IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 6, JUNE 1994

Necessary and Sufficient Conditions for the
Hurwitz and Schur Stability of Interval Matrices

Kaining Wang, Anthony N. Michel, and Derong Liu

Abstract—We establish a set of new sufficient conditions for the Hurwitz
and Schur stability of interval matrices. We use these results to establish
necessary and sufficient conditions for the Hurwitz and Schur stability of
interval matrices. We relate the above results to the existence of quadratic
Lyapunov functions for linear time-invariant systems with interval-valued
coefficient matrices. Using the above results, we develop an algorithm
to determine the Hurwitz and the Schur stability properties of interval
matrices. We demonstrate the applicability of our results by means of
two specific examples.

I. INTRODUCTION

The stability of interval matrices is of great current interest (see,
e.g., (11, [2], [4]-[6]). Most of the existing results constitute sufficient
conditions for stability, and some of them provide necessary condi-
tions for the stability of interval matrices. The very few results which
offer necessary and sufficient stability conditions are concerned with
low order cases or involve criteria which are not practical to check
(see, e.g., [1]).

In the present paper, we establish necessary and sufficient condi-
tions for the Hurwitz stability and for the Schur stability of interval
matrices. We also present an algorithm which enables us to verify
these stability results.

In the next section, we identify the notation used throughout
this paper. In Section 3, we first establish sufficient conditions
for the Hurwitz and Schur stability of interval matrices (Lemmas
la and 1b). These results are used in Section IV to determine
necessary and sufficient conditions for Hurwitz and Schur stability
of interval matrices (Lemmas 2a and 2b and Theorems 1a and 1b).
In Section V, we consider quadratic Lyapunov functions and we
establish a connection between the concepts of Hurwitz (Schur)
stability and quadratic Hurwitz (Schur) stability (Corollary 1 and
Theorem 2).

Using the above results, we develop in Section VI an algorithm
which verifies the Hurwitz and Schur stability properties of interval
matrices. We demonstrate the applicability of our results by means
of two specific examples (Examples 1 and 2).

II. NOTATION

Let R" denote real n-space. If x € R™, then 27 = (21, ,2,)
denotes the transpose of z. Let R"*™ denote the set of n X m real
matrices. If B = [bi;]nxm € R"*™, then BT denotes the transpose
of B.

For A™ = [al}]laxn and AM = [a}].xn satisfying afl < aM
for all 1 < i,j < n, we define the interval matrix [A™, AM] by
[A™, AM] = {A = [a;;]:a]} < a; < a1 =4, <} If
for another interval matrix [AT, A}] it is true that Ay, AM] C
[A™, AM], we call [A]', A%] a subinterval matrix of the interval
matrix [A™, AM]. Frequently, in the interests of brevity, we will refer
to an interval matrix simply as an interval and to a subinterval matrix
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as a subinterval. Also, for A € R"*™ and AA € R™*", where all
elements of AA are nonnegative, we use the notation [4 + A A] to
represent the interval matrix [A — A A, A + AA]. For any interval
matrix [A™, AM], there is a unique representation of the form
[A £ AA]. Indeed, A and AA are given by A = (1/2)(A™ + AM)
and AA = (1/2)(AM — A™).

If for all A € [A™, AM], A is Hurwitz stable (i.e., all eigenvalues
of A have negative real parts), we say that [A™, 4™ | is Hurwitz
stable. Similarly, if for all A € [A™, AM], A is Schur stable (i.e.,
all eigenvalues of A have magnitude less than one), we say that
[A™, AM] is Schur stable.

We let | - | denote any one of the equivalent norms on R™. In
particular, the norms |- |,,1 < p < oo are defined by

n 1/p
— P = )
el = (;w ) (1<p<oo and oo = max fo

where z = (x1,---,20)7.
The matrix norms |- |, 1 < p < oo, defined on R™*" and induced
by the norms |-}, on R",1 < p < co are defined as

p Azl
0#£zER™ |-77|P

4], = 1< p < .

