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Robust Absolute Stability of Time-Varying
Nonlinear Discrete-Time Systems
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Abstract—This paper studies the problem of robust abso- part and in the nonlinear part of the system [2], [7], [14], [15],
lute stability of a class of nonlinear discrete-time systems with [41], [43]. To the best of our knowledge, in all papers on this
time-varying matrix uncertainties of polyhedral type and multiple - 5h1em  only sufficient conditions of robust absolute stability

time-varying sector nonlinearities. By using the variational . - .
method and the Lyapunov second method, criteria for robust WET® obtained based mainly on the well-known circle and Popov

absolute stability are obtained in different forms for the class of Criteria. Thus, at present, the problem of obtainmegessary
systems under consideration. Specifically, we determine the para- and sufficienttonditions of robust absolute stability is of great
metric classes of Lyapunov functions which define the necessary theoretical and practical interest.

and sufficient conditions of robust absolute stability. We apply the The main purpose of this paper is to establish necessary and

piecewise-linear Lyapunov functions of the infinity vector norm - L .
type to derive an algebraic criterion for robust absolute stability Sufficient conditions ofobust absolute stabilityor a class of

in the form of solvability conditions of a set of matrix equations. Nonlinear discrete-time systems with time-varying matrix un-
Some simple sufficient conditions of robust absolute stability are certainty of polyhedral type and multiple time-varying sector
given which become necessary and sufficient for several specialpnonlinearities. Using the variational method developed in [29]
cases. An example is presented as an application of these resultsy 4 13g] for the problem of absolute stability of nonlinear dis-
to a specific class of systems with time-varying interval matrices - . -
in the linear part. crete-time systems and the discrete version of Lyapunov second
__ _ _ _ ~method [24], [44], we establish criteria for the robust absolute
Index Terms—Absolute stability, difference inclusion, dis-  giapijity of the class of systems under consideration. The para-
crete-time systems, Lyapunov methods, robust stability, tric cl fL functi hich define th
time-varying systems, variational method. metric classes of Lyapunov functions which define the neces-
sary and sufficient conditions of robust absolute stability of such
systems are identified. An algebraic criterion for robust absolute
. INTRODUCTION stability in the form of solvability conditions of a set of matrix

N THE PAST two decades, considerable research effofguations is obtained using Lyapunov functions from a class of

I have been devoted to the study of robust control and fiEcewise-linear functions of the vector norm type.

bust stability of uncertain dynamic systems with parametric or I general, the main problem related to the implementation of

nonparametric uncertainties. A great number of significant ré1€ obtained criteria of robust absolute stability is their compu-

sults covering these issues have been reported in the literaf@#onal complexity [35]. Therefore, following [4], [32], [39],

(see, e.g., [4]-[10], [12], [13], [16], [17], [19], [23], [27], [32], @nd [45], we obtain several simple and computationally effi-

[37], [40], [45], and the references therein). On the other harfient sufficient conditions for robust absolute stability of the

the classic problem of absolute stability of a class of nonlinegass of discrete-time systems considered herein. We will indi-

control systems with a fixed matrix in the linear part of th&ate that these conditions become necessary and sufficient for a

system and one or multiple uncertain nonlinearities satisfyih@W special cases. We will conclude the paper with an example

the sector constraints has been extensively studied [3], [28]application of these results to a special class of systems with

[26], [29]-[31], [34], [38], [42], [44], [46] long before the publi- time-varying interval matrices in the linear part.

cation of the initial work of Kharitonov [22] which laid founda-

tion for the problem of robgst stability. Meanwhilg_, in the light Il. PROBLEM STATEMENT AND PRELIMINARIES

of modern robustness terminology, absolute stability can be con-

sidered as the robust global asymptotic stability with respect toLet R" denote realnspace. Ifz € R”, thenz” =

variations (or changes) of nonlinearities from a given class. [z1, --., z,] denotes the transpose of Let R™*™ denote
Recently, there has been some work devoted to the investif#e Set ofm x n real matrices. IfA = [a;;] € R™*", then

tion of the more general problem mfbust absolute stabilitgf A’ denotes the transpose 4f We let||z|| denote any one of

nonlinear control systems with uncertainties both in the lineite equivalent vector norms d&”. In particular, the, norms
]|y, 1 < p < o0, are defined by
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The matrix norm||4||, defined onRkR™*™, and induced by the of robust absolute stability becomes that of absolute stability of

vector norm||z|| in R™, are defined as (1) with respect to the st of time-varying vector nonlineari-
1Al = max [[Az] ties¢(o(k), k) defined by (3), which was previously discussed

lz|l=1 ’ by many authors [3], [20], [29], [30], [38], [42], [44], [46]. On

the other hand, ifp(c(k), k) = 0, that is in accordance with

In particular, we have )
P (3),ifay =pB; =0,forallj =1, ..., r, the problem of robust

absolute stability reduces to that of robust stability of the linear

n
A = A = . )
141l ||£ﬁli§1” e 1??5%21'““' time-varying system
Jj=

We consider the following class of nonlinear discrete-time z(k+1) = A(k)z(k), k=0,1,2,... (4)

systems described by the equations with respect to the sed defined by (2), which was also consid-

r ered in many previous works (see [5], [6], [8], [10], [16], [17],
w(k+1) = A(R)a(k)+)_bigi(o(k). k), k=012 ... [23] [27], [32], [37), [40], [45], and the references in [12] and
=1 [29)).
(1)

The main goal of this work is to obtain necessary and suffi-
cient conditions for robust absolute stability of (1) with respect
to the setd x ® defined by (2) and (3). Our main results are

Ogiven in Sections IV and V.

wherez(k) € R", A(k) € R™", oT(k) = [o1(k), ...,
or(k)] with o,(k) = cj«(k), andb; € R* andc; € R*
are constant vectors fgr= 1, ..., ». The nonlinear functions
¢pilo(k), k), 5 = 1,..., r, are defined below. It is assume
that for eacht: € {0, 1, 2. - -}, the time-varying matrid(k) in

(1) is chosen arbitrarily from a given polytope of matrices
In this section, we consider along with nonlinear system (1)

