. In fact, the FHM belong to
a class of Lur’e systems. The problem of robust
H∞ synchronization of two Lur’e systems has been
studied in [Suykens et al., 1997; Suykens et al.,
1997; Suykens et al., 1999]. In these studies, suf-
ficient conditions for uniform synchronization with

a bound on the synchronization error were derived
in the form of matrix inequalities, and the prob-
lem of controller design is solved using a nonlinear
optimization approach. The merits of these results
are that the structures of the controllers are sim-
ple, and relatively large parameter mismatches are
allowed such that the systems remain synchronized
with a relatively small synchronization error bound.
However, since the controllers are not adaptive, syn-
chronization errors will not converge to zero. In
our approach, for a controlled FHM to track the
dynamics of a given continuous-time chaotic sys-
tem asymptotically, we design a controller directly
within the framework of inverse optimal control the-
ory with adaptive parameter tuning methods. By
using inverse optimal control theory, we guarantee
that the controller is optimal with a meaningful cost
functional, and by using adaptive parameter tuning
methods, we make the tacking errors converge to
zero asymptotically.

This paper is organized as follows. In Sec. 2,
preliminaries about the FHM are reviewed. In
Sec. 3, the problem considered in this paper is de-
scribed. In Sec. 4, a controller that can chaotify the
FHM is designed. Simulation results are presented
in Sec. 5, and conclusions are given in Sec. 6.

2. Preliminaries

In this section we review some necessary prelimi-
naries for the FHM.

Definition 1. Given a plant with n input vari-
ables x = (x1(t), . . . , xn(t))T and n output variables
ẋ = (ẋ1(t), . . . , ẋn(t))T . If each output variable cor-
responds to a group of fuzzy rules which satisfies
the following conditions:

(i) For each output variable ẋl, l = 1, 2, . . . , n,
the corresponding group of fuzzy rules has the
following form:

Rj : IF x1 is Fx1
, x2 is Fx2

, . . . , and xnl
is Fxnl

THEN ẋl = c±Fx1

+ c±Fx2

+ · · · + c±Fxn
l

, j = 1, . . . , 2nl ,

where Fxi
(i = 1, . . . , nl) are fuzzy sets of xi, which

include Pxi
(positive) and Nxi

(negative), and c±Fx
nl

(i = 1, . . . , nl) are 2nl real constants corresponding
to Fxi

;
(ii) The constant terms c±Fxi

in the THEN-

part correspond to Fxi
in the IF-part; that is, if

the language value of Fxi
term in the IF-part is Pxi

,
c+
Fxi

must appear in the THEN-part; if the language

value of Fxi
term in the IF-part is Nxi

, c−Fxi

must

appear in the THEN-part; if there is no Fxi
in the

IF-part, c±Fxi

does not appear in the THEN-part;



October 27, 2004 17:48 01144

Chaotifying Fuzzy Hyperbolic Model Using Adaptive Inverse Optimal Control Approach 3507

(iii) There are 2nl fuzzy rules in each rule base;
that is, there are a total of 2nl input variable com-
binations of all the possible Pxi

and Nxi
in the

IF-part.

We call this group of fuzzy rules “hyperbolic
type fuzzy rule base” (HFRB). To describe a plant
with n output variables, we will need n HFRBs.

Theorem 1 [Quan, 2001; Zhang & Quan, 2001].
Given n HFRBs, if we define the membership

function of Pxi
and Nxi

as:

µPxi
(xi) = e−

1

2
(xi−ki)

2

µNxi
(xi) = e−

1

2
(xi+ki)

2
(1)

where i = 1, . . . , n and ki are constants. Denoting

c+
Fxi

by cPxi
and c−Fxi

by cNxi
, we can derive the fol-

lowing model:

ẋl = f(x)

=

nl
∑

i=1

cPxi
ekixi + cNxi

e−kixi

ekixi + e−kixi

=

nl
∑

i=1

pi +

nl
∑

i=1

qi
ekixi − e−kixi

ekixi + e−kixi

=

nl
∑

i=1

pi +

nl
∑

i=1

qi tanh(kixi) (2)

where

pi =
cPxi

+ cNxi

2
and qi =

cPxi
− cNxi

2
.

Therefore, the whole system has the following form:

ẋ = P + A tanh(Kx) (3)

where P is a constant vector, A is a constant matrix,
and tanh(Kx) is defined by

tanh(Kx) = [tanh(k1x1), tanh(k2x2), . . . , tanh(knxn)]T .

We will call (3) a fuzzy hyperbolic model
(FHM).

Let Y be the space composed of all the func-
tions having the form of the right-hand side of (2).
We then have the following theorem.