In particular, we have
n n
l4h = @}%2'“”' and |Alw = 12‘?5"”2?“‘”
i= j=

where A = [a;j]nxn € R"™".
On the real linear space R™*", we define the function a: R**" —
[09 OO) by

a(A) = max {|Al1, |A]w}- 2.1

It is not hard to show that a(-) defines a norm on R"*". We
note, however, that a(-) does not satisfy the property a(AB) <
a(A) - a(B).

III. SUFFICIENT CONDITIONS

We first establish sufficient conditions for the Hurwitz stability
and for the Schur stability of interval matrices. To this end, we will
require the following hypotheses.

Assumption la: For [A™, AM] we assume that

i) Ao 2 (1/2)(A™ + AM) is Hurwitz stable, and therefore, there
exists a positive definite matrix P = PT which is determined
by the matrix equation

PAo+ AGP=-1 G.n

where I € R"*"™ denotes the identity matrix; and
ii) a(AM — A™) < (1/|Ps) (3.2)
where a(-) denotes the norm defined in (2.1). O

Assumption 1b: For [A™, AM] we assume that

i) A 2 (1/2)(A™ + AM) is Schur stable, and therefore, there
exists a positive definite matrix P = P7 which is determined
by the matrix equation

AT PAy — P =1 (3.3)
where I € R™*™ denotes the identity mau/ix; and
1/2

i) ja(4 - 47) < [a(40) + o] - a(4e)  G4)

where a(-) denotes the norm defined in (2.1). O
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We first determine sufficient conditions for Hurwitz stability.
Lemma la: If [A™, AM] satisfies Assumption la,
[A™, AM] is Hurwitz stable.
Proof- It suffices to show that for all A € [A™, AM], the trivial
solution x = 0 of

then

= Az (3.5)
is asymptotically stable, i.e., for v(z) = zT Pz, where P is deter-
mined by (3.1)
das)(x) =2 (PA+ATP)2 <0 (3.6)
for all z # 0, and for all A € [A™, AM].
Let AA = A~ Ap = A — (1/2)(A™ + AM). Then A4 =
[Aaij]nxn satisfies the relation

1, m 1 m
|Aai;| = |aij — E(a,‘j + a,-hj[)ﬂ < i(ai\f —aj 3.7
for all 1 < 4, j < n, where we have used the fact that o]} <
ai; < af, and where | - | denotes absolute value. We note that
(1/2)(aM — a) is the (i, j)th element of (1/2)(A™ — A™) and
(3.7) implies that

1 m
IAAlL < %lAM — A" fiand|A AL < 314M - A7
Thus, we have

a(A4) < %Q(AM —a™ (.8

where «(-) is the norm defined in (2.1). From (3.8) and (3.2) we
now obtain

a(AA4) <

STl (3.9)

We now show that (3.9) implies that PA+ATPis negative definite
for all A € [A™, AM], and thus, (3.6) holds for all A € [A™, AM].
We have

PA+ ATP = P(Ao + AA) + (Ao + AA)"P
= PAo+ AP+ P(AA)+ (AA)TP

=T+ P(AA)+(AA)TP. (3.10)

To show that PA + A” P is negative definite, by (3.10) we only need
to show that the largest eigenvalue of P(AA) + (AA)T P is less
than one. To accomplish this, we will use the fact that for any square
matrix B, |A(B)| £ |B|w, where A(B) denotes any eigenvalue of
B. Indeed, there is a vector xg # 0 such that Bxg = A(B)zo, and
thus |Bzo|eo = |A(B)||zo|e. Hence

|BI()|°<,
!-’EO Ico

IA(B)| = < |eBle.

3.11)

Therefore, by (3.11), to show that the largest eigenvalue of P(AA)+

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 6, JUNE 1994

(AA)T P is less than one, it suffices to show that

|P(AA) + (AA)T Pl < 1. (3.12)

We have

|P(AA) + (AA)" Ploo < |Ploo|AAloo + [(AA)T oo Ploo
= |Ploo|AAloo + [AA1|Pleo
< 2|P|oo max {|A A}, |AAL}
= 2|Plowa(AA) < 1

where we have used (3.9). This completes the proof of the lemma.
O
Next, we determine sufficient conditions for Schur stability.
Lemma 1b: 1f [A™, AM] satisfies Assumption 1b, then
[A™, AM] is Schur stable.

