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Abstract In this paper, a novel neural-network-based

iterative adaptive dynamic programming (ADP) algorithm

is proposed. It aims at solving the optimal control problem

of a class of nonlinear discrete-time systems with control

constraints. By introducing a generalized nonquadratic

functional, the iterative ADP algorithm through globalized

dual heuristic programming technique is developed to

design optimal controller with convergence analysis. Three

neural networks are constructed as parametric structures to

facilitate the implementation of the iterative algorithm.

They are used for approximating at each iteration the cost

function, the optimal control law, and the controlled non-

linear discrete-time system, respectively. A simulation

example is also provided to verify the effectiveness of the

control scheme in solving the constrained optimal control

problem.

Keywords Adaptive critic designs � Adaptive dynamic

programming � Approximate dynamic programming �
Neural dynamic programming � Neural networks �
Optimal control � Reinforcement learning

1 Introduction

The classical control schemes work well for controlling

linear, single input, single output systems, but they are

unsuitable for controlling complex nonlinear, multiple

input, multiple output systems, which are characteristic of

numerous real-life control problems. As is known, optimal

control theory has been used to solve many such nonlinear,

multivariate problems in a variety of industrial settings,

particularly in aerospace applications. However, it often

requires solving the nonlinear Hamilton–Jacobi–Bellman

(HJB) equation instead of the Riccati equation. For

example, discrete-time HJB (DTHJB) equation is more

difficult to work with than the Riccati equation because it

involves solving nonlinear partial difference equations.

Moreover, the control constraints are often confronted in

practical problems, which results in a considerable diffi-

culty in designing the optimal controller. Thus, the control

of nonlinear systems with constraints has been the focus of

many researchers for several decades. There are some

methods for designing control laws considering the satu-

ration phenomena [1–3]. Though the traditional dynamic

programming (DP) approach has been a powerful tech-

nique for finding an optimal strategy of action over time in

a constrained, nonlinear environment for many years, it is

often computationally untenable to run it to obtain the

optimal solution due to the fact that the cost grows dras-

tically with the number of variables in the environment,

i.e., the well-known ‘‘curse of dimensionality’’ [4].
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In recent years, the ability of artificial neural networks

(ANN or NN) to approximate arbitrary nonlinear functions

plays a primary role in the use of such networks as com-

ponents or subsystems in identifiers and controllers [5–9].

Besides, it has been used for universal function approxi-

mation in adaptive/approximate dynamic programming

(ADP) algorithms, which were proposed in [7–9] as a

method for solving optimal control problems forward-

in-time. There are several synonyms used for ADP including

‘‘adaptive dynamic programming’’ [10–12], ‘‘approximate

dynamic programming’’ [13], ‘‘neuro-dynamic program-

ming’’ [14], ‘‘neural dynamic programming’’ [15, 16],

‘‘adaptive critic designs’’ (ACD) [17], and ‘‘reinforcement

learning’’ [18, 19].

Research in ADP and the related reinforcement learning

has gained much attention from scholars [7–17, 20–38].

According to Werbos [7] and Prokhorov and Wunsch [17],

ADP approaches were classified into several main schemes:

heuristic dynamic programming (HDP), action-dependent

HDP (ADHDP), also known as Q-learning [18, 19], dual

heuristic dynamic programming (DHP), ADDHP, global-

ized DHP (GDHP), and ADGDHP. Using the adaptive-

critic-based approach, Venayagamoorthy et al. [21] and

Han and Balakrishnan [28] presented the neurocontrol for a

turbogenerator and an agile missile system, respectively.

Al-Tamimi et al. [29] proposed a greedy HDP iteration

algorithm to solve the DTHJB equation of the optimal

control problem for discrete-time nonlinear systems. Vrabie

et al. [31] studied the continuous-time optimal control

problem using ADP. Wang et al. [11] derived an e-ADP

algorithm for finite horizon discrete-time nonlinear systems.

Abu-Khalaf and Lewis [33], Zhang et al. [34], and Song

et al. [37] studied the near-optimal control of affine non-

linear systems with control constraints, respectively.

However, there is still no result for solving the optimal

control problems for affine nonlinear discrete-time systems

with control constraints through the GDHP technique.

