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a b s t r a c t

An intelligent-optimal control scheme for unknown nonaffine nonlinear discrete-time systems with
discount factor in the cost function is developed in this paper. The iterative adaptive dynamic
programming algorithm is introduced to solve the optimal control problem with convergence analysis.
Then, the implementation of the iterative algorithm via globalized dual heuristic programming technique
is presented by using three neural networks, which will approximate at each iteration the cost function,
the control law, and the unknown nonlinear system, respectively. In addition, two simulation examples
are provided to verify the effectiveness of the developed optimal control approach.
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1. Introduction

The main difference between optimal control of linear systems
and nonlinear systems lies in that the latter often requires solving
the nonlinear Hamilton–Jacobi–Bellman (HJB) equation instead
of the Riccati equation (Abu-Khalaf & Lewis, 2005; Al-Tamimi,
Lewis, & Abu-Khalaf, 2008; Primbs, Nevistic, & Doyle, 2000; Wang,
Zhang, & Liu, 2009). For example, the discrete-time HJB (DTHJB)
equation is more difficult to deal with than Riccati equation
because it involves solving nonlinear partial difference equations.
Although there were some methods that did not need to solve
the HJB equation directly (e.g., Beard, Saridis, & Wen, 1997; Chen,
Edgar, & Manousiouthakis, 2004), they were limited to handle
some special classes of systems or they needed to perform very
complex calculations. On the other hand, dynamic programming
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(DP) has been a useful technique in solving optimal control
problems for many years (Bellman, 1957). However, it is often
computationally untenable to run DP to obtain optimal solutions
due to the ‘‘curse of dimensionality’’ (Bellman, 1957). Moreover,
the backward direction of search precludes the application of DP
in real-time control.

Artificial neural networks (ANN or NN) are an effective
tool to implement intelligent control due to the properties
of nonlinearity, adaptivity, self-learning, fault tolerance, and
universal approximation of input–output mapping (Jagannathan,
2006; Werbos, 1992, 2008, 2009). Thus, it has been used
for universal function approximation in adaptive/approximate
dynamic programming (ADP) algorithms, which were proposed in
Werbos (1992, 2008, 2009) as a method to solve optimal control
problems forward-in-time. There are several synonyms used for
ADP including ‘‘adaptive dynamic programming’’ (Lewis & Vrabie,
2009; Liu & Jin, 2008; Murray, Cox, Lendaris, & Saeks, 2002; Wang
et al., 2009), ‘‘approximate dynamic programming’’ (Al-Tamimi
et al., 2008; Werbos, 1992), ‘‘neuro-dynamic programming’’
(Bertsekas & Tsitsiklis, 1996), ‘‘neural dynamic programming’’ (Si
& Wang, 2001), ‘‘adaptive critic designs’’ (Prokhorov & Wunsch,
1997), and ‘‘reinforcement learning’’ (Watkins & Dayan, 1992).

As an effective intelligent control method, in recent years,
ADP and the related research have gained much attention from
researchers (Balakrishnan & Biega, 1996; Balakrishnan, Ding, &
Lewis, 2008; Dierks, Thumati, & Jagannathan, 2009; Jagannathan &
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He, 2008; Vamvoudakis & Lewis, 2010; Venayagamoorthy, Harley,
& Wunsch, 2002; Venayagamoorthy, Wunsch, & Harley, 2000;
Vrabie & Lewis, 2009; Yen & Delima, 2005; Zhang, Luo, & Liu, 2009;
Zhang, Wei, & Liu, 2011). According to Prokhorov and Wunsch
(1997) and Werbos (1992), ADP approaches were classified
into several main schemes: heuristic dynamic programming
(HDP), action-dependent HDP (ADHDP; note the prefix ‘‘action-
dependent’’ (AD) used hereafter), also known as Q -learning
(Watkins & Dayan, 1992), dual heuristic dynamic programming
(DHP), ADDHP, globalized DHP (GDHP), and ADGDHP. Al-Tamimi
et al. (2008) derived a significant result that applied the HDP
iteration algorithm to solve the DTHJB equation of affine nonlinear
discrete-time systems.