Proof: As in the proof of Lemma 1a, we only need to show that
for any A € [A™, AM), the matrix AT PA — P is negative definite,
where P = PT is determined by (3.3). To accomplish this it suffices
to show, similarly as in the proof of Lemma la, that

(AA)T PAg + AT P(AA) + (AA)TP(AA) | <1 (3.13)

where AA = A — Ag = A — (1/2)(A™ + AM) satisfies (3.8).
To show that (3.13) is true, we note that

(AL PAo + AL P(AA) + (AA) P(AA)|oo
<1AA|1|Plooldofoo + |Ao[1}Ploo|A Ao
+|AA|1|Ploc| A4
= (|AA[1]Aoloo + |AA o] Ao]s
+ |AALAA|)|Ploo
< (20(AA) - a(Ag) + [a(AA)D)|Ploe (B.14)

where a(-) is defined in (2.1).
Let s = a(AAp) > 0. By (3.14), it suffices to show that

1

[Ploo
to prove that (3.13) is true. By (3.4) and (3.8) we have

s* + 20(Ag)s < (3.15)

1/2

LT a(4e). (316

|Ploe
We note that the right-hand side of (3.16) is the largest root of the
quadratic equation

< ol = 4™ < (a0 +

1

2+ 2a(A)h — —— =
+ 2a(Ao) Plm

0 3.17
where A € R.
Noting also that

5> 0> —a(do) — |(a(40))* +

1/2
—1—] (3.18)

[Pl
we conclude from (3.16) and (3.18) that s is larger or equal to the
smallest root of (3.17) and smaller or equal to the largest root of
(3.17). Therefore,

2 1
$°+2a(Ao)s — —=— <0
|Ploo
and hence, (3.15) is true. This completes the proof of the lemma.

0O
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Remarks 1: a) Previous results by the present authors [2] which
provide sufficient conditions for the Hurwitz and Schur stability of
interval matrices involve checks of the “corners” of hypercubes in
R™* determined by interval matrices while the present results involve
checkes on matrix norms, in particular, the norm determined by the
function a(-) defined in (2.1). Thus, the results in [2] and the present
results are distinct and neither appears to imply the other.

b) One of the motivations for establishing the sufficient conditions
given in Lemmas 1a and 1b is the possibility of establishing necessary
and sufficient conditions for the Hurwitz and Schur stability of
interval matrices. This will be accomplished in the next section. [

IV. NECESSARY AND SUFFICIENT CONDITIONS

In this section we utilize the results of Section HI to establish
necessary and sufficient conditions for the Hurwitz and Schur stability
of interval matrices.

Theorem la: An interval matrix [A™, AM] is Hurwitz stable if
and only if there are finitely many subinterval matrices [AT, AM] C
[A™, AM],1 < i < k, such that

k
[a™, AM] = 147, a¥]

i=1

4.1)

and for each 1 < i < k,[A™, AM ] satisfies Assumption 1a. O

In the proof of Theorem la we will make use of the following
necessary condition (which is also obviously a sufficient condition)
for the Hurwitz stability of an interval matrix.

Lemma 2a: Assume that [A,,, AM] is Hurwitz stable. Then there
exists a constant 7 > 0 such that for any subinterval [A], A}M] C
[A™, AM] (AT, A}] satisfies Assumption la, as long as a{ A} —
Ag') < r, where () is defined by (2.1).

