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SAGACIA turns out to be quite robust and is able to locate global
optimum solutions for problems where gradient based algorithms
fail. Furthermore, when SAGACIA failed to locate global optimal
solutions, suboptimal solutions of good quality can be located quickly.
SAGACIA can not only escape from local minima easily, but also
converge to global minimum rapidly. It is an efficient and convenient
optimization algorithm.
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Neural Network-Based Model Reference Adaptive Control
System

H. D. Patiño and Derong Liu

Abstract—In this paper, an approach to model reference adaptive control
based on neural networks is proposed and analyzed for a class of first-order
continuous-time nonlinear dynamical systems. The controller structure can
employ either a radial basis function network or a feedforward neural net-
work to compensate adaptively the nonlinearities in the plant. A stable con-
troller-parameter adjustment mechanism, which is determined using the
Lyapunov theory, is constructed using a -modification-type updating law.
The evaluation of control error in terms of the neural network learning
error is performed. That is, the control error converges asymptotically to a
neighborhood of zero, whose size is evaluated and depends on the approxi-
mation error of the neural network. In the design and analysis of neural net-
work-based control systems, it is important to take into account the neural
network learning error and its influence on the control error of the plant.
Simulation results showing the feasibility and performance of the proposed
approach are given.

Index Terms—Adaptive control, adaptive systems, neural network appli-
cations, neurocontrollers.

I. INTRODUCTION

Let a plant be given by the following differential equation

_y(t) + f [y(t)] = u(t); t � 0 (1)

wherey(t) is the output signal of the system,u(t) is the input signal
to the system, andf : R! R is the unknown static nonlinear function
which is continuously differentiable and Lipschitz. Let a stable linear
continuous-time reference model be specified by the following differ-
ential equation:

_ym(t) + amym(t) = kmr(t); t � 0 (2)

whereym(t) is the output signal,r(t) is the reference input signal, and
am> 0; km> 0.

The objective of a model reference adaptive control (MRAC) system
can be stated as follows. It is desired to obtain acontrol lawu(t), and an
updating lawof the controller parameters, such that one or more vari-
ables of the plant are kept within prescribed limits, and the closed-loop
system maintains a performance specified by the reference model. In
other words, it is desired to design a controller that computes a con-
trol action signal, such that the overall control system responds dy-
namically as the specified reference model. This may be expressed in
mathematical terms as follows. A plant with an input–output pairu(t),
y(t) is given as in (1), and a stable reference model specified by its
input–output pairr(t), ym(t) is given as in (2) with the reference input
signal of the systemr 2 L1. Then, the objective is to determine a con-
trol action law,u(t), for all t> 0, and an updating law of the controller
parameters such that

lim
t!1

jy(t)� ym(t)j � "

for some specified constant"> 0.
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It is shown in [5], [6], [13], and [14], and others that any well-be-
haved nonlinear function can be approximated to any desired accuracy
by a two-layer feedforward neural network or a radial basis function
(RBF) network, with a sufficiently large number of neurons, over a
compact domain of a finite dimensional normed vector space. In [1],
[2], [7], [12], [15]–[17], and [20], it is shown that neural networks can
be used for both identification and control of dynamical systems. In
these works, the nonlinear mapping capability of neural networks is
exploited for forward and inverse plant models in order to develop dif-
ferent adaptive control schemes.

In this paper, a neural network controller based on MRAC is de-
veloped, in which the error between the outputs of the plant and the
reference model is used to adapt the controller parameters. The present
results are established for MRAC with a first-order reference model.
The nonlinear part of the controller, which compensates the plant non-
linearityf(�), can be implemented by either an RBF network or a feed-
forward neural network. The learning law used to train on-line the RBF
network or the feedforward neural network is a�-modification-type
updating law [8]. The adjustment mechanism is determined by the Lya-
punov stability analysis of the overall adaptive control system. This
kind of neural network-based adaptive controller is applicable to a wide
variety of practical problems. Another interesting contribution of the
present paper is the evaluation of control error (the error between the
outputs of the plant and the reference model) in terms of the neural net-
work learning error. In the design and analysis of neural network-based
control systems, it is important to take into account the neural network
learning error and its influence on the control error of the plant.

