
Neural Networks 32 (2012) 236–244
Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2012 Special Issue

An iterative ϵ-optimal control scheme for a class of discrete-time nonlinear
systems with unfixed initial state
Qinglai Wei, Derong Liu ∗

State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China

a r t i c l e i n f o

Keywords:
Adaptive dynamic programming
Approximate dynamic programming
ϵ-optimal control
Finite horizon
Neural networks

a b s t r a c t

In this paper, a finite horizon iterative adaptive dynamic programming (ADP) algorithm is proposed to
solve the optimal control problem for a class of discrete-time nonlinear systems with unfixed initial
state. A new ϵ-optimal control algorithm based on the iterative ADP approach is proposed that makes
the performance index function iteratively converge to the greatest lower bound of all performance
indices within an error ϵ in finite time. The convergence analysis of the proposed ADP algorithm in terms
of performance index function and control policy is conducted. The optimal number of control steps
can also be obtained by the proposed ϵ-optimal control algorithm for the unfixed initial state. Neural
networks are used to approximate the performance index function, and compute the optimal control
policy, respectively, for facilitating the implementation of the ϵ-optimal control algorithm. Finally, a
simulation example is given to show the effectiveness of the proposed method.
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1. Introduction

Strictly speaking, most real-world control systems need to
be effectively controlled within a finite time horizon (finite
horizon in brief), such as stabilized within a finite horizon. In
many theoretical discussions, however, controllers are generally
designed to stabilize controlled systems within an infinite time
horizon (Dierks, Thumati, & Jagannathan, 2009; Vrabie & Lewis,
2009; Zhang, Wei, & Luo, 2008). The design of finite-time horizon
controller faces a major obstacle in comparison with the infinite
horizon one. For infinite horizon control problems, Lyapunov
theory is popularly used and asymptotic results for the control
systems are usually obtained (Landelius, 1997; Zhang, Luo, & Liu,
2009). That is, the system cannot really be stabilized until the
time reaches infinity.While for finite horizon control problems, the
system must be stabilized to zero within a finite time (Necoara,
Kerrigan, Schutter, & Boom, 2007; Uchida & Fujita, 1992). Due
to the lack of methodology and the fact that the number of
control steps is difficult to determine, the controller design of finite
horizon problems is still a challenge to control engineers. On the
other hand, optimization is always an important objective for the
design of control systems. This is the reason why optimal control
has been paid much attention by many researchers for over fifty
years and applied to many application domains (Ichihara, 2009;
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Kioskeridis & Mademlis, 2009; Mao & Cassandras, 2009; Werbos,
2009).

An adaptive dynamic programming (ADP) algorithm was pro-
posed by Werbos (1991), as a powerful methodology for solv-
ing optimal control problems forward-in-time. In Prokhorov and
Wunsch (1997), ADP approaches were classified into several main
schemes: Heuristic Dynamic Programming (HDP), Dual Heuris-
tic Programming (DHP), Action Dependent Heuristic Dynamic
Programming (ADHDP), also known as Q-learning, and Action
DependentDual Heuristic Programming (ADDHP), Globalized-DHP
(GDHP) and ADGDHP. Though great progress has been made in
ADP research in the optimal control field (Al-Tamimi, Abu-Khalaf,
& Lewis, 2008; Kulkarni & Venayagamoorthy, 2010; Liu, Zhang, &
Zhang, 2005; Murray, Cox, Lendaris, & Saeks, 2002; Vamvoudakis
& Lewis, 2011; Wang, Zhang, & Liu, 2009; Wei, Zhang, & Dai, 2009;
Zhang, Wei, & Liu, 2011), discussions about finite horizon opti-
mal control problems are scarce. To the best of our knowledge,
only (Wang, Jin, Liu, & Wei, 2011) discussed a finite horizon op-
timal control problem with fixed initial state. Wei and Liu (2011a,
2011b) proposed an iterative ADP algorithm with unfixed initial
state while it requires that the system can reach zero in one step of
control to initialize the algorithm which limits the application. So,
it is still an open problem how to solve the optimal control prob-
lem in a finite horizon with unfixed initial state when the system
cannot reach zero directly. This motivates our research.

In this paper, for the first time, we will show how to find an
approximate optimal control that makes the performance index
function converge to the greatest lower bound of all performance
indices within an error according to ϵ (called ϵ-error bound
for brief) without the initial condition requirements in Wei and
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Liu (2011a, 2011b). It is also shown that the corresponding
approximate optimal control (called ϵ-optimal control) can
make the performance index function converge to the ϵ-error
bound within finite steps where the iterative ADP algorithm is
initialized by an arbitrary admissible control sequence. The main
contributions of this paper are summarized as follows:
(1) Propose a new proof that the iterative ADP algorithm initial-

ized by an arbitrary admissible control sequence can converge
to the optimum.

(2) Prove that the ϵ-optimal control canmake the performance in-
dex function converge to the greatest lower boundof all perfor-
mance indiceswithin an error ϵ for unfixed initial state and the
initial condition requirements inWei and Liu (2011a, 2011b) is
not needed.

(3) Obtain the length (number of steps) of the ϵ-optimal control.

2. Problem statement

In this paper, we consider the following discrete-time nonlinear
systems
xk+1 = F(xk, uk), k = 0, 1, 2, . . . , (1)
where, xk ∈ Rn is the state and uk ∈ Rm is the control vector. Let
x0 ∈ Ω0 be the initial state where Ω0 ⊂ Rn is the domain of initial
states. Let the system function F(xk, uk) be continuous for ∀ xk, uk
and F(0, 0) = 0. We will study the optimal control problems for
system (1) with finite-horizon and unspecified terminal time. The
performance index function for state x0 under the control sequence
uN−1
0 = (u0, u1, . . . , uN−1) is defined as

J(x0, uN−1
0 ) =

N−1
k=0

U(xk, uk), (2)

whereU(xk, uk) ≥ 0, for ∀ xk, uk, is the positive semidefinite utility
function.