Proof: By assumption, every A € [A™, AM] is Hurwitz stable.
Therefore, there exists a positive definite matrix P = P(A) = PT
which satisfies the matrix equation

PA+ATP=-T @.2)

where I € R"*™ is the identity matrix. Since [A™, A™] is a compact
. 2 . R .
set in B™", and since every continuous function on a compact set
assumes its minimal value, there exists a constant r > 0 such that
1
T < =
= [Pleo

for all A € [A™, AM] (recall that P = P(A)).
For any [AJ*, AYY] C [A™, AM] satisfying a(AY — AT) < 7,
(4.3) implies that

4.3)

1

|Ploo

where Py = P(A4o) and Ao = (1/2)(AJ* + AY) € [A™, AM).

The Hurwitz stability of Ao along with (4.4) imply now that
[AF, AY] satisfies Assumption 1a. O

Using Lemmas 1a and 2a, we now prove Theorem la.

Proof of Theorem la: (Sufficiency) Assume that [A™, AM] satis-
fies Assumption 1a for each 1 < i < k. By Lemma 1a, [AT*, AM] is
Hurwitz stable, 1 < i < k, and thus, by (4.1), [A™, AM] is Hurwitz
stable.

(Necessity) By Lemma 2a, there exists a constant » > 0 such
that for any subinterval [A7', A}] C [A™, AM],[AZ, AY] satisfies
Assumption 1a, as long as oA} — AT') < r where o(-) is defined
by (2.1).

Since [A™, AM] is a hyperrectangle in R"z, we can subdivide
it into a finite number of hyperrectangles [A", AM],1 < i < k,

a(A)Y — AT < 4.4
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such that «(AM — A™) < r forall 1 < i < k (note that for any
A € R™*", a(A) < nmaxi<i, j<n(|a:j])). Therefore, by Lemma
2a, the subintervals [AT, AM 1,1 < ¢ < k, satisfy Assumption la.

This completes the proof of the theorem. O

To establish necessary and sufficient conditions for the Schur
stability of an interval matrix, we proceed similarly as in the case
of Hurwitz stability of such matrices.

Theorem 1b: An interval matrix [A™, AM] is Schur stable if and
only if there are finitely many subinterval matrices [AT*, AM] C
[A™, AM],1 < i < E, such that

k
(4™, AM] = | J[AT, AM)

i=1

4.5)

and for each 1 < i < k, [A™, AM] satisfies Assumption 1b. O

In the proof of Theorem 1b, use is made of the following necessary
condition (which is also obviously a sufficient condition) for the Schur
stability of an interval matrix.

Lemma 2b: Assume that [A™, AM] is Schur stable. Then there
exists a constant d > 0 such that for any subinterval [Ag", Ay I c
[A™, AM][A, A}] satisfies Assumption 1b, as long as a(A} —
AG') < d, where a(-) is defined in (2.1). ]

The proofs of Lemma 2b and Theorem 1b proceed along similar
lines as the proofs of Lemma 2a and Theorem la, respectively. In
the interests of brevity, we omit the details.

Before considering specific cases, we note that Theorem 1a (the-
orem 1b) and Lemma 2a (Lemma 2b) enable us to ascertain the
Hurwitz (Schur) stability of a given interval matrix by subdividing
this interval into a sufficiently large number of subintervals which
are sufficiently small, and then, by determining the Hurwitz (Schur)
stability of each subinterval, using Lemma la (Lemma 1b). Lemma
2a (Lemma 2b) ensures that if the interval matrix under study is
Hurwitz (Schur) stable, then we can always subdivide the interval
into sufficiently many subintervals (with sufficiently small sizes)
so that each subinterval satisfies Assumption la (Assumption 1b).
These observations are the basis of an algorithm developed in
Section VI.

V. QUADRATIC LYAPUNOV FUNCTIONS

Suppose that an interval matrix [A™, AM] is Hurwitz stable.
A natural question which arises is whether there exists a positive
definite quadratic Lyapunov function v(z) = ¥ Pz, P = PT, such
that for all A € [A™, AM] the time derivative of v along the solutions
of

T = Azx (GRY]

given by

is.1y(z) =2 (PA+ AT P)z (5.2)

is negative definite. A similar question arises in connection with Schur
stability of interval matrices (for linear, time-invariant discrete-time
systems). Answers to these questions are negative in general (see
[7]). The resuits in the present paper, however, provide additional
understanding in this matter.