A=co{dy, ..., A} BT 2) the linear time-varying system

whereco{-} denote the convex hull of a set. The matrix poly- -
tope.A describes structured parametric uncertainty in the linear z(k+1) = (A(k) + Z uj(/g)bjc]T> x(k),
part of (1). We assume that the uncertain time-varying non- j=1
linear functionsg,;(s(k), k), 5 = 1, ..., r, are defined for E—0.1 2 5)
anyz(k) € R™ and satisfy the conditiong; (0, k) = 0, j = T s
1,...,mk=0,1,2 ... andweassume the sector constrainhereA(k) € A andy;(k), j = 1, ..., r, are arbitrary func-

21y < 2 By (k) < Beo?(h i1 ; tions satisfying the inequalities
Oéjo—j()—d)j(o—( )7 )O—j()—/jo—j( )7 J=4 ..., 7 OéjSNj(k)Sﬁja j=1,...,7 (6)
whereq; € Randg; € R,j =1, ..., r, are given constants. forall k = 0,1, 2, .... The set of such vector-functign(k),

We use® to denote the set of all such time-varying nonlinea¥herex” (k) = [u1(k), ..., p(k)], will be denoted byMl.
vector-functionsp(c(k), k), where The system (5) can be obtained from (1) by considering

the functions¢;(o(k), k) of the particular type given by
¢ (o(k), k) = [pr(0 (k). k). ..., ¢r(o(k), K)]- ¢;(o(k), k) = p;(k)o;(k),j = 1,...,r, which form a
Thus, any solution: 4 ,(k, ko, 7o) of (1) is defined by an arbi- subset of®. In f[his case, the inequalities (6) are a direct
trary choice of a time-varying matrid(k) from the setd and Cconsequence of inequalities (B?obust absolute st_abﬂnyf (5)
a vector nonlinearitys(o(k), k) from the setb, in addition to with respect to the sett x A will be understood in the sense

lll. REDUCTION TO THEPROBLEM OF ROBUST STABILITY

an initial state(ko, o). of Definition 2.1 given in Section Il, replacing by A and
Note that due to the fact tha{0, &) = 0, we have ¢(o(k), k) € 2 by u(k) € M.
Following [8], [16], and [30], it is easy to show that the non-
z.4,4(k, ko, 0) =0, k=ko, ko+1,... linear system (1) on the sgt x ¢ and the linear system (5) on

for any matrix sequencpA(k) € A, k = ko, ko + 1, ...} and the set4 x M are equivalent to the following time-invariant
any nonlinearityp(o(k), k) € ®. Therefore, we will use the difference inclusion:
notationz(k) = 0 for the zero solution of (1). x(k+1) € F(x(k)), k=0,1,2, ... @)
Similar to the definitions given in [15], [43], in this paper, theyhere the multivalued vector-functiafi(z) is defined for all
robust absolute stability of (1) will be considered in the sense gfe R” by
the following definition. a .
Definition 2.1: The system (1) is said to bebustly abso- - o — A BT
lutely stablewith respect to the sed x ® defined by (2) and (3) ) {y v (; Aidi ; 15bi€; ) o
if its zero solutionz(k) = 0 is globally asymptotically stable
for any time-varying matrix(k) € A and any vector nonlin-

earity p(o(k), k) € ®. n Aiz0 =1 Z)‘i =1
We note that if there is no uncertainty in the linear part of =t
(1), that is, if all matricesd;, i = 1, ..., g, in (2) are identical

(A, = A, i=1, ..., g) and the sefd degenerates to the “sin- o < < By, i=1,...,7 . (8)
gleton” or “point” A in the matrix spac&™*", then the problem
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The equivalence is regarded in the sense of coings fulfilled for any ko € {0, 1, 2, ...}, anyzog € R"™ and any
dence of the sets of solutions of (1) [for all admissiblenatrix sequencéA(k) € A, k = ko, ko + 1, ...}. The oppo-
Ak) € A, ¢(o(k), k) € @], of (5) [for all admissible site assertion is obvious. Thus, the following statement holds.
A(k) € A, u(k) € M], and of the difference inclusion (7) and Lemma 3.2: The system (1) is robustly absolutely stable with
(8). Therefore, the problem of robust absolute stability of thespect to the sett x ¢ if and only if (4) is globally exponen-
nonlinear system (1) with respect to the gex @ is equivalent tially stable [in the sense of the inequality (12)] with respect to
to a similar problem for the linear system (5) with respect to thae setA defined by (9) and (10). [ |
setA x M, and both problems can be reduced to the problemLemma 3.2 is the starting point for obtaining necessary and
of global asymptotic stability of the zero solutiaiic) = 0 of sufficient conditions of robust absolute stability presented in the
the difference inclusion (7) and (8). next section.

As a result of the preceding discussions, we obtain the fol-Using the property that for any compact séte R™>" the
lowing lemma. difference inclusions (7) and

Lemma 3.1: For the robust absolute stability of (1) with re-
spect to the sel x &, it is necessary and sufficient that (5) be z(k+1) € coF (z(k))
robustly absolutely stable with respect to the.det M. [ |

We introduce into consideration the matrices whereF(z) = {y: y = Az, A € A}, are asymptotic stable

r simultaneously (see, e.qg., [8, Proposition 3.2]); the well-known
Ay = A+ Z f?l,jbjcf, fact that the convex compact set can be approximated with any
j=1 accuracy by convex polyhedron; and [11, Th. 6 and Corollary
i=1,...,q¢; v=1,...,8 s=2" (9) 7], wecanshow thatrobustabsolute stability of (1) with respect

to the setd x &, whereA is an arbitrary compact set iR™**",
where the parametefs,; can independently take only the exds equivalent to robust absolute stability of (1) with respect to
treme valuesy,; = «; or4,; = 3;,forj =1,..., r.ltcan some approximating seb{A,, ..., A} x . Inthis sense, the
easily be seen that any vectpe F(z) in (8) admits an equiv- general case of a compact séfor (1) is reduced to the case of
alent representation as= Az, where the matrix4 € R™*™ a convex polytope. For this reason, we can restrict our analysis
belongs to the matrix polytope in the present paper to the case of a convex polytépkefined

by (2) for (2).
AICO{All,...,Als;...;/iql,...,/iqs} (10)