Theorem 2. For any given real continuous g on

the compact set U ⊂ Rn and arbitrary ε > 0, there

exists an f ∈ Y such that

sup
x∈U

|g(x) − f(x)| < ε .

Proof. See Appendix A. �

From Definition 1, if we set cPxi
and cNxi

neg-
ative to each other, we can obtain a homogeneous
FHM:

ẋ = A tanh(Kx) . (4)

The homogeneous FHM given in (4) will be
studied in this paper for chaotification through the
use of an adaptive controller.

3. Problem Description

Since the difference between (3) and (4) is only the
constant vector term in (3), there is essentially no
difference between the control of (3) and (4). In this
section, we will design a fuzzy controller for homo-
geneous FHM that can chaotify the model in (4).

Suppose that there exists a chaotic system hav-
ing the following form:

ẋr = fr(xr), xr ∈ Rn, fr(·) ∈ Rn . (5)

Consider an uncontrolled FHM in the following
form:

ẋ = Af(x) = A tanh(Kx) (6)

where x is the state and A = [aij ]n×n is a ma-
trix. Due to the hyperbolic tangent form of f(x),
we know that fT (x) · x ≥ 0 for all x, f(x) = 0 only
at x = 0, and lim‖x‖2→∞ fT (x) · x = +∞. There-
fore, there exist positive constants γ1 and γ2 such
that γ1‖x‖

2
2 ≤ fT (x) · x ≤ γ2‖x‖

2
2 [Miller & Michel,

1982].
The idea here is to design a controller u such

that the controlled FHM

ẋ = Af(x) + u , (7)

can track the dynamics of system (5), i.e.

lim
t→∞

‖e(t)‖2 = lim
t→∞

‖x(t) − xr(t)‖2 = 0 . (8)

For each output ẋl, l = 1, . . . , n, we choose to use
the following controller fuzzy rule base (CFRB):

Ri : IF x1 is Fx1
, x2 is Fx2

, . . . , and xnl
is Fxnl

THEN ul = ui
l(x) i = 1, . . . , 2nl

That is to say, each CFRB has the same IF-part
as that of the corresponding HFRB, and has each
THEN-part given by a nonlinear function of the
plant’s state. By this design method, we get a
controller as

u(x) = [u1(x), u2(x), . . . , un(x)]T , (9)
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where

ul =

2nl
∑

i=1

hi
l(x)ui

l(x), l = 1, . . . , n (10)

and

hi
l(x) =

nl
∏

k=1

µi
Fx

k

/

2nl
∑

i=1

nl
∏

k=1

µi
Fx

k

. (11)

In (11), µi
Fx

k

is the membership function of Fxk
with

the ith rule. It is easy to see that

2nl
∑

i=1

hi
l(x) = 1 . (12)

Adding this controller to (6), we obtain the con-
trolled system (7).

Suppose that u has the form u(x, t) = v(x) +
w(x, t), where v(x) = Λx is the state-feedback,
Λ = −diag[λi]n×n ∈ Rn×n with λi (i = 1, . . . , n)
real numbers, and w(x, t) is to be designed. Then,
(7) becomes

ẋ = Λx + Af(x) + w(x, t) . (13)

From (5) and (13), we obtain

ė = Λx + Af(x) + w(x, t) − fr(xr) . (14)

In practical control applications, since Λ is the
state-feedback matrix and A is determined by the
fuzzy rules, they may be affected by some uncer-
tain factors such as parameter shifts and errors in
modeling, and therefore, the parameters of system
(14), Λ and A, would include some uncertainties. On
the other hand, ki (i = 1, . . . , n) can be fixed since
they are determined by the membership functions
chosen in modeling. Once the membership func-
tions are fixed, ki (i,= 1, . . . , n) are invariant. So
in this paper, we assume Λ and A are tunable, and
ki (i = 1, . . . , n) are constants.

For system (13) to track the system (5), the
following natural solvability assumption is needed
[Li & Krstic, 1997].

Assumption 1. There exist functions ρ(t) and
α(t) such that

dρ(t)

dt
= Λ0ρ(t) + A0f(ρ(t)) + α(t)

ρ(t) = xr(t)

(15)

where A0 = [a0ij ]n×n and Λ0 = −diag[λ0i]n×n are
known constant matrices and λ0i are positive real
numbers for i = 1, . . . , n.