In this paper, we will tackle the optimal control problem for
unknown nonlinear discrete-time systems using iterative ADP
algorithmvia GDHP technique (iterative GDHP algorithm for brief).
Though great progress has been made for ADP in optimal control
field, to the best of our knowledge, there is still no result to solve
this problem by using the iterative GDHP algorithm. Additionally,
the outputs of critic network of the GDHP technique contain not
only the cost function but also its derivatives. This is different
from HDP and DHP and is very important because the information
associated with the cost function is as useful as the knowledge
of its derivatives. Though the structure of the GDHP technique
is somewhat complicated, it is expected to bring remarkable
advantage when compared with simple ADP strategies. These
motivate our research.

This paper is organized as follows. In Section 2, we present the
formulation of the problem. In Section 3, we develop the optimal
control schemebasedon iterativeADPalgorithmwith convergence
analysis, and then present the corresponding NN implementation
of the iterative GDHP algorithm. In Section 4, two examples are
given to demonstrate the effectiveness of the present control
strategy. In Section 5, concluding remarks are given.

2. Problem statement

Here, we make the assumption that the state of the controlled
system is available for measurement.

In this paper, wewill study the nonlinear discrete-time systems
described by

xk+1 = F(xk, uk), k = 0, 1, 2, . . . , (1)

where xk ∈ Rn is the state and uk = u(xk) ∈ Rm is the control
vector. Let x0 be the initial state. The system function F(xk, uk)
is continuous for ∀ xk, uk and F(0, 0) = 0. Hence, x = 0 is an
equilibrium state of system (1) under the control u = 0.

Definition 1. A nonlinear dynamical system is said to be stabiliz-
able on a compact set Ω ∈ Rn, if for all initial states x0 ∈ Ω , there
exists a control sequence u0, u1, . . . , ui ∈ Rm, i = 0, 1, . . . , such
that the state xk → 0 as k → ∞.

It is desired to find the control law uk = u(xk)whichminimizes
the infinite horizon cost function given by

J(xk) =

∞
p=k

γ p−kU(xp, up), (2)

where U is the utility function, U(0, 0) = 0,U(xp, up) ≥ 0 for
∀ xp, up, and γ is the discount factor with 0 < γ ≤ 1. In this paper,
the utility function is chosen as the quadratic form U(xp, up) =

xTpQxp + uT
pRup, where Q and R are positive definite matrices with

suitable dimensions.
For optimal control problems, the designed feedback control

must not only stabilize the system on Ω but also guarantee that
(2) is finite, i.e., the control must be admissible.
Definition 2. A control u(x) is said to be admissiblewith respect to
(2) on Ω if u(x) is continuous on a compact set Ωu ∈ Rm, u(0) =

0, u stabilizes (1) on Ω , and ∀x0 ∈ Ω, J(x0) is finite.

Note that Eq. (2) can be written as

J(xk) = xTkQxk + uT
kRuk + γ

∞
p=k+1

γ p−k−1U(xp, up)

= xTkQxk + uT
kRuk + γ J(xk+1). (3)

According to Bellman’s optimality principle, the optimal cost
function J∗(xk) satisfies the DTHJB equation

J∗(xk) = min
uk


xTkQxk + uT

kRuk + γ J∗(xk+1)

. (4)

Besides, the optimal control u∗ can be expressed as

u∗(xk) = argmin
uk


xTkQxk + uT

kRuk + γ J∗(xk+1)

. (5)

By substituting (5) into (4), the DTHJB equation becomes

J∗(xk) = xTkQxk + u∗T (xk)Ru∗(xk) + γ J∗(xk+1). (6)

It should be noticed that Definitions 1 and 2 are the same
for linear systems. Moreover, when dealing with linear quadratic
regulator problems, the DTHJB equation reduces to the Riccati
equation which can be efficiently solved. For the general nonlinear
case, however, it is considerably difficult to cope with the DTHJB
equation directly. Therefore, we will develop an iterative ADP
algorithm to solve it in the next section, based on Bellman’s
optimality principle and the greedy iteration approach.

