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SAGACIA turns out to be quite robust and is able to locate globdlleural Network-Based Model Reference Adaptive Control

optimum solutions for problems where gradient based algorithms System
fail. Furthermore, when SAGACIA failed to locate global optimal
solutions, suboptimal solutions of good quality can be located quickly. H. D. Patifio and Derong Liu

SAGACIA can not only escape from local minima easily, but also

converge to global minimum rapidly. It is an efficient and convenient
optimization algorithm.
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Abstract—In this paper, an approach to model reference adaptive control
based on neural networks is proposed and analyzed for a class of first-order
continuous-time nonlinear dynamical systems. The controller structure can
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It is shown in [5], [6], [13], and [14], and others that any well-be- ... [ReferenceModel
haved nonlinear function can be approximated to any desired accuri 5 ] = 1 Uplt)
by a two-layer feedforward neural network or a radial basis functic L e s '
(RBF) network, with a sufficiently large number of neurons, over .
compact domain of a finite dimensional normed vector space. In [] ; m

[2], [7], [12], [15]-[17], and [20], it is shown that neural networks car e 5
be used for both identification and control of dynamical systems.
these works, the nonlinear mapping capability of neural networks
exploited for forward and inverse plant models in order to develop di
ferent adaptive control schemes.

In this paper, a neural network controller based on MRAC is de
veloped, in which the error between the outputs of the plant and t
reference model is used to adapt the controller parameters. The pre:
results are established for MRAC with a first-order reference mode
The nonlinear part of the controller, which compensates the plant nc
linearity f(-), can be implemented by either an RBF network or a feet
forward neural network. The learning law used to train on-line the RB
network or the feedforward neural network isramodification-type .
updating law [8]. The adjustment mechanism is determined by the Ly Neurocontroller
punov stability analysis of the overall adaptive control system. This
kind of neural network-based adaptive controller is applicable to awi@#&. 1. Neural network-based model reference adaptive control system
variety of practical problems. Another interesting contribution of th&ructure.
present paper is the evaluation of control error (the error between the
outputs of the plant and the reference model) in terms of the neural net-
work learning error. In the design and analysis of neural network-basggbstituting (2), (3), and (5) into (1), the closed-loop system equation
control systems, it is important to take into account the neural netwgtkcomes
learning error and its influence on the control error of the plant.

y(t)

e(t) + ame(t) = Ay, w). (6)
Il. MAIN RESULTS
. . . . Note that when in (6) the learning error tends to zero, i.e., when—
The nonlinear adaptive control system considered in the presggtthe control erroe(t) tends to zero too. Define the neural network

paper is generalized from the well knpwn linear model referenw ight parameter error as= w— w*, wherew” is the optimal param-
adaptive control systems [9], [11]. Consider the plant to be controlle . L

. . €éter vector corresponding to the global minimum error of the network
given by (1) and a reference model given by (2). Assume dhat

k.., andr(t) have been chosen such that a desired trajegiqry) is which minimize§A(y, w)l; 1., the minimum value gi(y, w)| that

obtained for the plant output(¢) to follow. The proposed control law ?OUId be reac_hed Ilﬂ(y.’ W)l I_n the sequel, a stable parameter ad-
. ) justment law is determined using the Lyapunov stability theory, and
has the following form:

the practical stability for the neural network-based MRAC system is
w(t) = —amy(t) + kmr(t) + Ny[y(t), w(t)] = 67 6(t) (3) demonstrated. In addition, an explicit evaluation of the control error in

. o ) function of the neural network learning error and the design parameter
where N (-, -) is implemented using an RBF network or a feedyj| pe given.

forward-type neural network that approximates the functjgn),

w is the parameter vector of the neural netwotk € R”), and A Siapility Analysis

0 = [am, km, 1]" € R* is a vector of constant parameters, and

é(t) = [~y, r, Ng]* € R*® is a vector of functions. The vectar

represents the neurocontroller parameters to be tuned (Fig. 1).
Define the error signal as

In this subsection, analysis will be given for the case in which an RBF
network is employed to approximate the nonlinear function of the plant.
It is assumed that both RBF centers and widths have been chosen and
fixed adequately, and the weight values of the linear combiner will be
e(t) 2 y(t) — ym (¥). adjusted by a learning law such that the stability of the whole adaptive

) . control system can be guaranteed. Background material on practical
When the neural network exactly represents the funcfion, i.e., stability will be first introduced.