IV. MAIN RESULTS

which is the convex hull of the matrices;,, i = 1, ..., g; In this section, we will derive necessary and sufficient condi-
v=1,..., s s=2" defined by (9). Therefore, in accordancgjons for robust absolute stability of (1) with respect to the set
w?th Lemma 3.1, the problem of robust absolu.te stability of (L} « &. we will employ the variational method [6], [38] and the
with respect to the sed x ¢ reduces to an equivalent problenyiscrete version of Lyapunov second method [24], [44], which
of robust stability of the linear time-varying system (4) Withyere also used in [29] and [30] for the problem of absolute sta-
respect to the sed defined by (9) and (10) in the sense of theyjjity of nonlinear discrete-time control systems with fixed ma-
following definition [5], [6]. o trix in the linear part [i.e., whenl; = A, i =1, ..., ¢, in (2)].
Definition 3.1: The system (4) is said to bebustly stable  Fjyst, we present a criterion for robust absolute stability that
with respect to the sed if the zero solutionz(k) = 0 of this  ¢an pe obtained by the variational method. Following [6], we
system is globally asymptotically stable for any time-varyingse 1y, to denote the set of all matrix products (i[k], »[k])
matrix A(k) € A. B of vertex matricesd;,, i = 1, ..., ;v =1,...,s s = 2,
Note that for linear system (4) the conceptgbdbal asymp-  gefined by (9), of length:
totic stability is equivalent to that dbcal asymptotic stability
[24]. For the same reason, robust stability of (4) with respect to

the setA is equivalent to the condition k(iR VIRD = Aiv - A, (13)
Jim a4 (k. ko, zo)]| =0 (11) Where

for any solutions 4 (k, ko, o) of (4) corresponding to ankp, € ilk] =i, i) €41, 0}

{0, 1, 2, ...}, any initial statex(ko) = zo € R™, and arbitrary vk =@, .o m) €41, .., sHE

choice of the matrix sequenéel(k) € A, k = ko, ko+1, ko+

2, ...} s = 2", and{l, ..., ¢}* and{1, ..., s}* are thekth cross
Note also that, it follows from the results obtained in [8], [11]products of the set§l, ..., ¢} and {1, ..., s}, respectively.

if the limit condition (11) is valid, then there exist constant#t is assumed thaty = 1,, wherel,, is ann x n identity

L > 1and0 < £ < 1 such that the estimate matrix. Obviously, the sell;, containsg*s* matrix products

7mx(i[k], v[k]) of the form (13). For brevity, we will use some-

llza(k, ko, zo)|| < Lljxol|€* %,  k=ko, ko+1,... times the notatiom; for matricesry (i[k], v[k]) € IIx.

(12) We are now in a position to establish the following result.
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Theorem 4.1:The system (1) is robustly absolutely stabl&ince
with respect to the sedt x @ if and only if there exists a finite -
integerk > 1, such that lﬁiglﬂéyﬁsp(“lw) <1

7 7 7 7 for any induced matrix norm there exist constahts> 1 and
([, kH<1, for all m (i[k], v[A]) € I1;. (14 >
| tath, vk mlE) VR € 1. 14y (7 A MR
The proof of Theorem 4.1 is similar to the proof of [29, (A )k

k _
Lemma A.1] with some minor modifications, and therefore, is |, 2005, <, < L&, k=012 ...
be considered as a corollary of the part 2 of [8, Theorem 3Therefore, using the last estimate, we have from (15) the in-

omitted here. Note that the statement of Theorem 4.1 can also

and Proposition 3.2]. equality
From Theorem 4.1, the following corollary can easily be ob- ||, || < f4°¢*, forallme € I; k=0,1,2,.... (16)
tained.

Corollary 4.1: The system (1) is robustly absolutely stabl&Y choosing the integek > gsInL/|In¢|, we obtain from
with respect to the setl x @ if there exists inkR" a vector norm (16) the inequality (14), which completes the proof of Corollary

||| such that the induced matrix notr,, || < 1for any matrix 4-3: _ n
Ay, definedby (9)i=1,...,qv=1,..., s s=2". - We note that Corollary 4.3 follows also from the discrete-time
Corollary 4.1 is obvious because counterpart of [25, Th. 2].
Note that sufficiency in Corollary 4.3 can also be proved by
I, = {An o Avy s Ay Aqs} the Lyapunov second method [24]. As is shown in [33], in this

case, the linear time-varying system (4) has a common quadratic

and under the above condition, we will have the inequality (14yapunov function for any time-varying matrix(k) € A.
with & = 1. To formulate the next corollary, we recall that a real matrix
Let A € R™¥" is said to be normal ifi7 A = AAT [18], [28]. If
A € R"™™ is normal, therj|4||2 = p(A), where

p(4) = max [A(4)]

1<i<n | A]|z = IIHIlIaX |Az||2 = 1/ p(AT A)
z|la=1
denote the spectral radius of matrA, where \i(A), i = s the spectral norm of the matrit and
1, ..., n, are eigenvalues of the matrik Recall that am x n
matrix A is said to be Schur stableg i n
id dfA) < 1. Itis well known e )
that the cond|t|0rp( ) < 1is equivalent to the existence of a |zl = VaTz = sz

finite integerk > 1, such thalj|A"|| < 1. Since(4;,)* € 1I;

for any matrix A;, of the form (9), it follows from (14) that is the Euclidean vector norm (cf. [18] and [28]). Therefore,

l(As)¥|| < 1. As a result, we obtain the following corollary. using this property and Corollaries 4.1 and 4.2, we obtain the
CoroIIary 4.2: For the robust absolute stability of (1) withfollowing corollary.

respect to the set x @, itis necessary that every vertex matrix Corollary 4.4: If every vertex matrixd;,, i = 1,..., q;

A;, defined by (9) is Schur stable. m v =1,...s, s = 2", defined by (9) is normal, then for ro-
The next two corollaries represent special cases when Schust absolute stability of (1) with respect to the sek @, it

stability of the vertex matrices;,. is not only necessary but alsoiS necessary and sufficient that the matriggs, : = 1, ..., g;

sufficient for robust absolute stability of (1). Other special caseés= 1, ... s; s = 27, are Schur stable. u

are given in Theorem 5.2 in Section V. Note that the conditions of Corollary 4.4 assure the existence
CoroIIary4 3: Ifthe vertex matricesl;,, i = 1, ..., ¢;v = Of the common Lyapunov functio¥i(z) = (||z]|2)* = "= for

1, ..., s; 5= 2" defined by (9) are pairwise commutative, i.e.(4) with any time-varying matrixi(k) € A.

if AWAJI = JzAw foralli,j=1,....q vl =1, s Theorem 4.1 forms the basis for a computer-aided test of ro-

then for robust absolute stablllty of (1) with respect to the sbust absolute stability. Based on this result, we can develop a