Definition 1: An interval matrix [A™, AM] is said to be quadrati-
cally Hurwitz stable if there exists a positive definite matrix P = PT
such that PA+ AT P is negative definite for all A € [A™, AM]. The
interval matrix [A™, AM] is said to be quadratically Schur stable if
there exists a positive definite matrix P = P7 such that AT PA - P
is negative definite for all A € [A™, AM], O

An examination of the proofs indicates that in Lemmas 1a and 1b
we actually established the following results.
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Corollary 1: 1f [A™, AM] satisfies Assumption la, then
[A™, AM] is quadratically Hurwitz stable. If [A™, AM] satisfies
Assumption 1b, then [A™, AM] is quadratically Schur stable. O

From the definitions, we see that quadratic Hurwitz (Schur) sta-
bility implies Hurwitz (Schur) stability for interval matrices. As
indicated earlier, the converse to the above is not true. In view of
Theorems 1a and 1b, however, we can at least make the following
connection between the concepts of Hurwitz (Schur) stability and
quadratic Hurwitz (Schur) stability of interval matrices.

Theorem 2: An interval matrix [A™, AM] is Hurwitz (Schur)
stable if and only if there are a finite number of subintervals
[A™, AM],1 < i < k, such that

k
[4™, AM] = U[A:na A{w]

i=1

(5.3)

and for each 1 < i < k, [AT", AM] is quadratically Hurwitz (Schur)
stable.

Proof: Due to the similarities of proofs, we consider only the
case of Hurwitz stability.

(Sufficiency) If for each 1 < i < k, [AT?, Af”] is quadrati-
cally Hurwitz stable, then [A]", AM | is Hurwitz stable. Therefore,
[A™, AM] = U5, [A7, AM] is Hurwitz stable.

(Necessity) By Theorem la, there is a finite number of subintervals,
[A™, AM],1 < i < K, such that (5.3) holds and for each 1 < i <
k, [A7*, AM] satisfies Assumption 1a. Therefore, by Corollary 1,
[A7, AM] is quadratically Hurwitz stable, 1 < i < k. O

VI. AN ALGORITHM

In the present section we develop an algorithm which is based
on Theorems la and 1b to test the Hurwitz and Schur stability of
interval matrices. We demonstrate the applicability of our algorithm
by means of two specific examples.

In the following algorithm, for any given interval matrix
[A™, AM], we first determine the Hurwitz stability of the matrix
B = (1/2)(A™ + AM) by solving the Lyapunov equation
PB + BTP = —I, where P = P If the solution is not unique
or is not positive definite, the algorithm terminates with the result
that [A™, AM] is not Hurwitz stable. If the unique solution P is
positive definite, then we verify if Assumption 1a is satisfied. If
Assumption la is satisfied, then the algorithm terminates with the
result that [A™, AM ] is Hurwitz stable. Otherwise, we divide the
interval [A™, AM] into two equal subintervals and repeat the above
process for each subinterval. The algorithm continues unless each
subinterval of [A™, AM] is determined to be Hurwitz stable or at
least one of the subintervals of [A™, A*] is determined to be not
Hurwitz stable, in the manner described above.

Problem: Given an interval matrix [A™, AM] with A™ = [a]?
and AM = [a}]], determine its Hurwitz stability properties, under
the assumption that A™ and A™ are Hurwitz stable.

Algorithm

1) Initialization: A" = [a};] = A™, AV = [a};
K, = {1}.

Let K = K.

For every k € K, compute Bi = (1/2)(A7 + AM) =
[bfj]nx" and solve for Py from PyBi + B P. = —I with
P. = PL.

If for every k € K, P is the unique solution and is positive
definite, go to Step 4. Otherwise, the interval matrix [A™, AM ]
is not Hurwitz stable. Stop

= AM and

2)
3)

4)
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5) Forevery k € K, compute Ci = AY — AP = [c]uxn, an =
max {|Ckl1, |Crloo} and B = (1/|Pi}oo )(Px is computed in
Step 2.).