whenNy[y(t), w(t)] = f[y(t)] for all ¢, the closed-loop system equa- pefinition 1—[10]: Let a system be given by
tion, in terms of the error signal, is obtained by substituting (2) and (3)
into (1) as &= X(x, t), t>0 (")

é(t) + ame(t) = 0. (4)  which has the equilibrium state at the origin, i.&.(0, t) = 0 for all

) . . t > 0. Let the perturbed system be given by
Note that (4) represents an unforced linear system with a unique equi-

librium point at the origin, and it is asymptotically stable singe> 0. = X(x, t)+p(x, t), t>0. (8)
Thus, the control objective af(¢) trackingy,..(¢) is achieved, i.eg(t)
= y(t) — ym(t) — 0 ast — oc. Let Q be a set which is closed and bounded containing the origin

Consider the neural network learning error, i.e., the approximati@nd letQo be a subset of). Let z(, xo, fo) be the solution of (8)
error in the representation of the functig(r) by the neural network, satisfyingz(t, o, o) = 0. Let P be the set of perturbations satis-
given by fying |p(z, t)| < & forallt > 0 and for allz, whereé > 0. If for each

p in P, eachxzo in Qo, and eachy > 0, x(t, wo, to) is in Q for all
Ay, w) 2 Nyy(t), w(t)] — Fly(t)- (5) t > 0,then, the equilibrium of (7) at the origin is said tofmactically
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Fig. 2. Evolution of desired output and measured output (dashed line) of the adaptive control system in Example 1.

stable In other words, practical stability of (7) implies that the solutionwhere

of (8) which starts initially inQo remains thereafter i@y. [ ] w € RP weight vector of the linear combiner of the RBF
Practical stability implies that the system may oscillate sufficiently units;

close to its operating state with acceptable performance even though and &’ diagonal positive definite matrices, i.e.,

the operating state of the system may be unstable in the sense of Lya- ¥ = diag(¥;) and K = diag(K;) with

punov [10]. The concept of practical stability is relative to the gg¢ts ¥, >0andKk; >0;

andQo. Q is the set of acceptable states, i.e., if the sidtg of the B(t) € R? output weight vector of the RBF units, i.e.,

system at time is in (2, then the system at that time is operating satis- Nyly(t), w(t)] = BT(t)w(t).

factorily. The subsef), is a set of initial states. It is necessary to takd hen, the whole system given by

into account the concept of practical stability in the analysis and design

of certain control systems. This will specify how close the state of the é(t) + ame(t) =0

system to operating state is acceptable (th&Xethe magnitude of {lb(t) = —UB(t)e(t) — Kw(t)

perturbations to be expected (the numbgrand how well the initial

conditions should be controlled (the €g4). possesses strong practical stability under perturbation given by
In analogy to the classic asymptotic stability in the large, we cdi(y, w), 0], where@(t) = w(t) — w* andw* is the optimal

consider astrong practical stability For this case, givef, 2, and(),, parameter vector as defined before.

if the origin is practically stable and if, in addition, we require thatevery ~ Proof: System (10) under the given perturbation is described by

solution of the system (8) for eaghe P be ultimately in@, then we

(10

say that the system (7) has a strong practical stability. The following {é(t) + ame(t) = Ay, w) (11)

result is from [10]. w(t) = —UB(t)e(t) — Kw(t).
Lemma 1: Let V' (x) be a scalar function which has continuous first

partial derivative for all: and with the property thdt' (z) — oc as Consider the positive definite function

] — oo. Letf’@) denote the time derivative &f along the solutions ) ) o

of system (8). Ifi{s) < —¢ for all = outsideQq, for all p in P, and for Vie,w) =1+ 1070710

allt > 0andifV(z) < V(y) forall z in Qo and ally outsideq, then

system (7) possesses strong practical stability. m in which ¥ is a diagonal positive definite matrix defined above. We
The following is an application of Lemma 1 to our case. need to show that the derivative bf along the solutions of system
Theorem 1: Suppose that the control law is given by (3) and thél1) satisfies the conditions in Lemma 1.

parameter updating law is given by Clearly, V" can be upper bounded by

w(t) = —UB(t)e(t) — Kw(t) 9) Ve, w) < %62 +1 H‘I/_1 H ).
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Fig. 3. Learning curve of the system in Example 1.