A x @, itis necessary and sufficient that the matnggg { = numerical algorithm, analogous to that in [6], which, for a ro-

1,...,q;v=1,...,s s=2", are Schur stable. bustly absolutely stable system (1), is theoretically capable of

Proof: Necessity follows from Corollary 4.2. For thedetermining robust absolute stability in a finite number of steps.
proof of sufficiency, let us note that in the case of pairwiseowever, since in reality the condition (14) may be fulfilled
commutative matricesi;,., i = 1,...,q v = 1, s, for extremely Iargek this algorithm can not always be imple-

s = 27, any matrixry € II; can be represented in the form mented due to the restrictions of computational capacity. There-
fore, this computer-aided test usually provides only sufficient

Alf; . ,A’ﬂl (15) conditions for robust absolute stability. For this reason it is very
important to obtain other necessary and sufficient conditions of

where robust absolute stability which could be less involved in actual

¢ implementations.
Z Z ki, = k. By using the discrete-time version of the Lyapunov second
Py method [24], [44], and its applications in [9], [10], [16], and [30]

— Akgs
Wk—Aq;Z .. Aql .
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to the problem of absolute stability of nonlinear discrete-timgh row,: = 1, ..., m), a finite integerp > 1 and a constargt
systems with fixed linear part and to the problem of robust sté3 < § < 1), such that the Lyapunov functidry, ,(«) defined
bility of uncertain discrete-time systems, one can establish ndxg (20) satisfies the inequality
essary and sufficient conditions of robust absolute stability of
(1) in the form similar to [30, Th. 3—-5] and corresponding results
in[9], [10], and [16]. We note that the present results are mostly -
concgrned W.'th identifying the parametrlc_: _classes o_f _Lyapunov.l_he proof of Corollary 4.6 is similar to [30, proof of Th. 4]
functions defining the necessary and sufficient conditions of rg- . .

. and is omitted here.
bust absolute stability of (1).

. : . . One of the main advantages of the Lyapunov function
The main result of this paper obtained in the framework . : . )
this approach is stated in t?lepfollowing theorem. %H’p(x) of the form (20) in comparison with the function

Theorem 4.2:For the robust absolute stability of (1) WithVH(w) of the form (17) is that it is a smooth function every-

respect to the sef x &, it is necessary and sufficient that forWhere. Inf. It gives the oppprtqnlty of using qwell developgd
; . technigue of smooth optimization for numerical construction
some integem > n there exists a full column rank matrit €

X : e of such functions.
R and acoqstarﬁ(o < 0 < 1) such that a piecewise-linear The use of Theorem 4.2 enables us to obtain a criterion for
Lyapunov function of the polyhedral vector norm type

robust absolute stability of (1) in algebraic form. Such algebraic

Via(z) = ||zl = || Hz||oo (17) criterion of robust absolute stability is stated in the next theorem.
Theorem 4.3:For the robust absolute stability of (1) with

respect to the sed x @, itis necessary and sufficient that there

ax V, < 6V, R™.
yICnI;L();) H,p(¥) < OVh, p(2), Te

satisfies the inequality

max Vy(y) < 6Vy(x), z € R" (18) exists a finite integefn > n, a full column rank matrixd €

uck(@) R™™ andm x m matricesl';,, i =1, ..., ;v =1, ..., s
where the sef’(z) C R" is defined at each point € R" by s = 27, satisfying the condition§l';, ||cc < 1,i =1, ..., ¢
(8). B rv=1 ..., s s= 2" suchthatthe matrix relations

The proof of Theorem 4.2 follows similar steps as the proof . ) .
of Theorem 3 given in [30] for absolute stability with someff Aiv = Liv H, =L v=1.o.s s=2
nonessential modifications, and is therefore omitted here dueto (21)
space limitations. are satisfied. _ LI
We note that the positive definiteness of the polyhedral Lya- 11€ Proof of Theorem 4.3 follows with some nonessential
punov functionV () in Theorem 4.2 follows directly from the Medifications the proof of an analogous criterion in [30, Th. 5]
rank condition on the matri& . The level surfaces of this func- €stablishing the necessary and sufficient conditions of absolute

tion are boundaries of centrally symmetric convex polytope, aftRPility, and is omitted here. _
each rowH;, i = 1, ..., m, of the matrixH specify the nor- Note that the conditions of Theorem 4.3 are automatically
mals to the faces of the convex polytope. Note also that the fRtisfied 'f”AfV”OO <T1 for any matrix4i,, ¢ = 1, ..., q;
equality (18) guarantees the strict decreasing of the Lyapuriév—_ 1> e S8 = 2. In.thls Ci‘seH = Lo, Ly = Ay,
function Vi () along the solutions of (1), and the constant ¢ =1, -+ & v =1, ..., sis =27, andVy (2) = [|z[| (see
characterizes the rate of decrease. also Corollaries 4.1 and 4.5). _

From Theorem 4.2 and Corollary 4.1, the following corollar¥ In connection with Theorem 4.3 we also note that, in fact,
can be obtained. he matrix relations (21) are equivalent to the conditions (19)

Corollary 4.5: The system (1) is robustly absolutely stabl€°r the matrix norm induced by the Lyapunov functidf ()
with respect to the sett x ®, if and only if there exists ii® 1N (17), which defines a polyhedral vector nofja|| ;. The re-

a polyhedral vector normiz||;; of the type (17), such that thelations (21) can be understood as the conditions for the gener-

H imi H H . nXn
corresponding induced matrix norm satisfies the condition &/ized similarity of the vertex: x » matricesA;, € R,
it =1,...,q;v =1,...,s, s = 2", which define the set

| A || < 1, i=1,...,q¢ v=1,...55 s=2". A c R™ " for (4), to them x m matricesl';, € R™*™,
(19) i=1,....,¢;v =1,...,s s = 2", which define the fol-
Theorem 4.2 makes it also possible to consider Lyapun@iving time-varying linear system:
functions of the type of even degreg homogeneous polyno-

mial (see, e.g., [10], [30], and [31]) 2k+1)=I(k)z(k), k=0,1,2 ... (22
m wherez(k) € R™ and
Vi p(@) = Y (Hio)” = (|Hallp)”  (20)
i=1 F(k) c CO{Fll, ceey Flsa caey Fqla caey Fqs} c Rmrm,
where H;, i = 1,...,m, is ¢th row of the matrixH in