Let uN−1
0 = (u0, u1, . . . , uN−1) be a finite sequence of controls.

We call the number of elements in the control sequence uN−1
0 .

Define the length of uN−1
0 as |uN−1

0 | = N . We denote the final
state of the trajectory as x(f )(x0, uN−1

0 ), i.e., x(f )(x0, uN−1
0 ) = xN .

For ∀k ≥ 0, the finite control sequence can be written as uk+i−1
k =

(uk, uk+1, . . . , uk+i−1)where i ≥ 1. The final state can bewritten as
x(f )(xk, uk+i−1

k ) where x(f )(xk, uk+i−1
k ) = xk+i. Let uk be an arbitrary

finite-horizon admissible control sequence starting at k. Let Axk =
uk: x

(f )

xk, uk


= 0


. Let

A(i)
xk =


uk+i−1
k : x(f )xk, uk+i−1

k


= 0, |uk+i−1

k | = i


be the set of all finite-horizon admissible control sequences of xk
with length i. Then,Axk = ∪1≤i<∞ A

(i)
xk . By this notation, a state xk is

controllable if and only ifAxk ≠ ∅. Define the optimal performance
index function as
J∗(xk) = min

uk


J(xk, uk): uk ∈ Axk


. (3)

Then, according to Bellman’s principle of optimality (Bellman,
1957), J∗(xk) satisfies the discrete-time HJB equation

J∗(xk) = min
uk


U(xk, uk) + J∗(F(xk, uk))


, (4)

and the law of optimal control vector is given by

u∗(xk) = argmin
uk


U(xk, uk) + J∗(F(xk, uk))


. (5)

3. Properties of the iterative adaptive dynamic programming
algorithm

In this section, a new iterative ADP algorithm is developed to
obtain the finite horizon optimal controller for nonlinear systems
(1). The goal of the present iterative ADP algorithm is to construct
an optimal control law u∗(xk), k = 0, 1, . . . , which drives the
system from an arbitrary initial state x0 to the singularity 0 within
finite time, and simultaneously minimizes the performance index
function. Convergence proofs will also be given to show that the
performance index function converges to the optimum.

3.1. Derivation of the iterative ADP algorithm

In the iterative ADP algorithm, the performance index function
and control policy are updated by recurrent iterations, with
the iteration index number i increasing from 0. Assume that xk
is controllable. There exists a finite horizon admissible control
sequence uk+i−1

k = {uk, uk+1, . . . , uk+i−1} ∈ A
(i)
xk that makes x(f )

(xk, uk+i−1
k ) = xk+i = 0. Let νN−1

k = {νk, νk+1, . . . , νN−1} be an
arbitrary admissible sequence in A

(N−k)
xk , where N is an unspecified

terminal time. Define Φ(xk) as the performance index function
constructed by νN−1

k which can be expressed by

Φ(xk) = J(xk, νN−1
k ). (6)

Let V0(xk) = Φ(xk) and the iterative performance index function
V1(xk) can be updated as
V1(xk) = min

uk
{U(xk, uk) + V0(xk+1)}

= U(xk, v1(xk)) + V0(F(xk, v1(xk))), (7)
where the iterative control policy v1(xk) is obtained as
v1(xk) = argmin

uk
{U(xk, uk) + V0(xk+1)}

= argmin
uk

{U(xk, uk) + V0(F(xk, uk))} . (8)

For i = 1, 2, . . . , the iterative ADP algorithm will calculate the
iterative performance index function as
Vi(xk) = min

uk
{U(xk, uk) + Vi−1(xk+1)}

= U(xk, vi(xk)) + Vi−1(F(xk, vi(xk))) (9)
where the iterative control policy vi(xk) is computed as
vi(xk) = argmin

uk
{U(xk, uk) + Vi−1(xk+1)}

= argmin
uk

{U(xk, uk) + Vi−1(F(xk, uk))} . (10)

Remark 1. The present iterative ADP algorithm (7)–(10) is differ-
ent from the iterative ADP algorithm proposed in Wei and Liu
(2011a, 2011b). In Wei and Liu (2011a, 2011b), it is required that
for ∀xk ∈ Rn, there exists a control uk that makes F(xk, uk) = 0 to
initialize the iterative ADP algorithm. It is well known that, for gen-
eral control systems, especially for nonlinear systems, there may
not exist a control that makes F(xk, uk) = 0 hold for ∀xk. So the
initial condition for the iterative ADP algorithm in Wei and Liu
(2011a, 2011b) limits its applications. In this paper, the constraints
inWei and Liu (2011a, 2011b) are removed and the proposed itera-
tive ADP algorithm begins with a performance index function con-
structed by an arbitrary finite horizon admissible control sequence.
Thus, we can say that the proposed iterative ADP algorithm in this
paper is more effective than prior results.

Theorem 1. Let xk be an arbitrary state. Let the iterative performance
index function Vi(xk) be obtained according to (7)–(10). Then,we have

Vi(xk) =

i−1
j=0

U

xk+j, vi−j(xk+j)


+ Φ(xk+i)

= min
uk+i−1
k


i−1
j=0

U(xk+j, uk+j)


+ Φ(xk+i). (11)
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Proof. For i = 0, 1, . . . , according to the definition of Vi(xk) in (7)–
(9), we can get

Vi(xk) = min
uk

{U(xk, uk) + Vi−1(xk+1)}

= min
uk


U(xk, uk) + min

uk+1


U(xk+1, uk+1)

+ · · · + min
uk+i−1

{U(xk+i−1, uk+i−1) + V0(xk+i)} · · ·


where V0(xk+i) = Φ(xk+i). According to the optimality principle,
we obtain

Vi(xk) = min
uk+i−1
k


U(xk, uk) + U(xk+1, uk+1)

+ · · · + U(xk+i−1, uk+i−1) + V0(xk+i)



= min
uk+i−1
k


i−1
j=0

U(xk+j, uk+j)


+ Φ(xk+i). (12)

According to (9), we have

Vi(xk) =

i−1
j=0

U

xk+j, vi−j(xk+j)


+ Φ(xk+i). (13)

The proof is complete. �

We can see that the optimal performance index function J∗(xk)
in the HJB Eq. (4) is changed to a sequence of iterative performance
index functions Vi(xk). From Theorem 1, Vi(xk) can be obtained
by solving an optimal control problem with terminal constraint.
Obviously, Vi(xk) does not necessarily satisfy the HJB Eq. (4).
Convergence analysis of the iterative performance index function
Vi(xk) is required.