The time derivative o¥” evaluated along the trajectories of system (1land1?’(11) can be upper bounded by

IS
Vi < —ame’ + [A(y, w*)] - le] = pa ||“~f’||2

+ pzfldr|] - w7

Vi =eé + 0" ¥ i

=—_a,,eé> + A(y, uz)e—i—ﬁ)T\If—lﬁ). (12)
Since bothf(y) and Ns(y, w) are continuously differentiable wit

respect to their arguments, soAy, w). One can apply the mean
value theorem and obtain | 162

., 1 \
- : Ay, w)|-le| = =3 <* — Ay, u,'*)l'n) +:—
Aly, w) = Ay, w*) + " <M) (13) 2\ 22

D P
+ §’IZ|A(yv w )|Z

the fact that the bilinear terms can be expressed as

2

for somewg, whereA(y, w™) is the learning error evaluated at the
global minimumw = w*. and ) .
ideri N . 1 (|| . 1 ol
Considering (5) and | | ||'1U|| . ||’LU ” _ -5 <”E” _ ”w ||f) + 3 ”Eg”
AA(y, we) _ ONs(y, we) — B(t) 1 )
dwe dwe + 552”“;*”2
and substituting (13) into (12), one gets .
) ' ] for somen € R and¢ € R, (16) can be rewritten as
Van = —ame® + Ay, w)e + i (B(.’ + ‘117177)) . (14) )
2 12 L2
The second term of (14) is partially cancelled out by the following Vo <= <"'m - ﬁ) e - </"1 - E) @l
parameter updating law 1, o o e
. . + = (77| A(y, w)]" + p2E7Jw"|]7).
w(t) = =WB(t)e(t) — Kw(t). (15) 2

As w* is a constant vector, the adjusting lawwofcan be determined EQuivalently, (17) can be written as

asin (9), i.e., . .
©) Vi € oV +p

w(t) = —¥B(t)e(t) — Kw(t).
with
Then, considering (15) [or (11)] and = w — w™, (14) becomes

1 2u6% —
0 = min <2(1,m - . 7313 #2)

f"hl) = —ame + Ay, w)e — WO K — T Kw* 02’ |- €2

(16)

(17

(18)

201

p Whereu; = min; {K;/¥;} andu, = ¥~ K|. Taking into account
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Fig. 4. Evolution of desired output and measured output (dashed line) of the adaptive control system in Example 2.

andp = 1/2(9%| Ay, w*)|? + 262 ||w*||*). It is always possible to The temporal response of system (6) to the ind{s(¢), w(t)] can be
choosey® > (1/2a.,) ande? > (j2/211), i.e.,0 > 0. Now, consider obtained by the following convolution

Q=0Qo= {(57 B): Ve, i) < ” ;r 6} e(t) = g(t) « Afy(t), w(t)]. (20)

] Considering the truncatiof 7 [y(#), w(#)] of Aly(¢), w(t)] to the in-
for somes= > 0. It results from (18) that?,,y < —< for all e andw  terval [0, T], (20) becomes

outsideq since er(t) = (g(t) * Arfp(t) w(B])r

wheree () is the truncation of(¢) to the same interval. Applying the
property that [20, p. 251]

pte
(e

Ve, w)>

and thatV' (z) < V(y) for all z € @ and ally outside®. Then,

applying Lemma 1, (18) implies that (10) possesses strong practical 1P+ alloe < Iplla - llalloo

stability. o o B where thed-norm for functionp(t) is defined as [20, p. 246]
Remark 1: Theorem 1 implies that all trajectories of system (11) o

will be ultimately in@, which implies thae(¢) € L., andw(t) € LE, lp®)||a = / [p(#)] dt

forall+ > 0. [ 0

Remark 2: The nonlinear part of the controller that compensates ttend the infinity norm for function(¢) is defined as
nonlinearitiesf[y(t)] of the plant can also be approximated by feed-

forward neural networks. In this case, for demonstrating the stability of lla(t)llee = ess.supyola(t)]-
the control system it is necessary to make modifications to the learnifigour case, we have for(t)
law of the network. ] oo
| | lolla = [ loto)lde =
B. Control Error Evaluation as a Function of the Neural Network 0 m
Learning Error Then, one has
In this subsection an evaluation of the control error as an explicit ller(O)llse <Nlg(®)|la - [|AT[y(t), w(t)]]|o

function of the neural network learning error and design parameter will

be conducted. = —1Arfy(t), w(t)]le- (21)
Define the Laplace transfer function of system (6Y4s), i.e., Notice that this expression can be used to evaluate the performance
E(s) 1 of the system through the evaluation of the learning error and design

G(s) = L{g(t)} = (19)

A(5) s+ am parameter,,, .
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Fig. 5. Learning curve of the system in Example 2.