Incidentally, according to Prokhorov and Wunsch [17], the

outputs of the critic network of the GDHP technique con-

tain not only the cost function but also its derivatives. In

addition, they stated that this is very important because the

information associated with the cost function is as useful as

the knowledge of its derivatives. It will show improved

performance when using the iterative GDHP algorithm to

tackle the constrained optimal control problems of non-

linear discrete-time systems. This paper deals with the

problem based on iterative ADP algorithm via the GDHP

technique (iterative GDHP algorithm for brief).

The rest of this paper is organized as follows. In Sect. 2,

the DTHJB equation which includes nonquadratic func-

tional is introduced for the constrained nonlinear discrete-

time systems. Section 3 starts by developing the optimal

control scheme based on iterative ADP algorithm with

convergence analysis, and then the corresponding NN

implementation of the iterative algorithm is presented

using the GDHP technique. In Sect. 4, an example is pre-

sented to substantiate the derived theoretical results.

Section 5 contains concluding remarks.

2 Problem statement

Consider the nonlinear discrete-time system given by

xkþ1 ¼ f ðxkÞ þ gðxkÞuðxkÞ ð1Þ

where xk 2 R
n is the state and uðxkÞ 2 R

m is the control

vector, f ð�Þ and gð�Þ are differentiable in their argument

with f(0) = 0 and g(0) = 0. Assume that f ? gu is

Lipschitz continuous on a set X in R
n containing the origin

and that the system (1) is controllable in the sense that

there exists a continuous control on X that asymptotically

stabilizes the system. We denote Xu ¼ ukjuk ¼f ½u1k; u2k;

. . .; umk�T 2Rm; juikj � �ui; i ¼ 1; 2; . . .;mg; where �ui is the

saturating bound for the ith actuator. Let �U ¼
diagf�u1; �u2; . . .; �umg be the constant diagonal matrix.

Definition 1 A nonlinear dynamical system is said to be

stabilizable on a compact set X 2 R
n; if for all initial

conditions x0 2 X; there exists a control sequence

u0; u1; . . .; ui 2 R
m; i ¼ 0; 1; . . .; such that the state xk ! 0

as k!1:

The objective for general optimal control problems is to

find the control law u(x) which minimizes the infinite

horizon cost function given by

JðxkÞ ¼
X1

i¼k

ci�kUðxi; uiÞ ð2Þ

where U is the utility function, U(0, 0) = 0, U(xi, ui) C 0

for V xi, ui, and c is the discount factor with 0 \ c B 1.

The utility function can be written as

Uðxi; uiÞ ¼ xT
i Qxi þ YðuiÞ

where Y(ui) is positive definite and can be chosen as

quadratic form for the case of unconstrained problems.

Inspired by the work of Lyshevski [2, 3] and

Abu-Khalaf [33], when dealing with bounded optimal

control problems, we can employ a generalized nonqua-

dratic functional

YðuiÞ ¼ 2

Zui

0

w�Tð �U�1sÞ �URds ð3Þ

where w�1ðuiÞ ¼ /�1ðu1iÞ;/�1ðu2iÞ; . . .;/�1ðumiÞ
� �T

;R is

positive definite and assumed to be diagonal for simplicity

of analysis, s 2 R
m;w 2 R

m;w�T denotes (w-1)T, and /ð�Þ
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is a bounded one-to-one function satisfying j/ð�Þj � 1 and

belonging to Cp(p C 1) and L2ðXÞ: Moreover, it is a

monotonic odd function with its first derivative bounded by

a constant M. The well-known hyperbolic tangent function

/ð�Þ ¼ tanhð�Þ is one example of such function. Besides, it

is important to note that Y(ui) is positive definite since

/�1ð�Þ is a monotonic odd function and R is positive

definite.

For optimal control problems, the designed control law

must be admissible, which connotes that it must not only

stabilize the system on X but also guarantee the cost

function to be finite.

Definition 2 A control u(xk) is said to be admissible with

respect to (2) on X if u(xk) is continuous on a compact set

Xu 2 R
m; uð0Þ ¼ 0; u stabilizes (1) on X; and 8x0 2

X; Jðx0Þ is finite.