3.2. Properties of the iterative ADP algorithm

In the above subsection, we can see that the performance index
function J∗(xk) solved by HJB Eq. (4) is replaced by a sequence of
performance index functions Vi(xk) and the optimal control law
u∗(xk) is replaced by a sequence of control laws vi(xk), where i ≥ 1
is the index of iteration. We can prove that J∗(xk) defined in (3) is
the limit of Vi(xk) as i → ∞.

Lemma 1 (Zhang et al., 2008). Let the performance index function
Vi(xk) be defined by (9). Let µ

k
= (µk, µk+1, . . .) ∈ Axk be

an arbitrary admissible control sequence. Define a new performance
index function Pi(xk) as

Pi(xk) = U(xk, µk) + Pi−1(xk+1), (14)

with P0(xk) = V0(xk) = Φ(xk), then we have Vi(xk) ≤ Pi(xk), ∀ i =

0, 1, . . . .

Theorem 2. Let xk be an arbitrary state vector and V0(xk) =

Φ(xk) be defined by (6). Then, the performance index function Vi(xk)
obtained by (7)–(10) is a monotonically nonincreasing sequence for
∀ i ≥ 1, i.e., Vi+1(xk) ≤ Vi(xk) for ∀ i = 0, 1, . . . .

Proof. We prove this conclusion by mathematical induction. First,
we let i = 0. Let µ

k
∈ Axk be an arbitrary admissible control

sequence. Define the performance index function Pi(xk) as (14). For
i = 0, we have

P1(xk) = U(xk, µk) + P0(xk+1) = U(xk, µk) + Φ(xk+1). (15)
According to the definition of Φ(xk) in (6), we have

Φ(xk) − Φ(F(xk, νk)) = J(xk, νN−1
k ) − J(xk+1, ν

N−1
k+1 )

= U(xk, νk). (16)

As µ
k
∈ Axk is arbitrary, let νk = µk, and then we can obtain

V0(xk) = Φ(xk)
= U(xk, νk) + Φ(F(xk, νk)) = P1(xk) (17)

holds. On the other hand, according to Lemma 1, we have

V1(xk) = min
uk

{U(xk, uk) + V0(xk+1)}

≤ P1(xk)
= U(xk, νk) + P0(xk+1)

= V0(xk) (18)

which proves V0(xk) ≥ V1(xk).
Hence, the conclusion holds for i = 0. Assume that the

conclusion holds for i = l−1,where l = 1, 2, . . . . The performance
index function Pl+1(xk) is given as

Pl+1(xk) = U(xk, vl−1(xk)) + U(xk+1, vl−2(xk+1))

+ · · · + U(xk+l−1, v1(xk+l−1))

+U(xk+l, µk+l) + P0(xk+l+1)

=

l−1
j=0

U

xk+j, vl−j−1(xk+j)


+U(xk+l, µk+l) + Φ(xk+l+1). (19)

According to Theorem 1, we have the iterative performance index
function Vl(xk) expressed as

Vl(xk) =

l−1
j=0

U

xk+j, vl−j(xk+j)


+ Φ(xk+l). (20)

According to (6), we have

Φ(xk+l) = U(xk+l, νk+l) + Φ(F(xk+l, νk+l)). (21)

Let νk+l = µk+l, and then according to (19) and (20), we can get

Vl(xk) =

l−1
j=0

U

xk+j, vl−j−1(xk+j)


+ Φ(xk+l)

=

l−1
j=0

U

xk+j, vl−j−1(xk+j)


+ U(xk+l, νk+l) + Φ(xk+l+1)

= Pl+1(xk). (22)

According to Lemma 1, we have Vl+1(xk) ≤ Pl+1(xk). Therefore, we
can obtain Vl+1(xk) ≤ Vl(xk). �

Remark 2. For the iterative ADP algorithmproposed inWang et al.
(2011) and Wei and Liu (2011a, 2011b), the iterative performance
index function Vi(xk) reaches the max value at i = 1. So, the
iterative ADP algorithm is not monotonically nonincreasing for
i = 0, 1, . . . . While for the iterative ADP algorithm (7)–(10), we
have the iterative ADP algorithm monotonically nonincreasing for
∀i = 0, 1, . . . . Therefore, it is another difference between the two
iterative ADP algorithms.

From Theorem 2, we know that the performance index function
Vi(xk) ≥ 0 is a monotonically nonincreasing sequence with lower
bound for iteration index i = 1, 2, . . . . Then, there exists a
limit of iterative performance index function Vi(xk). Define the
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performance index function V∞(xk) as the limit of the iterative
function Vi(xk), i.e.,

V∞(xk) = lim
i→∞

Vi(xk). (23)

Next, we will prove that the performance index function Vi(xk)
converges to the optimal performance index function J∗(xk) as
i → ∞.

Lemma 2. Let xk be an arbitrary controllable state and νN−1
k be an

arbitrary admissible sequence, where N is an unspecified terminal
time. Assume U(xk, uk) ≥ 0 is the positive semidefinite for ∀ xk, uk.
Let Φ(xk) be defined by (6), and then we have Φ(xk) is positive
semidefinite for ∀xk.