From (5) and (15) the following equation can
then be derived:

Λ0xr + A0f(xr) + α(t) = fr(xr) . (16)

Substituting (16) into (14), we have

ė = Λ0e + A0[f(e + xr) − f(xr)]

+[w − α(t)] + Λ̃x + Ãf(x) (17)

where Λ̃ = Λ − Λ0 = −diag[λi − λ0i]n×n and
Ã = A − A0 = [aij − a0ij ]n×n = [ãij ]n×n. Let
φ(e, xr) = f(e + xr) − f(xr), ũ = w − α(t). Then,
(17) can be rewritten as

ė = Λ0e + A0φ(e, xr) + Λ̃x + Ãf(x) + ũ . (18)

Remark 1. It is clear that φ(e, xr) = 0 if e = 0.
Moreover, f(e + xr) = A tanh(K(e + xr)) is mono-
tonically increasing (or decreasing) for each com-
ponent ei of e. Since ei > 0 (or ei < 0) implies
that ei + xri > xri (or ei + xri < xri) for all xri,
fi(ei +xri) > fi(xri) (or fi(ei +xri) < fi(xri)). This
means that φT (e, xr)e = (f(e + xr)− f(xr))

T e > 0.
Therefore, there exist positive constants γ1, γ2, and
Lφ such that

γ1‖e‖
2
2 ≤ φT (e, xr)e ≤ γ2‖e‖

2
2 (19)

and

‖φ(e, xr)‖2 < Lφ‖e‖2 . (20)

Therefore, φ(e, xr) is Lipschitz with respect to e.

4. Controller Design

We first state the following lemma that is required
in our controller design.

Lemma 4.1 [Sanchez, 2001]. For all matrices X,
Y ∈ Rn×k and Q ∈ Rn×n with Q = QT > 0, the

following inequality holds:

XT Y + Y T X ≤ XT QX + Y T Q−1Y . (21)

Theorem 3. For system (14 ), if the controller is

chosen as

w = −(AT
0 A0 + I)φ(e, xr) − Λ0xr

− A0f(xr) + fr(xr) (22)
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and the parameter adaptive update laws are chosen

as

λ̇i = −φi(e, xr)xi ,

ȧij = −φi(e, xr)fj(x) ,
(23)

for i = 1, . . . , n, j = 1, . . . , n, in which φi(e, xr)
and xi are the ith component of φ(e, xr) and x,
respectively, and fj(x) is the jth component of f(x),
then the state of system (18 ), e, is globally asymp-

totically stable, i.e.

lim
t→∞

‖e(t)‖2 = 0 .

Proof. Using (16), we can get α(t) = fr(xr) −
Λ0xr − A0f(xr). Thus,

ũ = w(x, t) − α(t)

= −(AT
0 A0 + I)φ(e, xr) . (24)

Define

ε
∆
= [eT (t), θT (t)]T

= [eT (t), λ̃1(t), . . . , λ̃n(t), ã11(t), . . . ,

ã1n(t), ã21(t), . . . , ãnn(t)]T .

We choose

V (ε) =

n
∑

i=1

∫ ei

0
φi(η, xr)dηi

+
1

2

n
∑

i=1

λ̃2
i +

1

2

n
∑

i=1,j=1

ã2
ij , (25)

where ηi is the ith element of η.
Because of (19), we know that V (ε) is radially

unbounded, i.e. V (ε) > 0 for all ε and V (ε) → ∞
as ‖ε‖2 → ∞. Its time-derivative is as follows:

V̇ (ε) = φT (e, xr)(Λ0e + A0φ(e, xr)

+ Λ̃x + Ãf(x) + ũ)

+

n
∑

i=1

λ̃iλ̇i +

n
∑

i=1,j=1

ãijȧij

= φT (e, xr)Λ0e + φT (e, xr)A0φ(e, xr)

+ φT (e, xr)(Λ̃x + Ãf(x))

+ φT (e, xr)ũ +

n
∑

i=1

λ̃iλ̇i +

n
∑

i=1,j=1

ãij ȧij

∆
= LfV + (LgV )ũ (26)

where

LfV
∆
= φT (e, xr)Λ0e + φT (e, xr)A0φ(e, xr)

+ φT (e, xr)(Λ̃x + Ãf(x))

+
n
∑

i=1

λ̃iλ̇i +
n
∑

i=1,j=1

ãijȧij (27)

and

LgV
∆
=φT (e, xr) . (28)

Applying Lemma 1 with Q = I, we get

V̇ (ε) = φT (e, xr)Λ0e +
1

2
φT (e, xr)φ(e, xr)

+
1

2
φT (e, xr)A

T
0 A0φ(e, xr)

+ φT (e, xr)ũ + φT (e, xr)(Λ̃(t)x

+ Ã(t)f(x)) +

n
∑

i=1

λ̃iλ̇i +

n
∑

i=1,j=1

ãij ȧij

= φT (e, xr)Λ0e +
1

2
φT (e, xr)φ(e, xr)

+
1

2
φT (e, xr)A

T
0 A0φ(e, xr) + φT (e, xr)ũ

+

n
∑

i=1

λ̃i(λ̇i + φi(e, xr)xi)

+
n
∑

i=1,j=1

ãij(ȧij + φi(e, xr)fj(x)) .