Note that (2) can be written as

JðxkÞ ¼ xT
k Qxk þ YðukÞ þ c

X1

i¼kþ1

ci�k�1Uðxi; uiÞ

¼ xT
k Qxk þ YðukÞ þ cJðxkþ1Þ: ð4Þ

According to Bellman’s optimality principle, it is known

that the optimal cost function J�ðxkÞ satisfies the DTHJB

equation

J�ðxkÞ¼min
uk

xT
k Qxkþ2

Zuk

0

w�Tð �U�1sÞ �URdsþcJ�ðxkþ1Þ

8
<

:

9
=

;:

ð5Þ

Besides, the optimal control law u� satisfies the first-order

necessary condition, which is given by the gradient of the

right-hand side of (5) with respect to uk, i.e.,

u�ðxkÞ

¼argmin
uk

xT
k Qxkþ2

Zuk

0

w�Tð �U�1sÞ �URdsþcJ�ðxkþ1Þ

8
<

:

9
=

;

¼ �Uw �c
2
ð �URÞ�1gTðxkÞ

oJ�ðxkþ1Þ
oxkþ1

� �
: ð6Þ

After substituting (6) into (5), the DTHJB equation can be

expressed as

J�ðxkÞ ¼ xT
k Qxk þ 2

Zu�ðxkÞ

0

w�Tð �U�1sÞ �URds

þ cJ�ðf ðxkÞ þ gðxkÞu�ðxkÞÞ ð7Þ

where J�ðxkÞ is the optimal cost function corresponding to

the optimal control law u�ðxkÞ. When dealing with the

linear quadratic regulator (LQR) optimal control

problems, this equation reduces to the Riccati equation

which can be efficiently solved. However, in the general

nonlinear case, the HJB equation cannot be solved

exactly. Therefore, we will present a novel algorithm to

approximate the cost function iteratively in the following

section.

3 Derivation, convergence analysis, and the NN

implementation of the iterative ADP algorithm

Three subsections are included in this section. In the first

subsection, the iterative ADP algorithm is introduced. In

the second subsection, the corresponding convergence

proof of the iterative algorithm is presented. Then, in the

third subsection, the implementation of the iterative ADP

algorithm based on NN is described.

3.1 Derivation of the iterative ADP algorithm

Since direct solution of the HJB equation is computation-

ally intensive, in this subsection, we develop an iterative

ADP algorithm, based on Bellman’s principle of optimality

and the greedy iteration principle.

First, let the initial cost function V0ð�Þ ¼ 0: Then, we

can derive the law of single control vector v0(xk) using

v0ðxkÞ ¼ arg min
uk

xT
k Qxk þ YðukÞ þ cV0ðxkþ1Þ

� �
: ð8Þ

Once the control law v0(xk) is determined, we update the

cost function as

V1ðxkÞ ¼ min
uk

xT
k Qxk þ YðukÞ þ cV0ðxkþ1Þ

� �

¼ xT
k Qxk þ Yðv0ðxkÞÞ: ð9Þ

Then, for i ¼ 1; 2; . . .; the iterative algorithm can be

implemented between the control law

viðxkÞ ¼ arg min
uk

xT
k Qxk þ YðukÞ þ cViðxkþ1Þ

� �

¼ �Uw � c
2
ð �URÞ�1gTðxkÞ

oViðxkþ1Þ
oxkþ1

� �
ð10Þ

and the cost function

Viþ1ðxkÞ ¼ min
uk

xT
k Qxk þ YðukÞ þ cViðxkþ1Þ

� �

¼ xT
k Qxk þ YðviðxkÞÞ þ cViðf ðxkÞ þ gðxkÞviðxkÞÞ:

ð11Þ

In the above iterative algorithm, i is the iteration index

of the cost function and the control law, while k is the time

index. The cost function and control law are updated until

they converge to the optimal ones. In the following part, we

will present the convergence analysis of the iteration
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between (10) and (11) with the cost function Vi ! J� and

the control law vi ! u� as i!1:

3.2 Convergence analysis of the iterative ADP

algorithm

Lemma 1 Let {li} be any arbitrary sequence of control

laws and {vi} be the control laws as in (10). Define Vi as in

(11) and Ki be

Kiþ1ðxkÞ ¼ xT
k Qxk þ YðliðxkÞÞ þ cKiðf ðxkÞ þ gðxkÞliðxkÞÞ:

ð12Þ

If V0ðxkÞ ¼ K0ðxkÞ ¼ 0; then ViðxkÞ�KiðxkÞ; 8i:

Proof It can easily be derived by noticing that Vi?1 is the

result of minimizing the right-hand side of (11) with

respect to the control input uk, while Kiþ1 is a result of an

arbitrary control input. h

Lemma 2 Let the sequence {Vi} be defined as in (11). If

the system is controllable, there is an upper bound B such

that 0 B Vi(xk) B B, V i.