If for every k € K, ax < [, the interval matrix [A™, AM]
is Hurwitz stable. Stop. Otherwise, determine Ko = {k €
K:ay > fi}, and go to Step 6.

For every k € Ko, find the maximal element c’;q of the
matrix Cj and partition [AT*, AM] into two interval matrices
[Dy*, DM] and [EP, E], where Df* = A7, EM = AM,

6)

7

DM = [d%], and E = [¢f] with &, = ;"j and
v _ JbE, iffi=pandj=gq
G = a;;, otherwise :
8) Relabel the set
{[DF, DY), [ER, E"), k € Ko} 6.1)
using
{[A7, AY], k € K1} (62)

where K1 = {1,---, N} and N is the number of interval matrices
in (6.1) or (6.2).

Go back to Step 1. O

Remarks 2: a) The number of elements in K is smaller than or
equal to the number of elements in K of Step 5.

b) If in Steps 3 and 5 we replace “Hurwitz” by “Schur” and in Step
4 we replace B = (1/|P|oo) by fi = 2{[(Bi)*+(1/|P|o)]'/* -
a(B)}, then the algorithm will determine Schur stability properties
of [A™, AM]. a

The above algorithm has been implemented on a Convex C240
machine. We demonstrate the applicability of the algorithm by the
following two examples.

Example 1: The 4 x 4 interval matrix [A™, AM], where

-3 4 4 -1
m_ -4 -4 -4 1
A"=1_5 o _p -y and
-1 0 1 -4
—2 5 6 15
M_|-3 -3 -3 2
AT = —4 3 -4 0
01 1 2 25

has been determined to be Hurwitz stable by the above algorithm,
requiring 19 cycles. Execution of the entire process required 1372.98
CPU seconds. Because of the efficiency of the algorithm (see Remark
2a), only 11,345 matrices (Bx) out of a maximum possible of
142+ 42 = 220 — 1 = 1,048,575 matrices (B;) had
to be checked (involving Steps 2 through 5) in the Algorithm.
Example 2: For the 4x4 interval matrix [A™, AM], where

8 4 4 —6
m_ -5 69 -4 1
A"=1_¢6¢ 2 _gy -1 | @nd

34 0 4 -49

-2 77 68 -2
w_ -1 =2 -1 22
AT=11y 55 —2 4
0 3 56 -3

both A™ and A™ are Hurwitz stable. Using the above algorithm, we
determine that [A™, A™] is not Hurwitz stable. Indeed, in the cycle,
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we obtain (k = 63)

—65 58 54 -5

C|-4 —sem —25 16 m M

Ba=|_s5 375 -—36715 o275| A 47
17 15 48 -3.95

which is not Hurwitz stable (i.e., it has a positive eigenvalue,
A = 0.1538). In the present case, the entire process requires only
10.63 CPU seconds. (The coefficients in Bgs are precise and do not
involve any round-off.) [}

VII. CONCLUDING REMARKS

In the present paper we first established a set of new sufficient
conditions for the Hurwitz and Schur stability of interval matrices.
We used these results to establish necessary and sufficient conditions
for the Hurwitz and Schur stability of interval matrices. We related
the above results to the existence of quadratic Lyapunov functions
for linear time-invariant systems with interval-valued coefficient
matrices. Using the above results, we developed an algorithm to
determine the Hurwitz stability properties of interval matrices for
the cases when the eigenvalues of all matrices belonging to the
interval matrix under investigation have negative real parts, or at least
one matrix belonging to the interval matrix has an eigenvalue with
positive real part. By making obvious modifications, this algorithm
determines also the Schur stability properties of interval matrices
for the cases when the eigenvalues of all matrices belonging to
the interval matrix under investigation have magnitudes less than
one, or at least one matrix belonging to the interval matrix has
an eigenvalue with magnitude greater than one. We demonstrated
the applicability of our results by means of two specific exam-
ples.
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Steady-State Behavior in the Vibrational Control of
a Class of Nonlinear Systems by AP-Forcing