II. M AIN RESULTS

The nonlinear adaptive control system considered in the present
paper is generalized from the well-known linear model reference
adaptive control systems [9], [11]. Consider the plant to be controlled
given by (1) and a reference model given by (2). Assume thatam,
km, andr(t) have been chosen such that a desired trajectoryym(t) is
obtained for the plant outputy(t) to follow. The proposed control law
has the following form:

u(t) = �amy(t) + kmr(t) +Nf [y(t); w(t)] = �
T
�(t) (3)

whereNf (�; �) is implemented using an RBF network or a feed-
forward-type neural network that approximates the functionf(�),
w is the parameter vector of the neural network(w 2 Rp), and
� = [am; km; 1]

T 2 R3 is a vector of constant parameters, and
�(t) = [�y; r; Nf ]

T 2 R3 is a vector of functions. The vectorw
represents the neurocontroller parameters to be tuned (Fig. 1).

Define the error signal as

e(t)
�
= y(t)� ym(t):

When the neural network exactly represents the functionf(�), i.e.,
whenNf [y(t); w(t)] = f [y(t)] for all t, the closed-loop system equa-
tion, in terms of the error signal, is obtained by substituting (2) and (3)
into (1) as

_e(t) + ame(t) = 0: (4)

Note that (4) represents an unforced linear system with a unique equi-
librium point at the origin, and it is asymptotically stable sinceam > 0.
Thus, the control objective ofy(t) trackingym(t) is achieved, i.e.,e(t)
= y(t) � ym(t)! 0 ast ! 1.

Consider the neural network learning error, i.e., the approximation
error in the representation of the functionf(�) by the neural network,
given by

�(y; w)
�
= Nf [y(t); w(t)]� f [y(t)]: (5)

Fig. 1. Neural network-based model reference adaptive control system
structure.

Substituting (2), (3), and (5) into (1), the closed-loop system equation
becomes

_e(t) + ame(t) = �(y; w): (6)

Note that when in (6) the learning error tends to zero, i.e., whenNf !
f , the control errore(t) tends to zero too. Define the neural network
weight parameter error as~w=w�w�, wherew� is the optimal param-
eter vector corresponding to the global minimum error of the network
which minimizesj�(y; w)j; i.e., the minimum value ofj�(y; w)j that
could be reached isj�(y; w�)j. In the sequel, a stable parameter ad-
justment law is determined using the Lyapunov stability theory, and
the practical stability for the neural network-based MRAC system is
demonstrated. In addition, an explicit evaluation of the control error in
function of the neural network learning error and the design parameter
will be given.

A. Stability Analysis

In this subsection, analysis will be given for the case in which an RBF
network is employed to approximate the nonlinear function of the plant.
It is assumed that both RBF centers and widths have been chosen and
fixed adequately, and the weight values of the linear combiner will be
adjusted by a learning law such that the stability of the whole adaptive
control system can be guaranteed. Background material on practical
stability will be first introduced.

Definition 1—[10]: Let a system be given by

_x = X(x; t); t � 0 (7)

which has the equilibrium state at the origin, i.e.,X(0; t) = 0 for all
t � 0. Let the perturbed system be given by

_x = X(x; t) + p(x; t); t � 0: (8)

Let Q be a set which is closed and bounded containing the origin
and letQ0 be a subset ofQ. Let x(t; x0; t0) be the solution of (8)
satisfyingx(t0; x0; t0) = x0. LetP be the set of perturbations satis-
fying jp(x; t)j � � for all t � 0 and for allx, where� > 0. If for each
p in P , eachx0 in Q0, and eacht0 � 0, x(t; x0; t0) is in Q for all
t � 0, then, the equilibrium of (7) at the origin is said to bepractically
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Fig. 2. Evolution of desired output and measured output (dashed line) of the adaptive control system in Example 1.

stable. In other words, practical stability of (7) implies that the solution
of (8) which starts initially inQ0 remains thereafter inQ.

Practical stability implies that the system may oscillate sufficiently
close to its operating state with acceptable performance even though
the operating state of the system may be unstable in the sense of Lya-
punov [10]. The concept of practical stability is relative to the setsQ

andQ0. Q is the set of acceptable states, i.e., if the statex(t) of the
system at timet is inQ, then the system at that time is operating satis-
factorily. The subsetQ0 is a set of initial states. It is necessary to take
into account the concept of practical stability in the analysis and design
of certain control systems. This will specify how close the state of the
system to operating state is acceptable (the setQ), the magnitude of
perturbations to be expected (the number�), and how well the initial
conditions should be controlled (the setQ0).