Proof. The lemma can be easily proved bymathematical induction
and the detailed proofs are omitted here. �

Theorem 3. Let the performance index function Vi(xk) be defined
by (9). If the system state xk is controllable, then the performance index
function Vi(xk) converges to the optimal performance index function
J∗(xk) as i → ∞, i.e.,

Vi(xk) → J∗(xk). (24)

Proof. According to the definition of J∗(xk) in (3), we have J∗(xk) ≤

Vi(xk). Let i → ∞, and then we have

J∗(xk) ≤ V∞(xk). (25)

Next, as Pq(xk) − J∗(xk) ≥ 0 and µ
k
is arbitrary, then taking

µk+q−1
k

= u∗k+q−1
k into Pi(xk) in (14), we can obtain Φ(xk+q) −N−1

j=q U(xk+j, u∗

k+j) ≥ 0, where N is the unspecified terminal time.
As µ

k
is an admissible control sequence, we have xk+q → 0 as

q → ∞. According to Lemma 2, we know that Φ(xk+q) → 0 as
q → ∞. Let ϵ > 0 be an arbitrary positive number. There exists a
finite horizon admissible control sequence ηq such that

Pq(xk) ≤ J∗(xk) + ϵ. (26)

On the other hand, according to Lemma 1, for any finite horizon
admissible control ηq, we have

V∞(xk) ≤ Vq(xk) ≤ Pq(xk). (27)

Combining (26) and (27), we have V∞(xk) ≤ J∗(xk) + ϵ. As ϵ is an
arbitrary positive number, we have

V∞(xk) ≤ J∗(xk). (28)

According to (25) and (28), we have

V∞(xk) = J∗(xk). (29)

The proof is complete. �

4. The ϵ-optimal control algorithm

In the previous section, we proved that the iterative perfor-
mance index function Vi(xk) converges to the optimal performance
index function J∗(xk) as i → ∞. This means that if we want to
obtain the optimal performance index function J∗(xk), we should
run the iterative ADP algorithm (7)–(10) for i → ∞. But unfortu-
nately, it is untenable to run the algorithm for infinite number of
times. For finite horizon optimal control, the infinite horizon ADP
algorithm may not be effective. First, the infinite horizon optimal
control makes the iterative performance index function converge
to the optimum as i → ∞, and the optimal control law is also con-
vergent to the optimum as i → ∞. While for the finite horizon
optimal control problem, for different initial state xk, we should
adopt a different optimal control law. Second, the number of steps
of optimal control for the infinite horizon optimal control is in-
finite. While for the finite horizon control problem, for different
initial states, the optimal step number is also different. Hence, to
overcome this difficulty, a new ϵ-optimal control algorithm is es-
tablished in this section.

4.1. Derivation of the ϵ-optimal control algorithm

In this subsection, we will introduce our method for iterative
ADP with the consideration of the length of control sequences.
For different xk, we will use different i for the length of optimal
control sequence. For a given error bound ϵ > 0, the number iwill
be chosen so that the error between J∗(xk) and Vi(xk) is bounded
with ϵ.

Theorem 4. Let ϵ > 0 be any small number and xk be any con-
trollable state. Let the performance index function Vi(xk) be defined
by (9) and J∗(xk) be the optimal performance index function. Then,
there exists a finite i satisfying

|Vi(xk) − J∗(xk)| ≤ ϵ. (30)

Definition 1. Let xk be a controllable state vector. Let ϵ > 0 be a
small positive number. The approximate length of optimal control
with respect to ϵ is defined as

Kϵ(xk) = min{i: |Vi(xk) − J∗(xk)| ≤ ϵ}. (31)

Remark 3. An important property we must point out. For the
iterative ADP algorithm (7)–(10), we have proved that for arbitrary
initial performance index function V0(xk) = Φ(xk), the iterative
performance index function Vi(xk) → J∗(xk) as i → ∞. For
the finite horizon iterative ADP algorithm, the length Kϵ(xk) is
different for different initial performance index function Φ(xk),
which makes it difficult to obtain the ϵ-optimal control law and
the approximate length.

Next, we will show that if we give a constraint for the initial
performance index function V0(xk), we can get that Kϵ(xk) is
unique.

Theorem 5. Let uk+l∗
k+1 = {u∗

k+1, . . . , u
∗

k+l} be the optimal control
sequence and Φ∗(xk+1) = J(xk+1, uk+l∗

k+1 ). If we let V0(xk+1) =

Φ∗(xk+1), then we have

Vi(xk) = J(xk, uk+l+i−1∗
k ). (32)

Proof. According to Theorem 1, the iterative performance index
function Vi(xk) can be expressed as in (12). As Φ∗(xk+1) =

J∗(xk+1, uk+l−1∗
k+1 ), we have

Φ∗(xk+1) = min
uk+l
k+1

l
j=1

U(xk+j, uk+j). (33)

Putting Φ∗(xk+1) into (12), we can obtain

Vi(xk) = min
uk+l+i−1
k


l+i−1
j=0

U(xk+j, uk+j)


= J(xk, uk+l+i−1∗

k ). (34)

The proof is complete. �
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From Theorem 5, we can see that if we can find an optimal
control sequence uk+l∗

k+1 , thenwe can obtain the optimal control law
and the optimal control length for the state xk. While according
to Theorem 3, we know that it requires to run the iterative
ADP algorithm (7)–(10) for an infinite number of times to obtain
J∗(xk+1) which is impossible to realize in the real applications.
Therefore, we give an ϵ-optimal control algorithm to obtain the
approximate optimal performance index function and control law.
Before introducing the ϵ-optimal control algorithm, the following
definition and lemma are necessary.