) " . The matrixd in (21) plays the role of a generalized transforma-
(7). Undgr the abqve-mennoned rapk cpndmon the funCt'oﬁon matrix. The matrix relations (21) establish the existence of
Vi, () will be a strictly convex function in the spade”. a linear transformation = H, which connects (4) on the set
We have the following corollary. Aand (22) onthe seto{l'11, ..., i .. o; Dgty - oy Tgs b

Corollary 4.6: For th_e _robust absolute stab_|||_ty of (1) with We note that (22) is robustly stable with respect to the set
respect to the sed x @, itis necessary and sufficient that there

exists a full column rank matri¥f € R™*" (with H; being its cofl'11, ..., Digy oo, Dgry oo, Dy} C R
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since|liullee < L,i =1,...,q;v=1,...,8 s = 2", On the other hand, the well-known principal result for abso-
Moreover, we can choogkin (18) as lute stability of discrete-time control systems both in the class
@ of time-varying nonlinearitieg(s(k), k) and in the clas®
6= max {|[Tillot- of time-invariant nonlinearitieg(o(k)) that satisfy sector con-
l<izq, lsvss ditions (3) is Tsypkin's frequency criterion [42] in the case of a

single nonlinearity{ = 1) and its generalizations [20], [46]
Thus, Theorem 4.2 reduces the problem of robust absolgethe case of several nonlinearities & 1) in (1) (i.e., the
stability for (1) with respect to the set x ¢ to the problem of so-called circle criterion). The example given in [29], using the
existence of a polyhedral vector norm type Lyapunov functiagbnditions similar to (14) in Theorem 4.1, shows that Tsypkin's
(17). Inturn, Theorem 4.3 reduces the problem of the constrygiterion does not yield necessary and sufficient conditions for
tion of such a Lyapunov function to the problem of solvabilitypsolute stability in general case. Therefore, the results of the
of the matrix relations (21), which can be considered as a seff&sent paper include the necessary and sufficient conditions of
matrix equations in terms of unknown matridéss R™*™ and apsolute stability for discrete-time Lur'e control systems which
i e RWMi=1,...,qov=1...,8s=2" give opportunity to obtain wider domains of absolute stability
In general, the problem of solving matrix equations (21), ang parameter space of the system under consideration than suf-
consequently, the problem of robust absolute stability for (1) c#igient conditions of absolute stability given by Tsypkin’s crite-
effectively be solved only by numerical methods, i.e., with theon and the circle criterion.
use of computers. Unfortunately, the situation is complicated
by the fact that Theorems 4.2 and 4.3 say nothing about how V. SOME SUFFICIENT CONDITIONS FOR
large an integem should be to satisfy the conditions of these ROBUST ABSOLUTE STABILITY
theorems. In principle, the number can be much larger than

its lower boundr, and it should be chosen experimentally irt1. In t?'s sebctlotn,l;/veleftalril|sl)hl_tsevc;:reil S'Tﬁle sufflctletnttﬁondl;
practical numerical calculations by incrementing its value. If th ONs Tor robust absolute stability o (1) wi n respect 1o the se
x ®. The proposed conditions are special corollaries of the

value ofm is fixed (for exampley = n), then the conditions of . X . . .
Theorems 4.2 and 4.3 become only sufficient for robust absoltﬁ?ésuns established in Section IV, and are relatively simple to

stability of (1). We note that an efficient numerical algorithrﬁmplement’ because these conditions are reduced to checking

was proposed in [36] for solving matrix equations similar to (21t e Schur stab|l_|t_y of some particular test matnx._lt_ is shown
at these conditions become necessary and sufficient for sev-

with the use of linear programming and the idea of scaling; t | al 1
algorithm of [36] can also be used for checking the conditioﬁsral_ i’pzc'g ca;setsho ( )t.' btained fror by taking the ab
of Theorems 4.2 and 4.3. The improvement of these sufficient et | || encf) e” etma i oﬁa_lne - o Rr}fxf t'ﬂg j "i i
conditions can be achieved only at the expense of increasing 'l;,u €value ofal entries, 1.e., 4 = [C.L”] < then|4| =
. la;;|] € R™™. For twom x n matrices, A = [a;;] € R™*™
integer parametern > n. J X J

. . . a*ndB = [by] € R ,A < B (A < B) denotes an ele-

Nevertheless, for (1), simpler sufficient conditions of robus L Lo ) .

" ; o . ent-wise inequality, i.eq;; < b;; (a;; < b;;),i =1, ..., m;
absolute stability, which often coincide with necessary and SLEP— . !
- - L : i = 1,..., n. The Hadamard product of and B is written
ficient conditions, exist in special cases. Some classes of thése ) . .

) X . asA o B and defined in [18], [32] by the element-wise product
systems are discussed in Section V. X . ;

| lusion of thi : K | K Ao B = [a;;b;;] € R™*™. In the inequalityd > 0, we use 0

h conclusion o this section, We make a general remark Coly qanote the matrix of appropriate dimension whose entries are
cerning the necessary and sufficient conditions of robust ab%‘ﬂ'equal to zero
lute stablllty.estabh.shed |-n Theor-ems 4.1—4.3.ab0.ve. . Let us associate with a given set of matricek,,

As noted in S'ect.|on I, if there is no uncert.alnty.mthe lineay _ 1,...,q;v = 1,...,s5. s = 27, defined by (9), a
part of (1), that is, _|f ‘aII matricest; in (2) are identical 4; = nonnegative majorant matrix
A = constant matrix; = 1, ..., q), then the problem of robust
absolute stability with respect to the sétx @ turns into the A= max {‘Ai,, } (23)
classic problem of absolute stability with respect to thedset lsisq lsvss
time-varyingvector nonlinearitieg(o(k), k) that satisfy sector where the maximum is understood to be element-wise.
constraints (3). The following theorem can now be established.