In analogy to the classic asymptotic stability in the large, we can
consider astrong practical stability. For this case, given�, Q, andQ0,
if the origin is practically stable and if, in addition, we require that every
solution of the system (8) for eachp 2 P be ultimately inQ, then we
say that the system (7) has a strong practical stability. The following
result is from [10].

Lemma 1: LetV (x) be a scalar function which has continuous first
partial derivative for allx and with the property thatV (x) ! 1 as
jxj ! 1. Let _V(8) denote the time derivative ofV along the solutions
of system (8). If _V(8) � �" for all x outsideQ0, for all p in P , and for
all t � 0 and ifV (x) � V (y) for all x in Q0 and ally outsideQ, then
system (7) possesses strong practical stability.

The following is an application of Lemma 1 to our case.
Theorem 1: Suppose that the control law is given by (3) and the

parameter updating law is given by

_w(t) = �	B(t)e(t)�Kw(t) (9)

where
w 2 Rp weight vector of the linear combiner of the RBF

units;
	 andK diagonal positive definite matrices, i.e.,

	 = diag(	i) and K = diag(Ki) with
	i> 0 andKi> 0;

B(t) 2 Rp output weight vector of the RBF units, i.e.,
Nf [y(t); w(t)] = BT (t)w(t).

Then, the whole system given by

_e(t) + ame(t) = 0

_~w(t) = �	B(t)e(t)�Kw(t)
(10)

possesses strong practical stability under perturbation given by
[�(y; w); 0]T , where ~w(t) = w(t) � w� and w� is the optimal
parameter vector as defined before.

Proof: System (10) under the given perturbation is described by

_e(t) + ame(t) = �(y; w)

_~w(t) = �	B(t)e(t)�Kw(t):
(11)

Consider the positive definite function

V (e; ~w) = 1
2
e
2 + 1

2
~!T	�1~!

in which 	 is a diagonal positive definite matrix defined above. We
need to show that the derivative ofV along the solutions of system
(11) satisfies the conditions in Lemma 1.

Clearly,V can be upper bounded by

V (e; ~w) � 1
2
e
2 + 1

2
	�1 � k ~wk2:
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Fig. 3. Learning curve of the system in Example 1.

The time derivative ofV evaluated along the trajectories of system (11)
is

_V(11) = e _e+ ~wT	�1 _~w

=�ame
2 +�(y; w)e+ ~wT	�1 _~w: (12)

Since bothf(y) andNf (y; w) are continuously differentiable with
respect to their arguments, so is�(y; w). One can apply the mean
value theorem and obtain

�(y; w) = �(y; w�) + ~wT @�(y; w�)

@w�

(13)

for somew�, where�(y; w�) is the learning error evaluated at the
global minimumw = w�.

Considering (5) and

@�(y; w�)

@w�

=
@Nf (y; w�)

@w�

= B(t)

and substituting (13) into (12), one gets

_V(11) = �ame
2 +�(y; w�)e+ ~wT Be+	�1 _~w : (14)

The second term of (14) is partially cancelled out by the following
parameter updating law

_~w(t) = �	B(t)e(t)�Kw(t): (15)

As w� is a constant vector, the adjusting law ofw can be determined
as in (9), i.e.,

_w(t) = �	B(t)e(t)�Kw(t):

Then, considering (15) [or (11)] and~w = w � w�, (14) becomes

_V(11) = �ame
2 +�(y; w�)e� ~wT	�1K ~w � ~wT	�1Kw�

and _V(11) can be upper bounded by

_V(11) ��ame
2 + j�(y; w�)j � jej � �1k ~wk

2

+ �2k ~wk � kw
�k (16)

where�1 = minifKi=	ig and�2 = j	�1Kj. Taking into account
the fact that the bilinear terms can be expressed as

j�(y; w�)j � jej =�
1

2

jej

�
� j�(y; w�)j�

2

+
1

2

e2

�2

+
1

2
�2j�(y; w�)j2

and

k ~wk � kw�k =�
1

2

k ~wk

�
� kw�k�

2

+
1

2

k ~wk2

�2

+
1

2
�2kw�k2

for some� 2 R and� 2 R, (16) can be rewritten as

_V(11) �� am �
1

2�2
e2 � �1 �

�2

2�2
k ~wk2

+
1

2
(�2j�(y; w�)j2 + �2�

2kw�k2): (17)