Definition 2. Let xk be a controllable state vector and ϵ be a
positive number. For i = 1, 2, . . . , define the set

T
(ϵ)
i = {xk ∈ T∞: Kϵ(xk) ≤ i}. (35)

When xk ∈ T
(ϵ)
i , to find the optimal control sequencewhich has

performance index less than or equal to J∗(xk) + ϵ, we only need
to consider the control sequences uk with length |uk| ≤ i. The set
T

(ϵ)
i has the following properties.

Lemma 3 (Wang et al., 2011). Let ϵ > 0 and i = 1, 2, . . . . Then,

(i) xk ∈ T
(ϵ)
i if and only if Vi(xk) ≤ J∗(xk) + ϵ;

(ii) T
(ϵ)
i ⊆ Ti;

(iii) T
(ϵ)
i ⊆ T

(ϵ)
i+1 ;

(iv) ∪i T
(ϵ)
i = T∞;

(v) If ϵ > δ > 0, then T
(ϵ)
i ⊇ T

(δ)
i .

Next, we will introduce the ϵ-optimal control iterative ADP
algorithm. First, letuK−1

0 = (u0, u1, . . . , uK−1)be an arbitrary finite
horizon admissible control sequence and the corresponding state
sequence is xK0 = (x0, x1, . . . , xK ) where xK = 0. We can see
that the initial control sequenceuK−1

0 = (u0, u1, . . . , uK−1) may
not be optimal which means the initial number of control steps K
may not be optimal and also the law of the initial control sequenceuK−1
0 may not be optimal. In the following, we will show how the

number of control steps and the control law are both optimized in
the iterative ADP algorithm simultaneously.

For the state xK−1, we have F(xK−1, uK−1) = 0. Then we run the
iterative ADP algorithm proposed in Wang et al. (2011) and Wei
and Liu (2011a, 2011b) at xK−1 untilVl0(xK−1) − J∗(xK−1)

 ≤ ϵ (36)

holds where l0 > 0 is a positive integer. This means xK−1 ∈ T
(ϵ)
l0

and the number of optimal control steps Kϵ(xK−1) = l0.
Then, considering xK−j, j = 1, 2, . . . , K , we have F(xK−j, uK−j)

= xK−j+1. For xK−j, ifVlj−1(xK−j) − J∗(xK−j)
 ≤ ϵ (37)

holds, thenwe say xK−j ∈ T
(ϵ)
lj−1

, and vlj−1(xK−j) is the corresponding

ϵ-optimal control law. If not, xK−j ∉ T
(ϵ)
lj−1

and then we run the
iterative ADP algorithm as

vlj−1+1(xK−j) = argmin
uK−j


U(xK−j, uK−j) + Vlj−1(xK−j+1)


(38)

and

Vlj−1+1(xK−j) = U(xK−j, vlj−1+1(xK−j))

+ Vlj−1(F(xK−j, vlj−1+1(xK−j))). (39)

For i = 1, 2 . . . , the iterative ADP algorithm between

vlj−1+i+1(xK−j) = argmin
uK−j


U(xK−j, uK−j) + Vlj−1+i(xK−j+1)


(40)
and
Vlj−1+i+1(xK−j) = U(xK−j, vlj−1+i(xK−j))

+ Vlj−1+i(F(xK−j, vlj−1+i+1(xK−j))) (41)
until the following inequalityVlj(xK−j) − J∗(xK−j)

 ≤ ϵ (42)
holds where lj > 0 is a positive integer. So we can obtain xK−j ∈

T
(ϵ)
lj

and the number of optimal control steps Kϵ(xK−j) = lj.

4.2. Properties of the ϵ-optimal control algorithm

We can see that an error ϵ between J∗(xk) and Vi(xk) is
introduced into the iterative ADP algorithm which makes the
performance index function Vi(xk) converge within finite iteration
step i. In this subsection, we will show that the corresponding
control is also an effective control that makes the performance
index function reach the optimal within error bound ϵ. According
to Lemma 3, we have the following theorem.

Theorem 6. Let ϵ > 0 and i = 0, 1, 2, . . . . If xk ∈ T
(ϵ)
i , then for

any x′

k ∈ T
(ϵ)
i , we have the following inequality

|Vi(x′

k) − J∗(x′

k)| ≤ ϵ. (43)

Proof. The theorem can be easily proved by contradiction. Assume
the conclusion is false. Then for some x′

k ∈ T
(ϵ)
i , we have

Vi(x′

k) > J∗(x′

k) + ϵ. (44)

So we can get

Kϵ(x′

k) = min{j: |Vj(x′

k) − J∗(x′

k)| ≤ ϵ} > i. (45)

Then, according to Definition 2, we can obtain x′

k ∉ T
(ϵ)
i which

contradicts the assumption of x′

k ∈ T
(ϵ)
i . So the conclusion

holds. �

Corollary 1. For i = 1, 2, . . . , let µi
ϵ(xk) be expressed as

µi
ϵ(xk) = argmin

uk
{U(xk, uk) + Vi−1(F(xk, uk))} (46)

that makes the performance index function (30) hold for xk ∈ T
(ϵ)
i .

Then for x′

k ∈ T
(ϵ)
i , µi

ϵ(x
′

k) satisfies

|Vi(x′

k) − J∗(x′

k)| ≤ ϵ. (47)

Then, we have the following theorem.

Theorem 7. For i = 1, 2, . . . , if we let xk ∈ T
(ϵ)
i and µi

ϵ(xk)
be expressed in (46), then F(xk, µi

ϵ(xk)) ∈ T
(ϵ)
i−1 . In other words, if

Kϵ(xk) = i, then we have Kϵ(F(xk, µi
ϵ(xk))) ≤ i − 1.