We note that the bound obtained in (21) is established by an analysi§he weight vector of the RBF network is adjusted according to (9)
on the bounds for input—output relation and it is useful to evaluate théth
performance of control system both in the transient and steady state.
¥ = diag0.0125, - --, 0.0123]

lll. SIMULATION RESULTS

and
In order to show the feasibility and performance of the proposed : )
neural network-based adaptive control algorithm, as well as the sta- K = diag0.999, - - -, 0.999].

b_lllty pr_opertleS obtained in the_precedlng theoretical developme?ntA?[er the training process is completdt (y, )]l = 0.204 is ob-
simulation study has been carried out for two examples of nonlinear . . .
plants. tained for the learning error. In this case, (21) gives a bound
: i i 204
_ Example 1: Th_e pla_nt to be cont.rollec_i is governed by the no_nlmear Arfy(t), w(®)]]w = 0.20 — 0.102
differential equation given by (1), in which the unknown function has 2

the form whereT = 30 s.
) 3 The evolution of the desired and measured output signals of the
fly®)] = 2y(t) + 0.8y7(#). system is presented in Fig. 2 (the dashed line isyfofThe learning

Notice that this mathematical model has similar structure fJCCESS can be seen in Fig. 3, which represents the mean square neural

. . . . network learning error during the first 150 s. [ |
s_hlp-steerln_g modt_al [41, [18.]' The reference model is described by aExample 2: Inthis case, the plant to be controlled is described by the
first-order differential equation

nonlinear differential equation (1), where the unknown funcfi¢n -)
G (1) + 2y (1) = 20(t) has the form

) 1
ller (D)lloe < —
am

) . y(t
wherer(t) is a smooth bounded reference input signal in the interval fly(t), u(t)] = %yz)(t) + 0.1 tanh[u(#)]. (22)
(-1, 1. :
The functionf(-) is estimated on-line using a Gaussian-type ralhe last term of (22) represents a§mall-bo_unded perturbation.

dial basis function network with inpyt(¢) and outputN,(-, -). The The reference model employed is described by

number of nodes gf the hlddeq layer used is 100 with a sprgad of 0.03. G (£) + 2.5y (£) = 2.5¢(1). (23)
The centers are distributed uniformly alongl[ 1]. Other design pro-
cedures for placing the nodes in the input domain, such as the ohkese, the reference input signdk) is also in the interval{1, 1]. The
described in [3], are not possible to use due to the fact that the error herction f(-, -) is estimated on-line using a Gaussian-type RBF net-
tween the actual and desired network output is not explicitly availableork, which has two inputg(t) andu(t), and one outpufV¢(-, -).
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linear function output and desired neural network output is not avail-
able. Instead, it is shown that the discrepancy between the reference
model output and the plant output can be used as the activation signal
of the parameter adjusting law. The controller parameter adjustment

law is determined using the Lyapunov stability theory. A practical sta- Dynamic Output Feedback Controller Design forFuzzy

bility result for the proposed control system is given, which takes into Systems
account the neural network learning error. In other words, the conver-
gence of the control error to a neighborhood of zero can be assured, Z. X. Han, G. Feng, B. L. Walcott, and J. Ma

and the radius of the neighborhood is evaluated and depends on the ap-
proximation error of the network. In addition, a resultis established that ) .
Abstract—This paper presents dynamic output feedback controller de-

relates eXpII_Cltly the control error t_o the neural network Ieamln_g err?:[ n for fuzzy dynamic systems. Three kinds of controller design methods
and the design parameter. \We pelleve that the procgdure carried oYl-lyroposed based on a smooth Lyapunov function or a piecewise smooth
the proof of stability of the adaptive control system will be useful to thieyapunov function. The controller design involves solving a set of linear
proof of the stability of other kinds of neural network-based adaptiveatrix inequalities (LMI's) and the control laws are numerically tractable
control structures. To show the practical feasibility and performance ift LM! techniques. The global stability of the closed-loop fuzzy control
. . Sé/ﬁtem is also established.

the proposed neural network-based adaptive control algorithm as wi ) ]
as the stability properties obtained in the present paper, a simulatioffdx Terms—bynamic output feedback controller, fuzzy systems, linear

. . .”_matrix inequality.
study was carried out for two examples of nonlinear plants. The direc-
tions for future investigation will be oriented at the robustness issues of
the neural network-based adaptive control structures, and applications |. INTRODUCTION

of the control algorithm to other real plants. . .
Fuzzy logical control (FLC) techniques represent a means of both

collecting human knowledge and expertise and dealing with uncertain-

ties in the process of control. In many cases, it has been suggested as an
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