Equivalently, (17) can be written as

_V(11) � ��V + � (18)

with

� = min 2am �
1

�2
;
2�1�

2 � �2

k	�1k � �2
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Fig. 4. Evolution of desired output and measured output (dashed line) of the adaptive control system in Example 2.

and� = 1=2(�2j�(y; w�)j2 + �2�
2kw�k2). It is always possible to

choose�2 > (1=2am) and�2 > (�2=2�1), i.e.,�> 0. Now, consider

Q = Q0 = (e; ~w): V (e; ~w) �
�+ "

�

for some"> 0. It results from (18) that_V(11) < �" for all e and ~w
outsideQ since

V (e; ~w)>
�+ "

�

and thatV (x) � V (y) for all x 2 Q and ally outsideQ. Then,
applying Lemma 1, (18) implies that (10) possesses strong practical
stability.

Remark 1: Theorem 1 implies that all trajectories of system (11)
will be ultimately inQ, which implies thate(t) 2 L1 and ~w(t) 2 Lp1
for all t � 0.

Remark 2: The nonlinear part of the controller that compensates the
nonlinearitiesf [y(t)] of the plant can also be approximated by feed-
forward neural networks. In this case, for demonstrating the stability of
the control system it is necessary to make modifications to the learning
law of the network.

B. Control Error Evaluation as a Function of the Neural Network
Learning Error

In this subsection an evaluation of the control error as an explicit
function of the neural network learning error and design parameter will
be conducted.

Define the Laplace transfer function of system (6) asG(s), i.e.,

G(s) = Lfg(t)g =
E(s)

�(s)
=

1

s+ am
: (19)

The temporal response of system (6) to the input�[y(t); w(t)] can be
obtained by the following convolution

e(t) = g(t) ��[y(t); w(t)]: (20)

Considering the truncation�T [y(t); w(t)] of �[y(t); w(t)] to the in-
terval [0; T ], (20) becomes

eT (t) = (g(t) ��T [y(t); w(t)])T

whereeT (t) is the truncation ofe(t) to the same interval. Applying the
property that [20, p. 251]

kp � qk1 � kpkA � kqk1

where theA-norm for functionp(t) is defined as [20, p. 246]

kp(t)kA =
1

0

jp(t)j dt

and the infinity norm for functionq(t) is defined as

kq(t)k1 = ess:supt�0jq(t)j:

In our case, we have forg(t)

kg(t)kA =
1

0

jg(t)j dt =
1

am
:

Then, one has

keT (t)k1 �kg(t)kA � k�T [y(t); w(t)]k1

=
1

am
j�T [y(t); w(t)]j1: (21)

Notice that this expression can be used to evaluate the performance
of the system through the evaluation of the learning error and design
parameteram.
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Fig. 5. Learning curve of the system in Example 2.

We note that the bound obtained in (21) is established by an analysis
on the bounds for input–output relation and it is useful to evaluate the
performance of control system both in the transient and steady state.

III. SIMULATION RESULTS

In order to show the feasibility and performance of the proposed
neural network-based adaptive control algorithm, as well as the sta-
bility properties obtained in the preceding theoretical development, a
simulation study has been carried out for two examples of nonlinear
plants.

Example 1: The plant to be controlled is governed by the nonlinear
differential equation given by (1), in which the unknown function has
the form

f [y(t)] = 2y(t) + 0:8y3(t):

Notice that this mathematical model has similar structure to
ship-steering model [4], [18]. The reference model is described by a
first-order differential equation

_ym(t) + 2ym(t) = 2r(t)

wherer(t) is a smooth bounded reference input signal in the interval
[−1, 1].

The functionf(�) is estimated on-line using a Gaussian-type ra-
dial basis function network with inputy(t) and outputNf(�; �). The
number of nodes of the hidden layer used is 100 with a spread of 0.03.
The centers are distributed uniformly along [−1, 1]. Other design pro-
cedures for placing the nodes in the input domain, such as the ones
described in [3], are not possible to use due to the fact that the error be-
tween the actual and desired network output is not explicitly available.