Substituting (23) into the equality above and using
inequalities (19) and (20), we obtain

V̇ (ε) ≤ −

(

λ∗γ1 −
1

2
L2

φ

)

‖e‖2
2

+
1

2
φT (e, xr)A

T
0 A0φ(e, xr)

+ φT (e, xr)ũ (29)

where λ∗ = min{λ0i; i = 1, . . . , n}.
If we let R−1(ε) = (1/β)(AT

0 A0 + I), where
β ≥ 2 is a constant, we have

−βR−1(ε)(LgV )T = ũ

= −(AT
0 A0 + I)φ(e, xr) . (30)

In general R−1(ε) is a function of ε, but for our
purpose it is chosen as a constant matrix. The mo-
tivation for this operation will be seen from the
inverse optimization problem to be discussed later.
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Substituting (24) into (29), we get

V̇ (ε) ≤ −

(

λ∗γ1 −
1

2
L2

φ

)

‖e‖2
2

−
1

2
‖AT

0 A0‖L
2
φ‖e‖

2
2 − L2

φ‖e‖
2
2

= −

(

λ∗γ1 +
1

2
‖AT

0 A0‖L
2
φ +

1

2
L2

φ

)

‖e‖2
2

≤ 0 . (31)

By LaSalle’s invariance principle [Slotine & Li,
1991], we know that the invariant set of (15), IS,
has the following form:

IS = {ε|V̇ = 0} = {ε|(0, θT )} .

This completes the proof of the theorem. �

Remark 2. From the proof of Theorem 3, we can
find that even in the case limt→∞ ‖e(t)‖2 = 0, the
limits limt→∞ ‖Λ̃(t)‖2 and limt→∞ ‖Ã(t)‖2 may not
be zero. This conclusion can also be drawn from
(23), from which we get φ(e, xr) = 0 if e = 0. This
implies that Λ(t) and A(t) approach some constants
which may be different from Λ0 and A0.

To avoid the burden that the partial differen-
tial equation of Hamillton–Jacobi–Bellman (HJB)
imposes on the problem of optimal control of non-
linear systems, inverse optimal control theory has
been developed recently. The difference between the
traditional optimization and inverse optimal con-
trol problem is that, the former seeks a controller
that minimizes a given cost, while the latter is
concerned with finding a controller that minimizes
some “meaningful” cost.

According to Li and Krstic [1997] and Krstic
and Li [1998], for the inverse optimal control prob-
lem of system (18) to be solvable under the control
of (23) and (24) we need to find a positive real-
valued function R(ε) and a positive definite func-
tion l(ε) such that the following cost functional

J(ũ) = lim
t→∞

{2βV (ε(τ)) +

∫ t

0
(l(ε(τ))

+ ũ(τ)T R(ε(τ))ũ(τ))dτ}, β ≥ 2 (32)

is minimized.
In the following, we will show that the con-

troller we have designed can indeed solve the inverse
optimal control problem.

Theorem 4. If we choose

l(ε) = −2βLfV + 2β(LgV )R−1(ε)(LgV )T

+ β(β − 2)((LgV )R−1(ε)(LgV )T )

= −2βLfV + β2(LgV )R−1(ε)(LgV )T (33)

and

R(ε) = β(AT
0 A0 + I)−1 , β ≥ 2 , (34)

the cost functional (32 ) for system (18 ) under the

parameter update laws (23 ) and the state feedback

law (24 ) will be minimized.

Proof. To prove this theorem, first we should prove
that R(ε) is positive and symmetry, and l(ε) is radi-
ally unbounded, i.e. R(ε) = RT (ε) > 0 and l(ε) > 0
for all ε 6= 0 and l(ε) → +∞ as ε → ∞. It is clear
that R(ε) chosen according to (34) satisfies this re-
quirement. Using (23), (24), (27), (28), and (34), we
obtain

l(ε) = 2βφT (e, xr)Λ0e − 2βφT (e, xr)A0φ(e, xr)

+βφT (e, xr)(A
T
0 A0 + I)φ(e, xr) . (35)

Applying Lemma 1 to the second term on the right-
hand side of (35), we get

l(ε) ≥ 2βλ∗φT (e, xr)e − βφT (e, xr)φ(e, xr)

− βφT (e, xr)A
T
0 A0φ(e, xr)

+ βφT (e, xr)(A
T
0 A0 + I)φ(e, xr)

≥ 2βλ∗φT (e, xr)e . (36)