3. Neuro-optimal control scheme based on iterative ADP
algorithm via the GDHP technique

3.1. Derivation of the iterative algorithm

First, we start with the initial cost function V0(·) = 0 and obtain
the law of the single control vector v0(xk) as follows:

v0(xk) = argmin
uk


xTkQxk + uT

kRuk + γ V0(xk+1)

. (7)

Then, we update the cost function as

V1(xk) = xTkQxk + vT
0 (xk)Rv0(xk). (8)

Next, for i = 1, 2, . . . , the algorithm iterates between

vi(xk) = argmin
uk


xTkQxk + uT

kRuk + γ Vi(xk+1)


(9)

and

Vi+1(xk) = xTkQxk + vT
i (xk)Rvi(xk) + γ Vi(F(xk, vi(xk))). (10)

In the above recurrent iteration, i is the iteration index, while k is
the time index. The cost function and control law are updated until
they converge to the optimal ones. In the following,wewill present
the convergence proof of the iteration between (9) and (10) with
the cost function Vi → J∗ and the control law vi → u∗ as i → ∞.

3.2. Convergence analysis of the iterative algorithm

The convergence analysis provided here is an extension of that
given in Al-Tamimi et al. (2008).
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Lemma 1. Let {µi} be any arbitrary sequence of control laws and {vi}

be the control laws as in (9). Define Vi as in (10) and define Λi as

Λi+1(xk) = xTkQxk + µT
i (xk)Rµi(xk) + γΛi(F(xk, µi(xk))). (11)

If V0(·) = Λ0(·) = 0, then Vi+1(x) ≤ Λi+1(x), ∀i.

Proof. It can be derived by noticing that Vi+1 is the result of
minimizing the right-hand side of (10) with respect to the control
input uk, while Λi+1 is a result of an arbitrary control input. �

Lemma 2. Let the sequence {Vi} be defined as in (10). If the system is
controllable, there is an upper bound Y such that 0 ≤ Vi(xk) ≤ Y , ∀i.

Proof. Let η(xk) be any admissible control input, and let V0(·) =

Z0(·) = 0, where Vi is updated as in (10) and Zi is updated by

Zi+1(xk) = xTkQxk + ηT (xk)Rη(xk) + γ Zi(xk+1). (12)

Noticing the difference

Zi+1(xk) − Zi(xk) = γ (Zi(xk+1) − Zi−1(xk+1))

= γ 2(Zi−1(xk+2) − Zi−2(xk+2))

= γ 3(Zi−2(xk+3) − Zi−3(xk+3))

...

= γ i(Z1(xk+i) − Z0(xk+i))

= γ iZ1(xk+i), (13)

we can obtain

Zi+1(xk) = γ iZ1(xk+i) + Zi(xk)
= γ iZ1(xk+i) + γ i−1Z1(xk+i−1) + Zi−1(xk)
= γ iZ1(xk+i) + γ i−1Z1(xk+i−1)

+ γ i−2Z1(xk+i−2) + Zi−2(xk)
= γ iZ1(xk+i) + γ i−1Z1(xk+i−1)

+ γ i−2Z1(xk+i−2) + · · · + γ Z1(xk+1) + Z1(xk), (14)

and therefore,

Zi+1(xk) =

i
j=0

γ jZ1(xk+j)

=

i
j=0

γ jxTk+jQxk+j + ηT (xk+j)Rη(xk+j)


≤

∞
j=0

γ jxTk+jQxk+j + ηT (xk+j)Rη(xk+j)

. (15)

Since η(xk) is an admissible control input, i.e., xk → 0 as k → ∞,
there exists a finite Y such that

Zi+1(xk) ≤

∞
j=0

γ jZ1(xk+j) ≤ Y , ∀i. (16)

By using Lemma 1, we get

Vi+1(xk) ≤ Zi+1(xk) ≤ Y , ∀i, (17)

and so the proof is completed. �

Based on Lemmas 1 and 2, we now present the convergence
proof of the cost function sequence.