The weight vector of the RBF network is adjusted according to (9)
with

	 = diag[0:0125; � � � ; 0:0125]

and

K = diag[0:999; � � � ; 0:999]:

After the training process is completed,k�(y; w)k1 = 0:204 is ob-
tained for the learning error. In this case, (21) gives a bound

keT (t)k1 �
1

am
k�T [y(t); w(t)]k1 =

0:204

2
= 0:102

whereT = 30 s.
The evolution of the desired and measured output signals of the

system is presented in Fig. 2 (the dashed line is fory). The learning
process can be seen in Fig. 3, which represents the mean square neural
network learning error during the first 150 s.

Example 2: In this case, the plant to be controlled is described by the
nonlinear differential equation (1), where the unknown functionf(�; �)
has the form

f [y(t); u(t)] =
y(t)

1 + y2(t)
+ 0:1 tanh[u(t)]: (22)

The last term of (22) represents a small-bounded perturbation.
The reference model employed is described by

_ym(t) + 2:5ym(t) = 2:5r(t): (23)

Here, the reference input signalr(t) is also in the interval [−1, 1]. The
function f(�; �) is estimated on-line using a Gaussian-type RBF net-
work, which has two inputsy(t) andu(t), and one outputNf (�; �).
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The number of nodes of the hidden layer utilized is 250, with a spread
of 0.03 alongy and 0.06 alongu. The centers are distributed uniformly
along [−1, 1] in they axis and along [−3, 3] in theu axis. The RBF net-
work weights are adjusted according to (9) with a similar	 andK as in
Example 1. During the operation of the system,k�(y; w)k1 = 0:48
is obtained for the learning error. The bound in (21) in this case is

keT (t)k1 �
0:48

2:5
= 0:192

whereT = 50 s. The desired and measured output signals of the con-
trolled system can be observed in Fig. 4. The learning process, in terms
of the evolution of mean square learning error during the first 50 s, is
shown in Fig. 5.

IV. CONCLUSIONS

A neural network-based model reference adaptive controller for a
class of nonlinear dynamical plants has been presented. The results ob-
tained can be extended to systems of higher order and multivariable.
The design of the present adaptive controller is based on the Lyapunov
stability theory. The controller structure is a direct type and can employ
either radial basis function networks or feedforward neural networks to
compensate adaptively the nonlinearities in the plant. In comparison to
the traditional learning systems, here the error between the actual non-
linear function output and desired neural network output is not avail-
able. Instead, it is shown that the discrepancy between the reference
model output and the plant output can be used as the activation signal
of the parameter adjusting law. The controller parameter adjustment
law is determined using the Lyapunov stability theory. A practical sta-
bility result for the proposed control system is given, which takes into
account the neural network learning error. In other words, the conver-
gence of the control error to a neighborhood of zero can be assured,
and the radius of the neighborhood is evaluated and depends on the ap-
proximation error of the network. In addition, a result is established that
relates explicitly the control error to the neural network learning error
and the design parameter. We believe that the procedure carried out in
the proof of stability of the adaptive control system will be useful to the
proof of the stability of other kinds of neural network-based adaptive
control structures. To show the practical feasibility and performance of
the proposed neural network-based adaptive control algorithm as well
as the stability properties obtained in the present paper, a simulation
study was carried out for two examples of nonlinear plants. The direc-
tions for future investigation will be oriented at the robustness issues of
the neural network-based adaptive control structures, and applications
of the control algorithm to other real plants.
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Dynamic Output Feedback Controller Design forFuzzy
Systems

Z. X. Han, G. Feng, B. L. Walcott, and J. Ma

Abstract—This paper presents dynamic output feedback controller de-
sign for fuzzy dynamic systems. Three kinds of controller design methods
are proposed based on a smooth Lyapunov function or a piecewise smooth
Lyapunov function. The controller design involves solving a set of linear
matrix inequalities (LMI’s) and the control laws are numerically tractable
via LMI techniques. The global stability of the closed-loop fuzzy control
system is also established.

Index Terms—Dynamic output feedback controller, fuzzy systems, linear
matrix inequality.

I. INTRODUCTION

Fuzzy logical control (FLC) techniques represent a means of both
collecting human knowledge and expertise and dealing with uncertain-
ties in the process of control. In many cases, it has been suggested as an
alternative approach to conventional control techniques, (see , for ex-
ample, [2]–[4]). The first attempt to design a fuzzy control system was
made in [2]. Many researchers have since followed that method which
was based on the compositional rule of inference [1] and approximate
reasoning [6]. Though the method has been practically successful, it
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