Proof Let g(xk) be any stabilizing and admissible control

input, and let V0ð�Þ ¼ Z0ð�Þ ¼ 0; where Vi is updated as in

(11) and Zi is updated by

Ziþ1ðxkÞ ¼ xT
k Qxk þ YðgðxkÞÞ þ cZiðxkþ1Þ: ð13Þ

The difference of Zi(xk) can be derived as follows:

Ziþ1ðxkÞ � ZiðxkÞ ¼ cðZiðxkþ1Þ � Zi�1ðxkþ1ÞÞ
¼ c2ðZi�1ðxkþ2Þ � Zi�2ðxkþ2ÞÞ
¼ c3ðZi�2ðxkþ3Þ � Zi�3ðxkþ3ÞÞ

..

.

¼ ciðZ1ðxkþiÞ � Z0ðxkþiÞÞ
¼ ciZ1ðxkþiÞ: ð14Þ

Then, we can obtain that

Ziþ1ðxkÞ ¼ ciZ1ðxkþiÞ þ ZiðxkÞ
¼ ciZ1ðxkþiÞ þ ci�1Z1ðxkþi�1Þ þ Zi�1ðxkÞ
¼ ciZ1ðxkþiÞ þ ci�1Z1ðxkþi�1Þ
þ ci�2Z1ðxkþi�2Þ þ Zi�2ðxkÞ
¼ ciZ1ðxkþiÞ þ ci�1Z1ðxkþi�1Þ
þ ci�2Z1ðxkþi�2Þ þ � � �
þ cZ1ðxkþ1Þ þ Z1ðxkÞ: ð15Þ

It is clear that (15) can also be written as

Ziþ1ðxkÞ ¼
Xi

j¼0

c jZ1ðxkþjÞ

¼
Xi

j¼0

c j xT
kþjQxkþj þ YðgðxkþjÞÞ

� 	

�
X1

j¼0

c j xT
kþjQxkþj þ YðgðxkþjÞÞ

� 	
: ð16Þ

Since g(xk) is a stabilizing and admissible control input,

i.e., xk ! 0 as k!1; we have

Ziþ1ðxkÞ�
X1

j¼0

c jZ1ðxkþjÞ�B; 8i: ð17Þ

By using Lemma 1, we can further get

Viþ1ðxkÞ� Ziþ1ðxkÞ�B; 8i: ð18Þ

Based on Lemmas 1 and 2, we now present our main

theorems. h

Theorem 1 Define the cost function sequence {Vi} as in

(11) with V0ð�Þ ¼ 0; and the control law sequence {vi} as

in (10). Then, {Vi} is a nondecreasing sequence satisfying

Vi?1 C Vi, Vi.

Proof Define a new sequence

Uiþ1ðxkÞ ¼ xT
k Qxk þ Yðviþ1ðxkÞÞ þ cUiðxkþ1Þ ð19Þ

with U0ð�Þ ¼ V0ð�Þ ¼ 0: Let the control law sequence {vi}

be defined as in (10), and the cost function sequence {Vi}

be updated by (11).

In the following part, we prove that UiðxkÞ�Viþ1ðxkÞ by

mathematical induction.

First, we prove that it holds for i = 0. Since

V1ðxkÞ � U0ðxkÞ ¼ xT
k Qxk þ Yðv0ðxkÞÞ� 0;

we get

V1ðxkÞ�U0ðxkÞ: ð20Þ

Second, we assume that it holds for i - 1, i.e.,

ViðxkÞ�Ui�1ðxkÞ; 8xk: Then for i, according to (11) and

(19), we get

Viþ1ðxkÞ � UiðxkÞ ¼ cðViðxkþ1Þ � Ui�1ðxkþ1ÞÞ� 0

i.e.,

Viþ1ðxkÞ�UiðxkÞ: ð21Þ

Thus, we complete the proof by mathematical induction.