Theorem 1. Define the sequence {Vi} as in (10) with V0(·) = 0, and
the control law sequence {vi} as in (9). Then, we can conclude that {Vi}

is a nondecreasing sequence satisfying Vi ≤ Vi+1, ∀i.
Proof. Define a new sequence as

Φi+1(xk) = xTkQxk + vT
i+1(xk)Rvi+1(xk) + γΦi(xk+1) (18)

with Φ0(·) = V0(·) = 0. Now, we show that Φi(xk) ≤ Vi+1(xk).
First, we prove that it holds for i = 0. Since

V1(xk) − Φ0(xk) = xTkQxk + vT
0 (xk)Rv0(xk) ≥ 0, (19)

we have

Φ0(xk) ≤ V1(xk). (20)

Second, we assume that it holds for i − 1, i.e., Φi−1(xk) ≤

Vi(xk), ∀xk. Then, for i, from (10) and (18), we get

Vi+1(xk) − Φi(xk) = γ (Vi(xk+1) − Φi−1(xk+1)) ≥ 0, (21)

i.e.,

Φi(xk) ≤ Vi+1(xk). (22)

Thus, (22) is true for any i by mathematical induction.
Furthermore, according to Lemma 1, we know that Vi(xk) ≤

Φi(xk). Combining with (22), we have

Vi(xk) ≤ Φi(xk) ≤ Vi+1(xk), (23)

which completes the proof. �

According to Lemma 2 and Theorem 1, we can obtain that {Vi}

is a monotonically nondecreasing sequence with an upper bound,
and therefore, its limit exists. Here, we define it as limi→∞ Vi(xk) =

V∞(xk) and present the following theorem.

Theorem 2. Let the cost function sequence {Vi} be defined as in (10).
Then, its limit satisfies

V∞(xk) = min
uk


xTkQxk + uT

kRuk + γ V∞(xk+1)

. (24)

Proof. For any uk and i, according to (10), we can derive

Vi(xk) ≤ xTkQxk + uT
kRuk + γ Vi−1(xk+1). (25)

Combining with

Vi(xk) ≤ V∞(xk), ∀i, (26)

which is obtained from (23), we have

Vi(xk) ≤ xTkQxk + uT
kRuk + γ V∞(xk+1), ∀i. (27)

Let i → ∞, then we can obtain

V∞(xk) ≤ xTkQxk + uT
kRuk + γ V∞(xk+1). (28)

Note that in the above equation, uk is chosen arbitrarily, thus, it
implies that

V∞(xk) ≤ min
uk


xTkQxk + uT

kRuk + γ V∞(xk+1)

. (29)

On the other hand, since the cost function sequence satisfies

Vi(xk) = min
uk


xTkQxk + uT

kRuk + γ Vi−1(xk+1)


(30)

for any i, considering (26), we have

V∞(xk) ≥ min
uk


xTkQxk + uT

kRuk + γ Vi−1(xk+1)

, ∀i. (31)

Let i → ∞, then we can get

V∞(xk) ≥ min
uk


xTkQxk + uT

kRuk + γ V∞(xk+1)

. (32)

Based on (29) and (32), we can conclude that (24) is true. �
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Fig. 1. The structure diagram of the iterative GDHP algorithm.