Proof. The detailed proof can be seen in Wei and Liu (2011a,
2011b). �

Corollary 2. For i = 0, 1, . . . , let µi
ϵ(xk) be expressed in (46)where

the performance index function |Vi(xk) − J∗(xk)| ≤ ϵ. Then for any
x′

k ∈ T
(ϵ)
i , we have the following inequality

|Vi(x′

k) − J∗(x′

k)| ≤ ϵ. (48)

Now we look at the optimal control problem with respect to
performance index function. If the initial state x0 is fixed, we will
show that if we choose x0 to run the iterative index function we
can obtain the ϵ-optimal control.

Theorem 8. Let x0 be the fixed initial state, µi
ϵ(x0) satisfies (46) at

k = 0. If xk, k = 0, 1, . . . , is the state under the control law µi
ϵ(xk),

then we have |Vi(xk) − J∗(xk)| ≤ ϵ for any k.
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Proof. For the system (1) with respect to the performance index
function (2), we have x0 ∈ T

(ϵ)
i and Kϵ(x0) = i. Then for small ϵ,

there exists an ϵ-optimal control law µi
ϵ(x0) which stabilizes the

system (1) within finite time N and minimizes the performance
index function (2). Then obviously, we have xi ∈ T0, xi−1 ∈

T
(ϵ)
1 , . . . , x0 ∈ T

(ϵ)
i where 0 = T0 ⊆ T

(ϵ)
1 ⊆ · · · ⊆ T

(ϵ)
i . So

according to Theorem7andCorollary 2,wehave that the ϵ-optimal
control law µi

ϵ obtained by the initial state x0 using the iterative
ADP algorithm is effective for the states x1, x2, . . . , xi. The proof is
complete. �

We can see that if we choose x0 to run the iterative index function
we can obtain the ϵ-optimal control. While if the initial state x0
is unfixed, then we do not know which one should be used to
implement the iterative ADP algorithm. In the next section, wewill
solve this problem.

4.3. The ϵ-optimal control algorithm for unfixed initial state

For a lot of practical nonlinear systems, the initial state x0
cannot be fixed. Instead, the initial state belongs to a set and we
define the domain of initial states as Ω0 where Ω0 ⊆ Rn. Then, we
have x0 ∈ Ω0. For this case, if we only choose one state x(i)

0 ∈ Ω0 to
run the iterative ADP algorithm and get corresponding ϵ-optimal
control µi

ϵ , then the ϵ-optimal control µi
ϵ may not be ϵ-optimal

for all x0 ∈ Ω0 because there may exist a state x(j)
0 ∈ Ω0 such that

x(i)
0 ∈ T

(ϵ)
i while x(j)

0 ∈ T
(ϵ)
j \ T

(ϵ)
i where j > i. If we let

I = max

i: x0 ∈ T

(ϵ)
i s.t. x0 ∈ Ω0


(49)

then according to Corollary 2, we should find the initial state x0 ∈

T
(ϵ)
I to obtain the most effective ϵ-optimal control. Thus, the next

job is to obtain the state x0 ∈ T
(ϵ)
I . For this case, there are two

methods which are the ‘‘entire state space searching method’’ and
the ‘‘partial state space searching method’’ to obtain the ϵ-optimal
control µi

ϵ(xk) for k = 0, 1, . . . .
(I) Entire state space searching method.

Choosing randomly an array of enough states

X =

x(1), x(2), . . . , x(Q )


(50)

from the entire initial state space Ω , where Q > 0 is a positive
integer number. First, we solve (7) where xk = x(1), x(2), . . . , x(Q ),
respectively and V0(xk+1) is the converged iterative performance
index function obtained by (36)–(42) at xk+1. If for 0 ≤ j1 ≤ Q and
xk = x(j1) ∈ X , the inequality

|V1(x(j1)) − J∗(x(j1))| ≤ ϵ (51)

holds, then we have x(j1) ∈ T
(ϵ)
1 . We record the performance index

function V1 and let

X1 =

x(j1) ∈ X : |V1(x(j1)) − J∗(x(j1))| ≤ ϵ


. (52)

We can repeat the process (51)–(52) for iteration index i =

1, 2, . . . , to solve (9), where xk ∈ X \ {X1 ∪ · · · ∪ Xi−1}. If for
0 ≤ ji ≤ Q and xk = x(ji) ∈ X \ {X1 ∪ · · · ∪ Xi−1}, the inequality

|Vi(x(ji)) − J∗(x(ji))| ≤ ϵ (53)

holds, then we have x(ji) ∈ T
(ϵ)
i . We record the performance index

function Vi and let

Xi =


x(ji) ∈ X \ {X1 ∪ X2 ∪ · · · ∪ Xi−1} : |Vi(x(ji))

− J∗(x(ji))| ≤ ϵ


. (54)
For the initial state x0, if |Vi(x0) − J∗(x0)| ≤ ϵ holds, then
the ϵ-optimal performance index function is obtained and the
corresponding control law is the ϵ-optimal control law µi

ϵ .

Remark 4. The structure of the entire state space searching
method is clear and simple which is based on the idea of dynamic
programming. This is the merit of the entire space searching
method. But it also possesses serious shortcomings. First, the array
of states X in (50) should include enough state points which is
distributed for the entire initial state space Ω . Second, for each
state point x(ji) ∈ X , the iterative algorithm (50)–(53) should
run one time and then record Xi in (54). So the computational
complexity is huge. Especially for neural network implement, it
means the neural network should be trained at every state point for
the entire state space to obtain the optimal control and the ‘‘curse
of dimensionality’’ cannot be avoided. Therefore, the entire state
space searching method is very difficult to apply to the optimal
control problem of real-world systems.

(II) Partial state space searching method:
In the partial state space searchingmethod, it is not necessary to

search the entire state space to obtain the optimal control. Instead,
only the boundary of the domain of initial states Ω is searched to
obtain the ϵ-optimal control which overcomes the difficulty of the
‘‘curse of dimensionality’’ effectively.