This means that l(ε) is radially unbounded. Substi-
tuting (30) into (26), we get

V̇ = LfV + (LgV )(−βR−1(ε))(LgV )T . (37)

Multiplying it by −2β, we obtain

−2βV̇ (ε(t)) = −2βLf V

+ 2β2(LgV )R−1(ε)(LgV )T . (38)

Considering (30) and (33), we get

l(ε) + ũT R(ε)ũ = −2βV̇ (ε(t)) . (39)

Substituting (39) into (32), we have

J(ũ) = lim
t→∞

{

2βV (ε(t)) +

∫ t

0
−2βV̇ (ε(τ))dτ

}

= lim
t→∞

{2βV (ε(t)) − 2βV (ε(t)) + 2βV (ε(0))}

= 2βV (ε(0)) . (40)
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Thus, the minimum of the cost functional is J(ũ) =
2βV (ε(0)) for the optimal control law (23) and (24).
The theorem is proved. �

We now summarize the results presented above
in the next theorem.

Theorem 5. If we choose feedback control law u =
v + w in which v = Λx is the linear state feed-

back with Λ a diagonal constant matrix and w =
−(AT

0 A0 + I)φ(e, xr) − Λ0xr − A0f(xr) + fr(xr) is

the nonlinear feedback, and at the same time we

choose parameter update laws for Λ and A according

to (23 ), the controlled FHM (7 ) will be chaotified

through minimizing the cost functional (32).

Remark 3. Here, we should note that the designed
controller is not unique since we have much free-
dom to select Λ0 and A0. In fact, it is necessary
to select proper Λ0 and A0 so that the controller’s
energy satisfies requirements in practical applica-
tions. Once Λ0 and A0 are fixed, the controller is
optimal which minimizes some “meaningful” cost.
Theorem 5 also indicates that we can use FHM as a
general device to produce various chaotic dynamics.

In practice, the control signal ul(x) in (10) is
defined by ui

l(x) (i = 1, . . . , 2nl ; l = 1, . . . , n). Solu-
tions for ui

l in (10) are not unique since there are 2nl

unknown variables to be solved from only one equa-
tion. In our study, we use a heuristic approach. That
is, suppose for each l = 1, . . . , n, ui

l(x) = ui
l ∈ [ai

l , b
i
l]

(i = 1, . . . , 2nl − 1), where ui
l are real numbers and

[ai
l , b

i
l] are closed intervals specified in advance. The

parameters ai
l and bi

l can be fixed by taking into
account the requirements of control signals. A spe-
cial case of such solutions can be obtained when
each ui

l(x) is equal to a nonlinear function ul(x). In
this case, the design of a fuzzy controller becomes
equivalent to the design of a normal controller.

5. Simulation Results

Suppose that we have the following HFRBs:

If x1 is Px1
and x2 is Px2

, then ẋ3 = Cx1
+ Cx2

;

If x1 is Nx1
and x2 is Px2

, then ẋ3 = −Cx1
+ Cx2

;

If x1 is Px1
and x2 is Nx2

, then ẋ3 = Cx1
− Cx2

;

If x1 is Nx1
and x2 is Nx2

, then ẋ3 = −Cx1
− Cx2

;

If x1 is Px1
and x3 is Px3

, then ẋ2 = Cx1
+ Cx3

;

If x1 is Nx1
and x3 is Px3

, then ẋ2 = −Cx1
+ Cx3

;

If x1 is Px1
and x3 is Nx3

, then ẋ2 = Cx1
− Cx3

;

If x1 is Nx1
and x3 is Nx3

, then ẋ2 = −Cx1
− Cx3

;

If x2 is Px2
and x3 is Px3

, then ẋ1 = Cx2
+ Cx3

;

If x2 is Nx2
and x3 is Px3

, then ẋ1 = −Cx2
+ Cx3

;

If x2 is Px2
and x3 is Nx3

, then ẋ1 = Cx2
− Cx3

;

If x2 is Nx2
and x3 is Nx3

, then ẋ1 = −Cx2
− Cx3

.