Furthermore, from Lemma 1, we know that ViðxkÞ�
UiðxkÞ: Therefore, we have

Viþ1ðxkÞ�UiðxkÞ�ViðxkÞ: ð22Þ
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As a result, we can obtain the conclusion that {Vi} is a

monotonically nondecreasing sequence with an upper

bound, and therefore, its limit exists. Here, we define it as

lim
i!1

ViðxkÞ ¼ V1ðxkÞ:

Next, we will prove that

V1ðxkÞ ¼ min
uk

xT
k Qxk þ YðukÞ þ cV1ðxkþ1Þ

� �
: ð23Þ

h

Theorem 2 Define the cost function sequence {Vi} as in

(11) with V0ð�Þ ¼ 0; and the control law sequence {vi} as in

(10). The sequence {Vi} converges to the optimal cost

function of the DTHJB equation (5), i.e., Vi ! J� as i!1:
Meanwhile, the control law sequence also converges to the

optimal control law (6), i.e., vi ! u� as i!1:

Proof For any uk and i, according to (11), we can derive

ViðxkÞ� xT
k Qxk þ YðukÞ þ cVi�1ðxkþ1Þ:

Combining with

ViðxkÞ�V1ðxkÞ; 8i ð24Þ

which is obtained from (22), we have

ViðxkÞ� xT
k Qxk þ YðukÞ þ cV1ðxkþ1Þ; 8i:

Let i!1; we can obtain

V1ðxkÞ� xT
k Qxk þ YðukÞ þ cV1ðxkþ1Þ:

Note that in the above equation, uk is chosen arbitrarily;

thus, it implies that

V1ðxkÞ� min
uk

xT
k Qxk þ YðukÞ þ cV1ðxkþ1Þ

� �
: ð25Þ

On the other hand, since the cost function sequence satisfies

ViðxkÞ ¼ min
uk

xT
k Qxk þ YðukÞ þ cVi�1ðxkþ1Þ

� �

for any i, considering (24), we have

V1ðxkÞ� min
uk

xT
k Qxk þ YðukÞ þ cVi�1ðxkþ1Þ

� �
; 8i:

Let i!1; we can obtain that

V1ðxkÞ� min
uk

xT
k Qxk þ YðukÞ þ cV1ðxkþ1Þ

� �
: ð26Þ

Based on (25) and (26), we can conclude that (23) is true.

We have just proved that the cost function V1ðxkÞ satisfies

the DTHJB equation, and therefore, it is the optimal cost

function of the DTHJB equation. Accordingly, we say that

the cost function sequence converges to the optimal cost

function of the DTHJB equation, i.e., limi!1 ViðxkÞ ¼
J�ðxkÞ: Simultaneously, according to (6) and (10), we can

conclude that the corresponding control law sequence also

converges to the optimal one. h

3.3 NN implementation of the iterative ADP algorithm

via GDHP technique

As is known, when the controlled system is linear and the

cost function is quadratic, we can obtain a linear control

law when solving the optimal control problems. However,

in the nonlinear case, this is not necessarily true. Therefore,

we need to use function approximation structure, such as

NN, to approximate both the control law and the cost

function.

Let the number of hidden layer neurons be denoted by

l, the weight matrix between the input layer and hidden

layer be denoted by m, and the weight matrix between the

hidden layer and output layer be denoted by x. Then, the

output of three-layer NN is represented by

F̂ðX; m;xÞ ¼ xTr mT X

 �

ð27Þ

where r mT Xð Þ 2 R
l; ½rðzÞ�i ¼ ðezi�e�ziÞ=ðezi þ e�ziÞ; i ¼

1; 2; . . .; l; are the activation function.

Now, we implement iterative GDHP algorithm in (10)

and (11). In the iterative GDHP algorithm, there are three

NNs, which are model network, critic network, and action

network. All the networks are chosen as three-layer feed-

forward neural networks. The inputs of the critic network

and action network are xk, and the inputs of the model

network are xk and v̂iðxkÞ: The structural diagram of the

proposed iterative GDHP algorithm is shown in Fig. 1,

where

W ¼ ox̂kþ1

oxk
þ ox̂kþ1

ov̂iðxkÞ
ov̂iðxkÞ

oxk

� �T

:

In order to avoid the requirement of knowing the system

dynamics, we should train the model network before car-

rying out the iterative algorithm, which is in fact the system

identification process. For given xk and v̂iðxkÞ; we can

obtain the output of the model network as

x̂kþ1 ¼ xT
mr mT

m xT
k v̂T

i ðxkÞ
� �T� 	

: ð28Þ

We define the error function of the model network as

emk ¼ x̂kþ1 � xkþ1: ð29Þ

The weights in the model network are updated to minimize

the following performance measure:

Emk ¼
1

2
eT

mkemk: ð30Þ

Using the gradient-based adaptation rule, the weights can

be updated as

xmðjþ 1Þ ¼ xmðjÞ � am
oEmk

oxmðjÞ

� 

ð31Þ
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mmðjþ 1Þ ¼ mmðjÞ � am
oEmk

ommðjÞ

� 

ð32Þ

where am [ 0 is the learning rate of the model network and

j is the iterative step for updating the weight parameters.

After the model network is trained, its weights are kept

unchanged.

The critic network is used to approximate both Vi(xk)

and its derivative qVi(xk)/qxk, which is denoted as ki(xk).

The output of the critic network can be formulated as

V̂iðxkÞ
k̂iðxkÞ

" #
¼

x1T
ci

x2T
ci

" #
r mT

cixk


 �
¼ xT

cir mT
cixk


 �
ð33Þ

where

xci ¼ x1
ci x2

ci

� �

i.e.,

V̂iðxkÞ ¼ x1T
ci r mT

cixk


 �
ð34Þ

and

k̂iðxkÞ ¼ x2T
ci r mT

cixk


 �
: ð35Þ

The target function can be written as

Viþ1ðxkÞ ¼ xT
k Qxk þ YðviðxkÞÞ þ cV̂iðx̂kþ1Þ ð36Þ

and

kiþ1ðxkÞ ¼
o xT

k Qxk þ YðviðxkÞÞ

 �

oxk
þ c

oV̂iðx̂kþ1Þ
oxk

¼ 2Qxk þ 2
oviðxkÞ

oxk

� �T

�URw�1ð �U�1viðxkÞÞ

þ c
ox̂kþ1

oxk
þ ox̂kþ1

ov̂iðxkÞ
ov̂iðxkÞ

oxk

� �T

k̂iðx̂kþ1Þ:

ð37Þ

Then, we define error functions for the critic network as

e1
cik ¼ V̂iðxkÞ � Viþ1ðxkÞ ð38Þ

and

e2
cik ¼ k̂iðxkÞ � kiþ1ðxkÞ: ð39Þ

The objective function to be minimized for the critic

network is

Ecik ¼ ð1� hÞE1
cik þ hE2

cik ð40Þ

where

E1
cik ¼

1

2
e1T

cike1
cik ð41Þ

and

E2
cik ¼

1

2
e2T

cike2
cik: ð42Þ

The weight update rule for the critic network is also

gradient-based adaptation given by

xciðjþ 1Þ ¼ xciðjÞ � ac ð1� hÞ oE1
cik

oxciðjÞ
þ h

oE2
cik

oxciðjÞ

� 


ð43Þ

mciðjþ 1Þ ¼ mciðjÞ � ac ð1� hÞ oE1
cik

omciðjÞ
þ h

oE2
cik

omciðjÞ

� 

ð44Þ

where ac [ 0 is the learning rate of the critic network j is

the inner-loop iterative step for updating the weight

parameters, and 0 B h B 1 is a parameter that adjusts how

HDP and DHP are combined in GDHP. When h = 0, the

training of the critic network reduces to a pure HDP, while

h = 1 reduces to a pure DHP.

In the action network, the state xk is used as input to

obtain the optimal control as the output of the action net-

work. The output can be formulated as

v̂iðxkÞ ¼ xT
air mT

aixk


 �
: ð45Þ

The target control input is given by

viðxkÞ ¼ �Uw � c
2
ð �URÞ�1gTðxkÞ

oV̂iðx̂kþ1Þ
ox̂kþ1

� �
: ð46Þ

∂
∂

γ

γ

+

λ + +

+ λ +

Fig. 1 The structure diagram of the iterative GDHP algorithm
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The error function of the action network can be defined as

eaik ¼ v̂iðxkÞ � viðxkÞ: ð47Þ

The weights of the action network are updated to minimize

the following performance error measure:

Eaik ¼
1

2
eT

aikeaik: ð48Þ

Similarly, the weight update algorithm is

xaiðjþ 1Þ ¼ xaiðjÞ � aa
oEaik

oxaiðjÞ

� 

ð49Þ

maiðjþ 1Þ ¼ maiðjÞ � aa
oEaik

omaiðjÞ

� 

ð50Þ

where aa [ 0 is the learning rate of the action network, and

j is the inner-loop iterative step for updating the weight

parameters.