Remark 1. Let limi→∞ vi(xk) = v∞(xk). According to Theorem 2
and the relationship between (9) and (10), we have

V∞(xk) = min
uk


xTkQxk + uT

kRuk + γ V∞(xk+1)


= xTkQxk + vT
∞

(xk)Rv∞(xk) + γ V∞(F(xk, v∞(xk))), (33)

where

v∞(xk) = argmin
uk


xTkQxk + uT

kRuk + γ V∞(xk+1)

. (34)

Observing (33) and (34), and then (4) and (5), we can find
that V∞(xk) = J∗(xk) and v∞(xk) = u∗(xk). In other words,
limi→∞ Vi(xk) = J∗(xk) and limi→∞ vi(xk) = u∗(xk).

3.3. NN implementation of the iterative algorithm

For carrying out the iterative ADP algorithm, we need to use a
function approximation structure, such asNN, to approximate both
vi(xk) and Vi(xk).

Let the number of hidden layer neurons be denoted by l,
the weight matrix between the input layer and hidden layer be
denoted by ν, and theweightmatrix between the hidden layer and
output layer be denoted by ω. Then, the output of three-layer NN
is formulated as

F̂(X, ν, ω) = ωTσ

νTX


, (35)

where σ

νTX


∈ Rl, [σ(z)]q = (ezq − e−zq)/(ezq + e−zq), q =

1, 2, . . . , l, are the activation functions.
Now, we implement the iterative ADP algorithm via the GDHP

technique. It consists of a model network, two critic networks and
an action network, which are all chosen as three-layer feedforward
NNs. The whole structure diagram is shown in Fig. 1, where

DER =


∂ x̂k+1

∂xk
+

∂ x̂k+1

∂v̂i(xk)
∂v̂i(xk)

∂xk

T

. (36)

In order to avoid the requirement of knowing F(xk, uk), we
should train the model network before carrying out the main
iterative process. For given xk and v̂i(xk), we can obtain the output
of the model network as

x̂k+1 = ωT
mσ

νT
m


xTk v̂T

i (xk)
T 

. (37)

We define the error function of the model network as

emk = x̂k+1 − xk+1. (38)

The weights of the model network are updated to minimize the
following performance measure:

Emk =
1
2
eTmkemk. (39)
Using the gradient-based adaptation rule, the weights can be
updated as

ωm(j + 1) = ωm(j) − αm


∂Emk

∂ωm(j)


, (40)

νm(j + 1) = νm(j) − αm


∂Emk

∂νm(j)


, (41)

where αm > 0 is the learning rate of the model network, and j is
the iterative step for updating the weight parameters.

Theweights of themodel network are kept unchanged after the
training process is finished.

The critic network is used to approximate both Vi(xk) and its
derivative ∂Vi(xk)/∂xk, which is denoted as λi(xk). The input of
critic network is xk, while the output is given by
V̂i(xk)
λ̂i(xk)


=


ω1T

ci
ω2T

ci


σ

νT
cixk


= ωT
ciσ

νT
cixk

, (42)

where ωci =

ω1

ci ω2
ci


. Note that the same weight matrix

between input layer and hidden layer is used to approximate the
cost function and its derivative. This framework can reduce the
computational burden when compared to the case of constructing
two separate critics. Hence, we have

V̂i(xk) = ω1T
ci σ


νT
cixk


(43)

and

λ̂i(xk) = ω2T
ci σ


νT
cixk

. (44)

The target functions can be written as

Vi+1(xk) = xTkQxk + vT
i (xk)Rvi(xk) + γ V̂i(x̂k+1) (45)

and

λi+1(xk) =
∂

xTkQxk + vT

i (xk)Rvi(xk)


∂xk
+ γ

∂ V̂i(x̂k+1)

∂xk

= 2Qxk + 2


∂vi(xk)

∂xk

T

Rvi(xk)

+ γ


∂ x̂k+1

∂xk
+

∂ x̂k+1

∂v̂i(xk)
∂v̂i(xk)

∂xk

T

λ̂i(x̂k+1). (46)