Here, we choose membership functions of Pxi

and Nxi
as follows:

µPxi
(x) = e−

1

2
(xi−ki)2 ,

µNxi
(x) = e−

1

2
(xi+ki)

2

.
(41)

Then, we have the following three-dimensional
model:

ẋ = Af(x) = A tanh(Kx) (42)

where x = [x1, x2, x3]
T ,

A =







0 Cx2
Cx3

Cx1
0 Cx3

Cx1
Cx2

0







and tanh(Kx) = [tanh(k1x1), tanh(k2x2), tanh
(k3x3)]

T .
For (42), we choose the following CFRBs:

If x1 is Px1
and x2 is Px2

, then u3 = u1
3(x);

If x1 is Nx1
and x2 is Px2

, then u3 = u2
3(x);

If x1 is Px1
and x2 is Nx2

, then u3 = u3
3(x);

If x1 is Nx1
and x2 is Nx2

, then u3 = u4
3(x);

If x1 is Px1
and x3 is Px3

, then u2 = u1
2(x);

If x1 is Nx1
and x3 is Px3

, then u2 = u2
2(x);

If x1 is Px1
and x3 is Nx3

, then u2 = u3
2(x);

If x1 is Nx1
and x3 is Nx3

, then u2 = u4
2(x);

If x2 is Px2
and x3 is Px3

, then u1 = u1
1(x);

If x2 is Nx2
and x3 is Px3

, then u1 = u2
1(x);

If x2 is Px2
and x3 is Nx3

, then u1 = u3
1(x);

If x2 is Nx2
and x3 is Nx3

, then u1 = u4
1(x);

Then the controlled system is

ẋ = Af(x) + u = Λx + Af(x) + w , (43)

where Λ = diag[λ1, λ2, λ3]. Here, because of the
special form of A, only three adaptive update laws
will be required.

Suppose that the chaotic system we want to
track is the Lorenz system:

ẋr = fr(xr) (44)

where xr = [x1r, x2r, x3r]
T and fr(xr) = [a(x2r −

x1r), cx1r − x1rx3r − x2r, x1rx2r − bx3r]
T . When
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Fig. 1. Lorenz’s chaotic attractor.
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Fig. 2. The phase diagram of (43) when the tracking object is (44).

a = 10, b = 8/3, c = 28, the Lorenz system has a
chaotic attractor shown in Fig. 1.

In this example, we choose

Λ0 = diag[−2, −2, −2]T

Λ(0) = diag[−1, −1, −2]T ,

A0 =





0 3 4

3 0 4

3 3 0



 , A(0) =





0 2.8 3.7

2.8 0 3.7

2.8 2.8 0



 ,

[k1, k2, k3] = [2, 3, 1]T , xr(0) = [2, 1, 3]T

and x(0) = [0, 0, 0]T . We choose these matrices
in our simulation according to the following guide-
lines. (1) Λ0 is a diagonal matrix with negative di-
agonal elements; (2) Λ(0) is a perturbation of Λ0;
(3) From the process of fuzzy modeling, we know
that each element of matrix A0 is either positive or
zero; (4) A(0) is a perturbation of A0.

The simulation results are shown in Figs. 2–4.
From these figures, we can see that the controlled



October 27, 2004 17:48 01144

Chaotifying Fuzzy Hyperbolic Model Using Adaptive Inverse Optimal Control Approach 3513

0 500 1000 1500 2000 2500
−40

−20

0

20

40

0 500 1000 1500 2000 2500
−40

−20

0

20

40

0 500 1000 1500 2000 2500
0

20

40

60

(a)
0 500 1000 1500 2000 2500

−40

−20

0

20

40

0 500 1000 1500 2000 2500
−40

−20

0

20

40

0 500 1000 1500 2000 2500
0

20

40

60 (b)

0 500 1000 1500 2000 2500
−40

−20

0

20

40

0 500 1000 1500 2000 2500
−40

−20

0

20

40

0 500 1000 1500 2000 2500
0

20

40

60

(c)

Fig. 3. State curves of (43) when tracking object is (44). The solid lines are the curves of (43) and the dashed lines are the
curves of (44).
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Fig. 4. The curve of (a) x1 − xr1; (b) x2 − xr2; (c) x3 − xr3.
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Fig. 6. The curve of (a) λ1 − λ10; (b) λ2 − λ20; (c) λ3 − λ30.
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system (43) produces chaotic dynamics that have
the same topological structure as (44) and the two
systems’ states become indistinguishable after a
short period of time. Figures 5 and 6 show that the
parameters also approach some constants, which is
in accord with Remark 2. To get practical control
ui

l(x) (l = 1, 2, 3 and i = 1, 2, 3, 4) in this simu-
lation, we choose u1

l (x) = u2
l (x) = u3

l (x) = u4
l (x)

(l = 1, 2, 3).

6. Conclusions

In this paper, the chaotification of a fuzzy model
by the use of an adaptive controller is studied.
The design method for the controller is under the
framework of inverse optimal control and parameter
adaptation. The controller is designed for chaotify-
ing the fuzzy hyperbolic model. The effectiveness
of our design is shown through simulation. In our
simulation studies, we have shown that the present
design can track the Lorenz chaotic system. We be-
lieve that our design is novel in terms of the use of
inverse optimal control and parameter adaptation
for chaotifying the fuzzy hyperbolic model.
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Appendix A

The proof of Theorem 2 was originally given in
[Quan, 2001]. We state it here for the purpose of
completeness. To prove Theorem 2, we need the fol-
lowing lemma.