In [3], it is shown (cf. [3, Theorem 3]) that for absolute sta- Theorem 5.1:The system (1) is robustly absolutely stable
bility of discrete-time systems of type (1) (with; = A = Wwith res_pect to the setl x @, if the matrix A in (23) is Schur
constant matrixj = 1, ..., g) in the classp itis necessary and stable, i.e.p(4) < 1. )
sufficient that they are absolutely stable in the subclass ® Proof: SinceA > 0andp(A) < 1, then from [21, Lemma
of time-invariantnonlinearitiesp(o(k)) € @ that do not depend 3._1] it follows that there exists a positive-definite diagonal ma-
explicitly on the discrete timé& € {0, 1, 2, ...} [i.e., depend trix H € R"*"
only ono (k)] and satisfy the same sector constraints (3). There- H = diaslh 5 5 ,

. . = dlag n " O7 ':1,...7 24
fore, inthe case whed; = A = constant matrix; = 1, ..., ¢, ng{Al, P > ' n (24
Theorems 4.1-4.3 of this paper give the necessary and sufich that| HAH |, < 1. Clearly, rankH) = n. Let us
cient conditions of absolute stability both for time-varying Lurelenotel’ = HAH !, ||['||., < 1. Obviously,HA =TH.
system (1) in the clas and for time-invariant Lur'e system (1) It is easy to show that there exist matricds, € R"*"
in the classd C @. such thatd,, = Ao W,, and|W,,| < E,,i = 1,..., ¢
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v=1,..., s s=2", where we usé&, € R"<" todenote the In Case 2), from Corollary 4.2, it follows that the matri;,
n x n matrix whose entries are all equal to one. We have is Schur stable. Sincé;,, is a Morishima matrix, then the matrix
N . . |A:,| = Ais also Schur stable.
HA,, =HAoW,;,, =W;, o HA=W;, oI'H =T, H In Case 3), if all matricesl;,, i = 1, ..., ;v =1, ..., s
s = 2", are upper triangular, then from the definition in (23) for

wherel;, = Wiol', i =1, ..., qv=1,...,ss =2"and yne mapix 4 it follows that it is also upper triangular and
ITivlloe < [IT'|oe < 1. Thus, in this case, the matrix relations

(21) are fulfilled with diagonal matri¥ defined by (24). This p(A) =  max { o ( Aw)} ,
completes the proof of Theorem 5.1. | lzizq, lsvss

Note that in the proof of Theorem 5.1, we in essence use tag, ., Corollary 4.2, we have(A,) < 1,i = 1..., ¢ v =
fact of existence of a majorant linear time-invariant system | " 50 4 conseque?ﬁly;(ﬁ) <1 ie. the matrix

a(k+1) = Ax(k), k=012 ... A is Schur stable.

In the case of lower triangular matricds,,i = 1..., ¢;v =
and the Lyapunov function [21], [32] 1, ..., s s = 2", the proof is fully analogous. This completes
the proof of Theorem 5.2. [ |
Vilz) = max {hq|z:|}, hi>0,i=1....n _Note that in the case of upper or lower triangular matrices
l<izn A, i=1...,qvr=1,...,s s = 2", the robust absolute

stability of (1) depends only on their diagonal elements. There-
1, ..., n. In this case, we can ¢t = ||[|.c = IIHle_llloo fori,_lt_he offf-dlfag%r_wal elemegts havcla nofeff;}acton robust absolute
in the inequality (18). stability of (1) in this case. The results of Theorem 5.2 are a gen-

Theorem 5.1 is a natural generalization of [5, Th. 1] and [3§'ralizatiop of_the resuIFs derived in [5], [32], and [39] for linear
Th. 2.1] for the problem of robust stability of linear time-varyin ime-varying interval discrete sys.tems. Note also that the state-
interval discrete systems. The condition of Theorem 5.1 is orflye"'t Of Case 3) of Theorem 5.2 is a natural consequence of the

sufficient for robust absolute stability of (1). However, if thi Iscrete-time counterpart of [25, Th. 2].

theorem is applied to (1) satisfying some additional conditions,

Theorem 5.1 becomes a necessary and sufficient condition for

special cases of (1). In this section, the use of the present results to analyze the
We recall that from [39], a matrid € R**" is called a Mor- robust absolute stability of (1) will be illustrated by a particular

ishima matrix if by symmetric row and column permutations &xample.

can be transformed into the form Let us consider the case when the convex polytdpukefined

by (2) is a family of interval matrices defined by

which is a weighted infinity vector norm with weights, ¢ =

VI. EXAMPLE

|:A11 A12:|
Az A A4, A)={Ae R A< A< A}
whereA;; > 0, Az > 0 are square submatrices adé; <0, whereA = [a;;] € R™” andA = [a;,] € R™™ are

Az £ 0. Amatrix A € R™™"™ is a Morishima matrix if and fixed matrices, and the inequalities are element-wise. The

only if SAS = |A] for some matrixS = diag{si, ..., sx} family A(A, A) is a hyper-rectangle in the spaf&>" of the

withs; = £1,¢ =1, ..., n. If Aisa Morishima matrix, then coefficientsa; ;.

it is Schur stable if and only if4] is Schur stable. Whenbjc]T >0,7=1,...,r the setd defined by (10) is
Our next result characterizes several classes of (1) whosedentained in the family of interval matrices given by

bust absolute stability is equivalent to Schur stability of a single

test matrixA in (23). -
Theorem 5.2: The sufficient condition in Theorem 5.1 is also A(

necessary for each of the following cases of (1).

A A) =< Ae R

Case 1) In the given set of vertex matricek,, i = r . _ < T
..., v = 1,...,s5 s = 27, defined by A"‘Zajbjcj <AL A+Zﬁjbjcj
(9), there exists at least one matrik,, such that J=1 J=1

A%i) = Aor Aiu = —A.

Case?2) In the given set of vertex matricek,, ¢
1L, ...,¢;v = 1,...,s s = 2", defined by

and a corresponding matrix defined by (23) for the sefl is
determined as

(9), there exists at least one mateik. such that . v I I .
|A;,| = A and A is a Morishima matrix. A=max ¢ |[A+Y abicf |5 [A+ D Bbic]
Case 3) All matricesd;,, i« = 1, ...,q;v = 1,..., s i=1 i=l1

s = 2", defined by (9), are either all upper triangulag,here the maximum is element-wise. If
or all lower triangular. .
Proof: In Case 1), the proof follows immedi- A+ Zajbch >0
ately from Corollary 4.2 and the obvious relation =1 ’

~ ~ ~

p(—A) = p(A) = p(4;;) < 1. or
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A + Z Oéjbjcf S Z + Z /311)]631
j=1 ji=1

then
A=A+ Bibicf.
j=1
If
A + Zﬁjbjc? <0
j=1
or
A + Z ozjbjcf S — Z + Zﬁjbjcf
j=1 j=1
then

./21 = — A—I—ZO(JIJJC?
j=1

(5]

(6]

(71
(8]

9]
(10]

(11]
[12]
(13]

(14]

(15]
[16]

(17]

Therefore, the conditions of Theorem 5.2 Case 1) are fulfilled "]13]
these cases, and the necessary and sufficient condition for robust

absolute stability of (1) is the inequalif A+3>"7_, 3;b;c] ) <
Torp(A+ 37, asbjel’) < 1, respectively.