Note that Eq. (46) is simply the derivative form of (45), and
therefore, the two are equivalent in principle. Then, the error
functions can be defined as

e1cik = V̂i(xk) − Vi+1(xk) (47)

and

e2cik = λ̂i(xk) − λi+1(xk). (48)

Since the GDHP technique is a combination of HDP and DHP
techniques, we choose the objective function to be minimized by
the critic network as

Ecik = (1 − θ)E1
cik + θE2

cik, (49)

where

E1
cik =

1
2
e1Tcike

1
cik (50)

and

E2
cik =

1
2
e2Tcike

2
cik. (51)
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The weight update rule for the critic network is also a gradient-
based adaptation given by

ωci(j + 1) = ωci(j) − αc


(1 − θ)

∂E1
cik

∂ωci(j)
+ θ

∂E2
cik

∂ωci(j)


, (52)

νci(j + 1) = νci(j) − αc


(1 − θ)

∂E1
cik

∂νci(j)
+ θ

∂E2
cik

∂νci(j)


, (53)

where αc > 0 is the learning rate of the critic network, j is the
inner-loop iterative step for updating the weight parameters, and
0 ≤ θ ≤ 1 is a parameter that adjusts how HDP and DHP are
combined in GDHP. When θ = 0, the training of the critic network
reduces to a pure HDP, while θ = 1 does the same for DHP.

In the action network, xk is used as the input and the output is

v̂i(xk) = ωT
aiσ

νT
aixk

. (54)

The target control input is given by

vi(xk) = argmin
uk


xTkQxk + uT

kRuk + γ V̂i(x̂k+1)

. (55)

The error function of the action network can be defined as

eaik = v̂i(xk) − vi(xk). (56)

The weights of the action network are updated to minimize

Eaik =
1
2
eTaikeaik. (57)

Similarly, the weight update algorithm is

ωai(j + 1) = ωai(j) − αa


∂Eaik

∂ωai(j)


, (58)

νai(j + 1) = νai(j) − αa


∂Eaik

∂νai(j)


, (59)

where αa > 0 is the learning rate of the action network, and j is
the inner-loop iterative step for updating the weight parameters.

Remark 2. According to Remark 1, Vi → J∗ as i → ∞. Since
λi(xk) = ∂Vi(xk)/∂xk, we can conclude that the sequence {λi} is
also convergent with λi → λ∗ as i → ∞.

Remark 3. Since we cannot implement the iteration until i →

∞ in practical applications, we should run the algorithm with a
prespecified accuracy ε to test the convergence of the cost function
sequence. When |Vi+1(xk) − Vi(xk)| < ε, we consider the cost
function sequence has converged sufficiently and stop running the
iterative GDHP algorithm.

4. Simulation studies

In this section, two examples are provided to demonstrate the
effectiveness of the iterative GDHP algorithm.

4.1. Example 1

Consider the following nonlinear system:

xk+1 = xk + sin(xk + uk), (60)

where xk ∈ R, uk ∈ R, k = 1, 2, . . . . The utility function is
chosen as U(xk, uk) = xTk xk + uT

kuk. It can be seen that xk = 0 is an
equilibrium state of system (60). However, the system is unstable
at this equilibrium, since (∂xk+1/∂xk)|(0,0) = 2 > 1.
Fig. 2. The convergence processes of the cost function and its derivative of the
iterative GDHP algorithm.

Fig. 3. The state trajectory x.

We choose three-layer feedforward NNs as model network,
critic network and action network with structures 2–8–1, 1–8–2,
and 1–8–1, respectively, and implement the algorithm at time
instant k = 0. The initial weights of the three NNs are all set to be
random in [−1, 1]. Note that the model network should be trained
first. We train the model network for 100 time steps using 500
data samples under the learning rate αm = 0.1. After the model
network is trained, its weights are kept unchanged. Then, let the
discount factor γ = 1 and the adjusting parameter θ = 0.5,
we train the critic network and action network for 120 iterations
(i.e., for i = 1, 2, . . . , 120) with 2000 training epochs for each
iteration to make sure the given accuracy ε = 10−6 is reached.
In the training process, the learning rate αc = αa = 0.05. The
convergence processes of the cost function and its derivative of
GDHP algorithm are shown in Fig. 2, for k = 0 and x0 = 1.5. We
can see that the iterative cost function sequence does converge to
the optimal value quite rapidly, which also indicates the validity of
the iterative GDHP algorithm. For the same problem, the iterative
GDHP algorithm takes about 16 s while HDP takes about 117 s
before satisfactory results are obtained.