Remark 1 According to Theorem 2, Vi ! J� as i!1:
Since kiðxkÞ ¼ oViðxkÞ=oxk, we can conclude that the

sequence {ki} is also convergent with ki ! k� as i!1:

4 Simulation study

In this section, an example is carried out to demonstrate the

effectiveness of the iterative GDHP algorithm in solving

the constrained optimal control problems.

Consider the following nonlinear discrete-time system:

xkþ1 ¼
0:2x1kex2

2k

0:3x3
2k

" #
þ

0

�0:2

� 

uðxkÞ

where xk ¼ ½x1k x2k�T 2 R
2 and uk 2 R are the state and

control variables, respectively. It is desired to control the

system with control constraint of |u| B 0.1. The cost

function is chosen as

JðxkÞ ¼
X1

i¼k

ci�k xT
i Qxi þ 2

Zui

0

tanh�Tð �U�1sÞ �URds

8
<

:

9
=

;

where Q and R are identity matrices with suitable

dimensions.

In order to implement the iterative GDHP algorithm at

time instant k = 0, we choose three-layer feedforward NNs

as model network, critic network, and action network with

the structures 3–8–2, 2–8–3, and 2–8–1, respectively. The

initial weights of the three networks are all set to be ran-

dom in [-1,1]. It should be mentioned that the model

network should be trained first. We train the model network

for 1,000 time steps using 100 data samples under the

learning rate am = 0.1. After the training of the model

network is completed, the weights are kept unchanged.

Then, let discount factor c = 1 and the adjusting parameter

h = 0.5, we train the critic network and action network for

53 iterations (i.e., for i ¼ 1; 2; . . .; 53) with 2,000 training

steps for each iteration to make sure the prespecified

accuracy 10-6 is reached. In the training process, the

learning rate ac = aa = 0.05. The convergence process of

the cost function and its derivative of GDHP algorithm are

shown in Fig. 2, for k = 0 and x0 = [2-1]T. We can see

that the iterative cost function sequence does converge to

the optimal cost function quite rapidly, which also indi-

cates the validity of the iterative GDHP algorithm. Inci-

dentally, the derivative of the cost function sequence is also

convergent just like the statement in Remark 1.

Then, for the given initial state x0 = [2-1]T, we apply

the optimal control law designed by the iterative GDHP

algorithm to the controlled nonlinear system for 14 time
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Fig. 2 The convergence process of the cost function and its

derivative of the iterative GDHP algorithm
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steps and obtain the state trajectories as shown in Fig. 3.

The corresponding control input is shown in Fig. 4.

Moveover, in order to make comparison with the perfor-

mance obtained by the controller without considering the

actuator saturation, we also present the controller designed

by the iterative GDHP algorithm regardless of the actuator

saturation and apply it to the same controlled system. The

state trajectories and the corresponding control input are

shown in Figs. 5 and 6, respectively.

Now, we contrast the results obtained from the above two

cases. When comparing Figs. 4 with 6, it can be seen that the

restriction of actuator saturation has been overcome suc-

cessfully in the former. However, in the latter, the control

input has overrun the saturation bound, and therefore, is

limited to the bounded value. It also should be mentioned

that the difference between Figs. 3 and 5 lies in the tiny

discrepancy of the response in different time steps. Even so,

more attention should be given to the difference of the

control curves when dealing with this kind of problems. In a

word, the simulation results commendably verify the

effectiveness of the proposed iterative GDHP algorithm.

5 Conclusions

By employing a generalized nonquadratic functional, an

effective iterative algorithm is proposed in this paper to

deal with the constrained optimal control problem for a

class of nonlinear discrete-time systems. The iterative

GDHP algorithm is developed for solving the cost function

of the DTHJB equation with convergence analysis. Three

NNs are used as parametric structures to approximate at

each iteration the cost function, the control law, and the

controlled nonlinear system, respectively. The simulation

study demonstrated the validity of the present optimal

control approach.
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