Lemma A.1 (Stone–Weierstrass Theorem [Rudin,
1964]). Let Z be a set of real continuous functions

on a compact set U . If (1 ) Z is an algebra, i.e. the

set Z is closed under addition, multiplication, and

scalar multiplication; (2 ) Z separates points on U,
i.e. for every x, y ∈ U, x 6= y, there exists f ∈ Z
such that f(x) 6= f(y); and (3 ) Z vanishes at

no points of U, i.e. for each x ∈ U there exists

f ∈ Z such that f(x) 6= 0; then the uniform clo-

sure of Z consists of all real continuous functions

on U ; i.e. (Z, d∞), is dense in (C[U ], d∞), here

d∞(f1, f2) = supx∈U |f1(x) − f2(x)|.

Using this lemma, we can prove Theorem 2.

Proof of Theorem 2. First, we prove that (Y, d∞) is
an algebra. For simplicity, we denote cPxi

as cPi
and

denote cNxi
as cNi

. Let f1, f2 ∈ Y . We can write
them as [cf. (2)]

f1(x) =

m1
∑

i1=1

c1
Pi1

e
k1

i1
xi1 + c1

Ni1

e
−k1

i1
xi1

e
k1

i1
xi1 + e

−k1

i1
xi1

(A.1)

f2(x) =

m2
∑

i2=1

c2
Pi2

e
k2

i2
xi2 + c2

Ni2

e
−k2

i2
xi2

e
k2

i2
xi2 + e

−k2

i2
xi2

. (A.2)

We have

f1(x) + f2(x)

=

m1
∑

i1=1

c1
Pi1

e
k1

i1
xi1 + c1

Ni1

e
−k1

i1
xi1

e
k1

i1
xi1 + e

−k1

i1
xi1

+

m2
∑

i2=1

c2
Pi2

e
k2

i2
xi2 + c2

Ni2

e
−k2

i2
xi2

e
k2

i2
xi2 + e

−k2

i2
xi2

=

m1+m2
∑

z=1

cPz
ekzxz + cNz

e−kzxz

ekzxz + e−kzxz

. (A.3)

It is easy to see that (A.3) has the same form as
(2); that is, f1 + f2 ∈ Y .

In the same way we can get

f1(x) · f2(x) =

m1
∑

i1=1

c1
Pi1

e
k1

i1
xi1 + c1

Ni1

e
−k1

i1
xi1

e
k1

i1
xi1 + e

−k1

i1
xi1

×

m2
∑

i2=1

c2
Pi2

e
k2

i2
xi2 + c2

Ni2

e
−k2

i2
xi2

e
k2

i2
xi2 + e

−k2

i2
xi2

=

m1,m2
∑

i1,i2=1





c1
Pi1

e
k1

i1
xi1 + c1

Ni1

e
−k1

i1
xi1

e
k1

i1
xi1 + e

−k1

i1
xi1

×
c2
Pi2

e
k2

i2
xi2 + c2

Ni2

e
−k2

i2
xi2

e
k2

i2
xi2 + e

−k2

i2
xi2





=

m1,m2
∑

i1,i2=1

(

Q

(e
k1

i1
xi1 + e

−k1

i1
xi1 )(e

k2

i2
xi2 + e

−k2

i2
xi2 )

)

=

m1,m2
∑

i1,i2=1





(c1∗
Pi1

+ c2∗
Pi2

)e
k1

i1
xi1 e

k2

i2
xi2 + (c1∗

Pi1

+ c2∗
Ni2

)e
k1

i1
xi1 e

−k2

i2
xi2

(e
k1

i1
xi1 + e

−k1

i1
xi1 )(e

k2

i2
xi2 + e

−k2

i2
xi2 )





+

m1,m2
∑

i1,i2=1





(c1∗
Ni1

+ c2∗
Pi2

)e
−k1

i1
xi1 e

k2

i2
xi2 + (c1∗

Ni1

+ c2∗
Ni2

)e
−k1

i1
xi1e

−k1

i1
xi1

(e
k1

i1
xi1 + e

−k1

i1
xi1 )(e

k2

i2
xi2 + e

−k2

i2
xi2 )