Aldo Balestrino, Fabio Bernini, and Alberto Landi

Abstract— Vibrational control is an open-loop control technique that
uses zero mean parametric vibrations for shaping the response of a linear
or nonlinear dynamical system. Several theoretical results are available,
based on averaging techniques, assuring the possibility of modifying the
equilibrium properties of a system. For nonlinear systems, computational
difficulties arise and theoretical results cannot easily be applied. In this
note, the stationary behavior of a class of nonlinear systems vibrationally
controlled by AP-forcing is investigated. A practical formula linking the
amplitude and the frequency of the vibration and the amplitude of the
steady-state oscillation in the controlled variable is obtained. As test cases,
the well-known Rayleigh equation, a catalytic reactor equation, and the
phase locked loop equation are considered.

I. INTRODUCTION

Vibrational control has been proposed as an effective control
technique in recent years [1], [2], [3]. Such a method makes use
of zero mean parametric excitation so that on-line measurements on
the system are not necessary. If measurements are not available,
traditional control methods (such as feedback and feed-forward
techniques) fail, but vibrational control can be successfully used
as an open-loop tool for achieving the control objectives. Several
applications of vibrational control can be found in the literature to
ensure stabilization of particle beams [4], plasma [5], lasers [6],
and chemical reactors [7]-[10]. Some difficulties are present both
in the theory and in practical applications of vibrational control when
the controlled plants are nonlinear. Typically the amplitude of the
vibration at the output is not negligible, hence a correct estimation of
this amplitude is of practical value. In this note a simple formula is
derived, linking the amplitude and the frequency of the vibrations and
the amplitude of the steady-state oscillation in the controlled variable;
three examples are included to illustrate the technique.

II. MAIN RESULT

Consider the dynamic nonlinear system controlled by AP-forcing
{2] vibrations
2™ 4 f(a(e), -2 Y) = (Afsin(t/e+a) (1)

where z(t) € R, ) = d'z(t)/dt', i = 1,---,n.
The matrix state equation, if x(t) = z,(t), is given by

d:l}l /dt X2 0
dzn_yjdt | = 2 +

0
dzn/dt —f(z1,---,20) (A/e)sin((t/e) + a)
@
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Comments on “Necessary and Sufficient Conditions for
the Hurwitz and Schur Stability of Interval Matrices”!

A. Hmamed and M. El Bouchra

Abstract—This note shows that Example 1 in the above paper! is not
Hurwitz stable.

Recently, Wang et al.' derived some new sufficient and necessary
conditions for the Hurwitz and Schur stability of interval matrices.
Based on these results, they developed an elegant algorithm to
determine the Hurwitz and Schur stability properties of interval
matrices. In this note, we show that their Example 1 is not Hurwitz
stable.

Example 1: Wang et al.* claim that the interval matrix [A™ AM]
where

-3 4 4 -1 2 5 6 15
m_ -4 -4 -4 1 M |-3 -3 -3 2
AT=1 5 g 5 @AY= 3 4
-1 0 1 -4 01 1 2 25

is Hurwitz stable. If we choose, however, a matrix in [A™ A™] as

-2.5 4.5 5 0.25
A= -35 =35 =35 15

—4.5 25 —45 -05

—0.45 0.5 1.5 0.875
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then it is seen that matrix A with the eigenvalues at 0.6696, —2.7173,
and —3.7887 £ 76.7546 is unstable. Therefore the conclusion of
Wang et al. is incorrect.

Correction to “Necessary and Sufficient Conditions for
the Hurwitz and Schur Stability of Interval Matrices”!

Kaining Wang, Anthony N. Michel, and Derong Liu

In the above paper,’ Example 1, the last entry in matrix AM should
be —2.5 instead of 2.5. This is a typographical error and in no way
does it alter the validity of the results.
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