Theorem 9. Let Ω0 ⊆ Rn be the domain of initial states and the
initial state x0 ∈ Ω0. If Ω0 is a convex set onRn, then x(I)

0 is a boundary
point of Ω0 where I is defined in (49).

Proof. The theorem can be proved by contradiction. Assume that
x(I)
0 is a interior point ofΩ0. Without loss of generality, let the point
be xa = x(I)

0 . Make a beeline between the origin and xa. Let the
point of intersection between the beeline and the boundary of the
set Ω0 be xb. Let the point of intersection between the extended
line and the boundary of the set Ω0 be xc . The situation of xa, xb
and xc is shown in Fig. 1. As x(I)

0 is an interior point of convex set
Ω0, according to the property of convex set, for ∀x(j)

0 ∈ Ω0, j =

0, 1, . . . , there exists a positive real number 0 ≤ λ ≤ 1 that makes

x(ja)
0 = λ x(jb)

0 + (1 − λ) x(jc )
0 (55)

hold, where ja, jb and jc are nonnegative integer numbers.
If we let xa = x(I)

0 = x(ja)
0 , xb = x(jb)

0 and xc = x(jc )
0 , then we have

xa = λ xb + (1 − λ) xc . (56)

If we assume that xa ∈ T
(ϵ)
a , xb ∈ T

(ϵ)
b and xc ∈ T

(ϵ)
c , then we have

T (ϵ)
c ⊆ T (ϵ)

a (57)

because xa = x(I)
0 where I is expressed in (49). Then we can obtain

I = Kϵ(xa) ≥ Kϵ(xc) = c. (58)

On the other hand, as xc is the point of intersection between the
extended beeline and the boundary of the set Ω0, obviously the
point xc is farther from the origin. So we have

Kϵ(xa) ≤ Kϵ(xc) = c (59)

which is a contradiction to (58). So x(I)
0 cannot be expressed as

(55). Then the assumption is false and therefore x(I)
0 must be the

boundary point of the set Ω0. �

Remark 5. Theorem 9 gives an important property of the optimal
control law. It means that if the initial set Ω0 is convex, it is
not necessary to search all the state points of the set. Instead, it
only requires to search the boundary of the set and therefore the
computational burden is much reduced.
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Fig. 1. The situation outline of the sates xa , xb and xc .

4.4. The expressions of the ϵ-optimal control algorithm

In Wang et al. (2011), we analyzed the ϵ-optimal control
iterative ADP algorithm when the initial state is fixed. In Wei
and Liu (2011a, 2011b), we give an iterative ADP algorithm for
unfixed initial state while it requires the control system can reach
zero directly. In this paper, we propose a new ϵ-optimal control
iterative ADP algorithm for unfixed initial state, while the strict
initial condition in Wei and Liu (2011a, 2011b), can be omitted. In
summary, the finite horizon ϵ-optimal control problemwith finite
time can be separated into four cases.
Case 1. The initial state x0 is fixed and for any state xk ∈ Rn, there
exits a control uk ∈ Rm that stabilizes the state to zero directly
(proposed in Wang et al. (2011)).
Case 2. The initial state x0 ∈ Ω0 is unfixed and for any state xk ∈ Rn,
there exits a control uk ∈ Rm that stabilizes the state to zero
directly (proposed in Wei and Liu (2011a, 2011b)).
Case 3. The initial state x0 is fixed and ∃xk ∈ Rn such that
F(xk, uk) = 0 is no solution for ∀uk ∈ Rm (proposed in Wang et al.
(2011)).
Case 4. The initial state x0 ∈ Ω0 is unfixed and ∃xk ∈ Rn such that
F(xk, uk) = 0 is no solution for ∀uk ∈ Rm (proposed in this paper).

We can see that Cases 1–3 are special cases of Case 4. Therefore,
we can say that the proposed iterative ADP algorithm is the most
effective one. Given the preparations, we now summarize the
iterative ADP algorithms as follows:

Step01. Give the initial state space Ω0, the max iterative number
imax and the computation precision ϵ.

Step02. Let Ω̄0 be the boundary of the domain of initial states Ω0.
Grid the set Ω̄0 into P̄ subsetswhich are expressed as Ω̄

(1)
0 ,

Ω̄
(2)
0 , . . . , Ω̄

(P̄)
0 where Ω̄0 = ∪

P̄
j=1 Ω̄

(j)
0 and P̄ > 0 is a

positive integer number. For j = 1, 2, . . . , P̄ , let X0 be
expressed as X0 = (x(1), . . . , x(P̄)), and then x(j)

0 satisfies
x(j)
0 ∈ Ω̄

(j)
0 .

Step03. For j = 1, 2, . . . , P̄ , let x0 = x(j)
0 and loop (36)–(42).

Step04. For x0 = x(j)
0 , obtain x(j)

0 ∈ T
(ϵ)
ij

. Record the performance

index function Vij(x
(j)
0 ), and the control law µ

ij
ϵ (x

(j)
0 ).

Step05. Let I be expressed as (49), we get x(j̄)
0 ∈ T

(ϵ)
I and Kϵ(x

(j̄)
0 )

= I .
Fig. 2. The structure diagram of the algorithm.

Fig. 3. The convergence of performance index functions.

Step06. Record the corresponding performance index function
VI(x

(j̄)
0 ), and the control law µI

ϵ(x
(j̄)
0 ).

Step07. Stop.

5. Neural network implementation for the ϵ-optimal control
scheme

Assume that the number of hidden layer neurons is denoted by
l, the weight matrix between the input layer and hidden layer is
denoted by V , and theweightmatrix between the hidden layer and
output layer is denoted by W . Then, the output of three-layer NN
is represented by:

F̂(X, V ,W ) = W Tσ(V TX) (60)

where σ(V TX) ∈ Rl, [σ(z)]i =
ezi −e−zi

ezi +e−zi
, i = 1, . . . , l, are the

activation functions.
The NN estimation error can be expressed by

F(X) = F(X, V ∗,W ∗) + ε(X) (61)

where V ∗,W ∗ are the ideal weight parameters, and ε(X) is the
reconstruction error.