 (A.4)
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=

m1,m2
∑

i1,i2=1





c1∗
Pi1

e
k1

i1
xi1 + c1∗

Ni1

e
−k1

i1
xi1

e
k1

i1
xi1 + e

−k1

i1
xi1

+
c2∗
Pi2

e
k2

i2
xi2 + c2∗

Ni2

e
−k2

i2
xi2

e
k2

i2
xi2 + e

−k2

i2
xi2





=

m1+m2
∑

z=1

cPz
ekzxz + cNz

e−kzxz

ekzxz + e−kzxz

where

Q = c1
Pi1

c2
Pi2

e
k1

i1
xi1 e

k2

i2
xi2

+ c1
Pi1

c2
Ni2

e
k1

i1
xi1 e

−k2

i2
xi2

+ c1
Ni1

c2
Pi2

e
−k1

i1
xi1e

k2

i2
xi2

+ c1
Ni1

c2
Ni2

e
−k1

i1
xi1 e

−k1

i1
xi1 ,

and c1∗
Pi1

, c1∗
Ni1

, c2∗
Pi2

, N2∗
i2

satisfy the following

equations:

c1∗
Pi1

+ c2∗
Pi2

= c1
Pi1

c2
Pi2

,

c1∗
Pi1

+ c2∗
Ni2

= c1
Pi1

c2
Ni2

c1∗
Ni1

+ c2∗
Pi2

= c1
Ni1

c2
Pi2

,

c1∗
Ni1

+ c2∗
Ni2

= c1
Ni1

c2
Ni2

.

(A.5)

It is easy to see that (A.4) is also in the same form
as (2). Hence, f1 · f2 ∈ Y .

Finally, for any constant c ∈ R, we have

cf(x) = c

m
∑

i=1

cPi
ekixi + cNi

e−kixi

ekixi + e−kixi

=

m
∑

i=1

c∗Pi
ekixi + c∗Ni

e−kixi

ekixi + e−kixi

(A.6)

which is again in the same form as (2). Hence,
cf1 ∈ Y . Therefore, (Y, d∞) is an algebra.

Next, we prove that (Y, d∞) separates points
on U . We prove this by constructing a required f ;
i.e. we specify f ∈ Y such that f(x0) 6= f(y0) for
arbitrarily given x0, y0 ∈ U with x0 6= y0. Let
x0 = (x0

1, x
0
2, . . . , x

0
n)T , y0 = (y0

1 , y
0
2, . . . , y

0
n)T . If

x0
i 6= y0

i , choose input variable as

x∗
i = xi −

x0
i + y0

i

2
(A.7)

k∗
i =

x0
i − y0

i

2
. (A.8)

That is, x∗
i − k∗

i = xi − x0
i and x∗

i + k∗
i = xi − y0

i .
Then, from (2) we can get

f(x0) =

n
∑

i=1

cPi
e−

1

2
(x0

i
−x0

i
)2 + cNi

e−
1

2
(x0

i
−y0

i
)2

e−
1

2
(x0

i
−x0

i
)2 + e−

1

2
(x0

i
−y0

i
)2

=

n
∑

i=1

cPi
+ cNi

e−
1

2
(x0

i
−y0

i
)2

1 + e−
1

2
(x0

i
−y0

i
)2

(A.9)

f(y0) =

n
∑

i=1

cPi
e−

1

2
(y0

i
−x0

i
)2 + cNi

e−
1

2
(y0

i
−y0

i
)2

e−
1

2
(y0

i
−x0

i
)2 + e−

1

2
(y0

i
−y0

i
)2

=

n
∑

i=1

cPi
e−

1

2
(y0

i
−x0

i
)2 + cNi

1 + e−
1

2
(y0

i
−x0

i
)2

. (A.10)

Let CPi
= 1 and CNi

= 0. We have

f(x0) − f(y0) =

n
∑

i=1

1

1 + e−
1

2
(x0

i
−y0

i
)2

−
n
∑

i=1

e−
1

2
(x0

i
−y0

i
)2

1 + e−
1

2
(x0

i
−y0

i
)2

=

1 −
n
∏

i=1
e−

1

2
(x0

i
−y0

i
)2

1 +
n
∏

i=1
e−

1

2
(x0

i
−y0

i
)2

. (A.11)

Since x0 6= y0, there must be some i such that

x0
i 6= y0

i . Hence, we have
∏n

i=1 e−
1

2
(x0

i
−y0

i
)2 6= 1.

Thus, f(x0) 6= f(y0). Therefore, (Y, d∞) separates
points on U . �

Finally, we prove that (Y, d∞) vanishes at no
points of U . By observing (1) and (2), we simply
choose all cPi

> 0, cNi
> 0 (i = 1, 2, . . . ,m); that is,

any f ∈ Y with cPi
> 0 and cNi

> 0 serves as the
required f .

From (2), it is obvious that Y is a set of real
continuous functions on U . The universal approxi-
mation theorem is therefore a direct consequence of
the Stone–Weierstrass Theorem.