We can obtain similar results for the case wlﬁgcf < 0,
J =1,..., r.Inthis case, we only need to replage in the
above formulas by;, j = 1, ..., =, and vice versa.

VII. CONCLUSIONS

(19]

(20]

[21]

(22]

In this paper, we have studied the problem of robust absolutg
stability of a class of nonlinear discrete-time systems with

time-varying matrix uncertainty of polyhedral type and with
multiple time-varying sector nonlinearities. By using the vari-

(24]

ational method and the discrete version of Lyapunov Seconfts]
Method, necessary and sufficient conditions for robust absolute
stability have been obtained in different forms for the given,g
class of systems. It was shown that in general, the problem
of checking these conditions can be effectively solved by nul27]
merical methods, admitting a computer-aided implementation.
Several simple sufficient conditions for robust absolute stability28]
have been provided which become necessary and sufficient
for several special cases. As an example, we have applied tlllzeg]
present results to a specific class of systems with time-varying

interval matrices in the linear part.

REFERENCES

[1] M. A. Aizerman and F. R. Gantmachekbsolute Stability of Regulator

Systems San Francisco, CA: Holden-Day, 1964.

[2] A. Bafios and A. Barreiro, “Stability of nonlinear QFT designs based
on robust absolute stability criterialfit. J. Contro| vol. 73, no. 1, pp.

74-88, 2000.

[3] N.E. Barabanov, “Absolute stability of sampled-data systerafom.
Remote Controlvol. 49, no. 8, pp. 981-988, 1988.

[4] B. R. Barmish,New Tools for Robustness of Linear Systenidew
York: Macmillan, 1994.

(30]

(31]

(32]

(33]

(34]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 8, AUGUST 2002

P. H. Bauer and K. Premaratne, “Robust stability of time-variant interval
matrices,” inProc. 29th IEEE Conf. Decision and Contrdfionolulu,

HI, Dec. 1990, pp. 434-435.

P. H. Bauer, K. Premaratne, and J. Duran, “A necessary and sufficient
condition for robust asymptotic stability of time-variant discrete sys-
tems,”|EEE Trans. Automat. Contwol. 38, pp. 1427-1430, Sept. 1993.
S. P. Bhattacharyya, H. Chapellat, and L. H. Ké&abbust Control: The
Parametric Approach Upper Saddle River, NJ: Prentice-Hall, 1995.
A. Bhaya and F. D. C. Mota, “Equivalence of stability concepts for dis-
crete time-varying systemdyit. J. Robust Nonlinear Contrplol. 4, no.
11/12, pp. 725-740, 1994.

F. Blanchini, “Nonquadratic Lyapunov functions for robust contréii
tomatica vol. 31, no. 3, pp. 451-461, 1995.

F. Blanchini and S. Miani, “New class of universal Lyapunov functions
for the control of uncertain linear systemdEEE Trans. Automat.
Contr, vol. 44, pp. 641-647, Mar. 1999.

F. S. De Blasi and J. Schinas, “Stability of multivalued discrete dynam-
ical systems,'J. Differ. Equ, vol. 14, no. 2, pp. 245-262, 1973.

P. Dorato, R. Tempo, and G. Muscato, “Bibliography on robust control,”
Automaticavol. 29, no. 1, pp. 201-213, 1993.

P. Dorato and R. K. YedavalliRecent Advances in Robust Con-
trol. New York: IEEE Press, 1990.

Z. Geng and L. Huang, “Robust stability of the systems with mixed un-
certainties under the 1QC descriptiong;t. J. Control vol. 73, no. 9,

pp. 776-786, 2000.

L. T. Grujic and D. Petkovski, “On robustness of Lurie systems with
multiple nonlinearities,’/Automaticavol. 23, no. 3, pp. 327-334, 1987.
L. Gurvits, “Stability of discrete linear inclusionl’inear Algebr. App.

vol. 231, no. 12, pp. 47-85, 1995.

H. S. Han and J. G. Lee, “Necessary and sufficient conditions for sta-
bility of time-varying discrete interval matricedyit. J. Contro| vol. 59,

no. 4, pp. 1021-1029, 1994.

R. A.Hornand C. R. JohnsoNlatrix Analysis New York: Cambridge
Univ. Press, 1985.

E. I. Jury, “Robustness of a discrete systedwitom. Remote Control
vol. 51, no. 5, pp. 571-592, 1990.

E. J. Jury and B. W. Lee, “On the stability of a certain class of non-
linear sampled-data system$ZEE Trans. Automat. Confwol. AC-9,

pp. 51-61, Jan. 1964. .

E. Kaszkurewicz, A. Bhaya, and D. Riljak, “On the convergence
of parallel asynchronous block-iterative computatiorisriear Algebr.
App, vol. 131, no. 4, pp. 139-160, 1990.

V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a
family of systems of linear differential equations,” Differ. Equ, vol.

14, no. 11, pp. 1483-1485, 1979.

S. R. Kolla, R. K. Yedavalli, and J. B. Farison, “Robust stability
bounds on time-varying perturbations for state-space models of linear
discrete-time systemsiiit. J. Contr, vol. 50, no. 1, pp. 151-159, 1989.
J. P. LaSalleThe Stability and Control of Discrete ProcessedNew
York: Springer-Verlag, 1986.

D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of switched
systems: A Lie-algebraic conditionSyst. Control Lett.vol. 37, no. 3,

pp. 117-122, 1999.

A. . Luré, Some Non-Linear Problems in the Theory of Automatic Con-
trol. London, U.K.: H. M. Stationery Office, 1957.

D. P. Mandic and J. A. Chambers, “On robust stability of time-variant
discrete-time nonlinear systems with bounded parameter perturbations,”
|EEE Trans. Circuits Syst, vol. 47, pp. 185-188, Feb. 2000.

A. N. Michel and C. J. Herge#pplied Algebra and Functional Anal-
ysis New York: Dover, 1993.

A. P. Molchanov, “Criterion of absolute stability for sampled-data sys-
tems with a nonstationary nonlinearity—I and IRutom. Remote Con-
trol, vol. 44, pp. 607-616, 719-729, 1983.