Here, there are two networks, which are the critic network and
the action network, respectively. Both neural networks are chosen
as three-layer feedforward networks. Thewhole structure diagram
is shown in Fig. 2.

The training rules of the neural network can be seen in Si and
Wang (2001) and Wei and Liu (2011a).

6. Simulation study

To evaluate the performance of our iterative ADP algorithm,
we give an example with quadratic utility functions for numerical
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Fig. 4. The convergence of performance index functions.

experiment. Our example is also used in Wang et al. (2011) and
Wei and Liu (2011a, 2011b). We consider the system

xk+1 = F(xk, uk) = xk + sin(0.1x2k + uk), (62)

where xk, uk ∈ R, and k = 0, 1, 2, . . . . The domain of initial states
is expressed as

Ω0 = {x0|0.8 ≤ x0 ≤ 1.5}. (63)

The performance index function is in quadratic form with a finite-
time horizon that is expressed as (2) with U(xk, uk) = xTkQxk +

uT
kRuk, where the matrix Q = R = E and E denotes the identity

matrix with suitable dimensions.
We can see that for the initial state 0.8 ≤ x0 ≤ 1, there exists a

control u0 ∈ R that makes x1 = F(x0, u0) = 0. Thus the situation
then belongs to Case 2. While for the initial state 1 < x0 ≤ 1.5,
there does not exist a control u0 ∈ R that makes x1 = F(x0, u0) =

0. Thus the situation then belongs to Case 4. Then wewill compute
the ϵ-optimal control law for 0.8 ≤ x0 ≤ 1 and 1 < x0 ≤ 1.5
separately. The computation error of the iterative ADP is given as
ϵ = 10−6. The critic network and the action network are chosen
as three-layer BP neural networks with the structure 1–8–1 and
1–8–1, respectively. For 0.8 ≤ x0 ≤ 1, we run the iterative
ADP algorithm for Case 2. The search step is 0.1 from xk = 0.8
to xk = 1. We illustrate the convergence of performance index
functions at 3 points which are xA = 0.8, xB = 0.9 and xC = 1. The
corresponding convergence trajectories are V A, V B and V C which
are showed in Fig. 3, respectively.

For 1 < x0 ≤ 1.5, we run the iterative ADP algorithm for Case
4. The search step is 0.1 from xk = 1 to xk = 1.5. There are 4 state
points which are xD = 1.1, xE = 1.2, xF = 1.3, xG = 1.4 and xH =

1.5. For each state point, we should give a finite horizon admissible
control sequence as the initial control sequence. For convenience,
the length of all the initial control sequence is 2. The control
sequences are Dû

1
0 = (− sin−1(0.3)−0.121, − sin−1(0.8)−0.064),

E û
1
0 = (− sin−1(0.4) − 0.144, − sin−1(0.8) − 0.064), F û

1
0 =

(− sin−1(0.5) − 0.169, − sin−1(0.8)), Gû
1
0 = (− sin−1(0.6) −

0.196, − sin−1(0.8)) and H û
1
0 = (− sin−1(0.7) − 0.225, − sin−1

(0.8)). The corresponding state trajectories are Dx̂
2
0 = (1.1, 0.8, 0),

E x̂
2
0 = (1.2, 0.8, 0), F x̂

2
0 = (1.3, 0.8, 0), Gx̂

2
0 = (1.4, 0.8, 0), H x̂

2
0 =

(1.5, 0.8, 0).
We run the iterative ADP algorithm for Case 4 at state points xD,

xE, xF , xG and xH . For each iterative step, the critic network and the
action network are also trained for 1000 steps under the learning
rate α = 0.05 so that the given neural network accuracy ε = 10−8

is reached. After 15 iterative steps, we obtain the performance
index function trajectories shown in Fig. 3. The corresponding
convergent trajectories of the performance index functions are
VD, V E, V F , V G and V G which are shown in Fig. 4.

From the simulation results we have xA ∈ T
(ϵ)
5 , xB ∈ T

(ϵ)
5 , xC ∈

T
(ϵ)
6 , xD ∈ T

(ϵ)
6 , xE ∈ T

(ϵ)
6 , xF ∈ T

(ϵ)
6 , xG ∈ T

(ϵ)
7 and xH ∈ T

(ϵ)
7 and

we have I = 7. To show the effectiveness of the optimal control,
we arbitrarily choose 3 state points in Ω0 such as xα = 0.8, xβ =

1 and xγ = 1.5. Applying the optimal control law of µ7
ϵ(xH)

to the 3 state points, we obtain the following results exhibited
Figs. 5 and 6.
Fig. 5. Simulation results. (a) State trajectory for xα = 0.8. (b) Control trajectory for xα = 0.8. (c) State trajectory for xβ = 1. (d) Control trajectory for xβ = 1.
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Fig. 6. Simulation results for the state xγ = 1.5. (a) State trajectories. (b) Control
trajectories.

7. Conclusions

In this paper we developed an effective iterative ADP algorithm
for finite-horizon ϵ-optimal control of discrete-time nonlinear
systems with unfixed initial state. The iterative ADP algorithm
can be implemented by an arbitrary admissible control sequence
while the initial constraint which requires the system to reach
zero directly is removed. Convergence of the performance index
function of the iterative ADP algorithm is proved and the ϵ-optimal
number of control steps can also be obtained. Neural networks
are used to implement the iterative ADP algorithm. Finally, a
simulation example is given to illustrate the performance of the
proposed algorithm.
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