Moreover, in order to make comparison with DHP algorithm,
we also present the controller designed by DHP algorithm. Then,
for given initial state x0 = 1.5, we apply the optimal control laws
designed by GDHP and DHP techniques to the system for 15 time
steps, respectively, and obtain the state curves as shown in Fig. 3.
The corresponding control curves are shown in Fig. 4. It can be seen
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Fig. 4. The control input u.

from the simulation results that the controller derived by theGDHP
algorithm has a better performance than the DHP algorithm.

To show the discount factor has evident impact on our iterative
algorithm, in this case, we choose the discount factor γ = 0.9
and set the other parameters the same as above. Then, we train
the critic network and action network for 80 iterations and find
that the given accuracy ε = 10−6 has been reached, which
demonstrates that smaller discount factor can insure quicker
convergence of the cost function sequence. Next, we will show
the discrepancy of the state and control curves under different
iterations to prove the usefulness of the iterative algorithm. For the
same initial state x0 = 1.5, we apply different control laws to the
controlled plant for 15 time steps and obtain simulation results as
follows. The state curves are shown in Fig. 5, and the corresponding
control inputs are shown in Fig. 6. From the simulation results, we
can see that the closed-loop system is divergent when using the
control law obtained in the first iteration. However, the system
responses become better and better as the iteration numbers
increasing from 3 to 80. Besides, the responses basically remain
unchanged when the iteration number is larger than 5, which
verifies the effectiveness of the proposed iterativeGDHPalgorithm.

4.2. Example 2

Consider the nonlinear discrete-time system given by

xk+1 =


−x1kx2k

1.5x2k + sin(x22k + uk)


(61)

where xk = [x1k x2k]T ∈ R2, uk ∈ R, k = 1, 2, . . . . The utility
function is also set as U(xk, uk) = xTk xk + uT

kuk.
In this example, we also choose three-layer feedforward NNs as

the model network, the critic network and the action network, but
with structures 3–8–2, 2–8–3, and 2–8–1, respectively. Here, we
train the critic network and action network for 50 iterations while
keeping the other parameters the same as the above example. The
convergence processes of the cost function and its derivative of
the iterative GDHP algorithm are shown in Fig. 7, which verify
the theoretical conjectures of Theorems 1–2 and Remarks 1–2.
Furthermore, for given initial state x10 = 0.5 and x20 =

−1, we apply the optimal control law designed by the iterative
GDHP algorithm to (61) for 25 time steps, and obtain the state
curves and the corresponding control curves as shown in Figs. 8
and 9, respectively. These simulation results verify the excellent
performance of the controller derived by the iterative GDHP
algorithm.
Fig. 5. The state trajectory x.

Fig. 6. The control input u.

Fig. 7. The convergence processes of the cost function and its derivative of the
iterative GDHP algorithm.

5. Conclusion

In this paper, an effective iterative ADP algorithm with
convergence analysis is given to design the near optimal controller
for unknown nonaffine nonlinear discrete-time systems with
discount factor in the cost function. The GDHP technique is
introduced to implement the algorithm. Three NNs are used as
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Fig. 8. The state trajectories x1 and x2 .

Fig. 9. The control input u.

parametric structures to approximate the cost function and its
derivative, the control law and identify the unknown nonlinear
system, respectively. The simulation studies demonstrated the
validity of the proposed optimal control scheme.
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