——, “Lyapunov functions for nonlinear discrete-time control systems,”
Autom. Remote Controlol. 48, no. 6, pp. 728-736, 1987.

A. P. Molchanov and Y. S. Pyatnitskiy, “Lyapunov functions that specify
necessary and sufficient conditions of absolute stability of nonlinear
nonstationary control systemsdutom. Remote Contropt. I-lll, no.
3/4/5, pp. 344-354, 443-451, 620-630, 1986.

F. Mota, E. Kaszkurewicz, and A. Bhaya, “Robust stabilization of time-
varying discrete interval systems,” Proc. 31st IEEE Conf. Decision
and Contro) Tuscon, AZ, Dec. 1992, pp. 341-346.

K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for
stable LTI systems with commuting-matrices,"IEEE Trans. Automat.
Contr, vol. 39, pp. 2469-2471, Dec. 1994.

K. S. Narendraand J. H. Tayldequency Domain Criteria for Absolute
Stability. New York: Academic , 1973.



MOLCHANOV AND LIU: ROBUST ABSOLUTE STABILITY OF NONLINEAR SYSTEMS 1137

[35] A. Nemirovskii, “Several NP-hard problems arising in robust stability Derong Liu (S'91-M'94-SM'96) received the B.S.
analysis,"Math. Control, Signals, Systol. 6, no. 2, pp. 99—-105, 1993. degree in mechanical engineering from East China
[36] A. Polarski, “Lyapunov function construction by linear programming,” Institute of Technology (now Nanjing University of
IEEE Trans. Automat. Contwol. 42, pp. 1013-1016, July 1997. Science and Technology), Nanjing, China, in 1982,
[37] K. Premaratne and M. Mansour, “Robust stability of time-variant dis f the M.S. degree in electrical engineering from the
crete-time systems with bounded parameter perturbatitlEE Trans. Institute of Automation, Chinese Academy of Sci-
Circuits Syst. |vol. 42, pp. 40-45, Jan. 1995. ences, Beijing, China, in 1987, and the Ph.D. degree
[38] Y. S. Pyatnitskiy, “Absolute stability of nonlinear pulse systems witt in electrical engineering from the University of Notre
nonstationary nonlinearitiesfutom. Remote Controlol. 31, no. 8, pp. Dame, Notre Dame, IN, in 1994.
1242-1249, 1970. From 1982 to 1984, he was with China North
[39] M. E. Sezer and D. DSiljak, “On stability of interval matrices,/[EEE Industries Corporation, Jilin, China. From 1987 to
Trans. Automat. Contrvol. 39, pp. 368-371, Feb. 1994. 1990, he was a member of the faculty at the Graduate School of the Chinese
[40] J. H. Su and I. K. Fong, “New robust stability bounds of linear disAcademy of Sciences, Beijing, China. From 1993 to 1995, he was with the

[41]

crete-time systems with time-varying uncertaintidst’ J. Control vol. ~ General Motors Research and Development Center, Warren, MI. From 1995
58, no. 6, pp. 1461-1467, 1993. to 1999, he was an Assistant Professor in the Department of Electrical and
A. Tesi and A. Vicino, “Robust absolute stability of Lur'e control sys-Computer Engineering, Stevens Institute of Technology, Hoboken, NJ. He
tems in parameter spacéutomaticavol. 27, no. 1, pp. 147-151, 1991. joined the University of lllinois, Chicago, in 1999 as an Assistant Professor

[42] Y. Z. Tsypkin, “Absolute stability of equilibrium positions and of re- of Electrical and Computer Engineering. He coauthored (with A. N. Michel)
sponses in nonlinear, sampled-data, automatic systé&xugin. Remote Qualitative Analysis and Synthesis of Recurrent Neural Netw@tkss York:
Control, vol. 24, no. 12, pp. 1457-1470, 1963. Marcel Dekker, 2002) anBynamical Systems with Saturation Nonlinearities:

[43] ——, “Robust stable nonlinear discrete control systerimg,”J. Comput. Analysis and DesigiiNew York: Springer-Verlag, 1994). In addition, he has
Syst. Sci, vol. 32, pp. 1-13, 1994, served and is serving as a member of the program committees of several

[44] P. Vidal, Nonlinear Sampled-Data SystemdNew York: Gordon and international conferences.

Breach, 1969. Dr. Liu was the Local Arrangements Chair for the 6th IEEE Conference on

[45] K.Wang, A.N. Michel, and D. Liu, “Necessary and sufficient condition<Control Applications (1997). He was a member of the Conference Editorial
for the Hurwitz and Schur stability of interval matrice$EEE Trans. Board of the IEEE Control Systems Society (1995-2000), and he served as an
Automat. Contr.vol. 39, pp. 1251-1255, June 1994. Associate Editor of the IEEERANSACTIONS ONCIRCUITS AND SYSTEMS—I:

[46] V. A. Yakubovich, “A frequency theorem in control theonGiberian FUNDAMENTAL THEORY AND APPLICATIONS (1997-1999). He is the Pub-
Math. J, vol. 14, no. 2, pp. 265-289, 1973. lications Chair for the 18th IEEE International Symposium on Intelligent

Control (2003), and he currently serves as an Associate Editor of the IEEE
TRANSACTIONS ON SIGNAL PROCESSING He was recipient of the Michael J.
) . Birck Fellowship from the University of Notre Dame (1990), the Harvey N.
Alexander P. Molchanovwas born in Baku, Russia, payis Distinguished Teaching Award from Stevens Institute of Technology
in 1951. He received the M.S. degree in applied mathy) 997) and the Faculty Early Career Development (CAREER) award from the
ematics from the Moscow Institute of Physics andyational Science Foundation (1999). He is a member of Eta Kappa Nu.
o Technology, Moscow, U.S.S.R, in 1974 and the Ph.D.

and Doctor of Science degrees in control and system
analysis from the Institute of Control Sciences of the
Russian Academy of Sciences, Moscow, Russia, in
- 1982 and 2001, respectively.
He s currently a leading Researcher at the Institute
of Control Sciences of the Russian Academy of Sci-
ences. He has authored and coauthored more than 60

published papers in journals and conference proceedings. His research interests
include nonlinear control theory, robust stability and control, neural networks,
theoretical and applied mechanics.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


