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Robust Absolute Stability of Time-Varying
Nonlinear Discrete-Time Systems
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Abstract—This paper studies the problem of robust abso-
lute stability of a class of nonlinear discrete-time systems with
time-varying matrix uncertainties of polyhedral type and multiple
time-varying sector nonlinearities. By using the variational
method and the Lyapunov second method, criteria for robust
absolute stability are obtained in different forms for the class of
systems under consideration. Specifically, we determine the para-
metric classes of Lyapunov functions which define the necessary
and sufficient conditions of robust absolute stability. We apply the
piecewise-linear Lyapunov functions of the infinity vector norm
type to derive an algebraic criterion for robust absolute stability
in the form of solvability conditions of a set of matrix equations.
Some simple sufficient conditions of robust absolute stability are
given which become necessary and sufficient for several special
cases. An example is presented as an application of these results
to a specific class of systems with time-varying interval matrices
in the linear part.

Index Terms—Absolute stability, difference inclusion, dis-
crete-time systems, Lyapunov methods, robust stability,
time-varying systems, variational method.

I. INTRODUCTION

I N THE PAST two decades, considerable research efforts
have been devoted to the study of robust control and ro-

bust stability of uncertain dynamic systems with parametric or
nonparametric uncertainties. A great number of significant re-
sults covering these issues have been reported in the literature
(see, e.g., [4]–[10], [12], [13], [16], [17], [19], [23], [27], [32],
[37], [40], [45], and the references therein). On the other hand,
the classic problem of absolute stability of a class of nonlinear
control systems with a fixed matrix in the linear part of the
system and one or multiple uncertain nonlinearities satisfying
the sector constraints has been extensively studied [3], [20],
[26], [29]–[31], [34], [38], [42], [44], [46] long before the publi-
cation of the initial work of Kharitonov [22] which laid founda-
tion for the problem of robust stability. Meanwhile, in the light
of modern robustness terminology, absolute stability can be con-
sidered as the robust global asymptotic stability with respect to
variations (or changes) of nonlinearities from a given class.

Recently, there has been some work devoted to the investiga-
tion of the more general problem ofrobust absolute stabilityof
nonlinear control systems with uncertainties both in the linear
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part and in the nonlinear part of the system [2], [7], [14], [15],
[41], [43]. To the best of our knowledge, in all papers on this
problem, only sufficient conditions of robust absolute stability
were obtained based mainly on the well-known circle and Popov
criteria. Thus, at present, the problem of obtainingnecessary
and sufficientconditions of robust absolute stability is of great
theoretical and practical interest.

The main purpose of this paper is to establish necessary and
sufficient conditions ofrobust absolute stabilityfor a class of
nonlinear discrete-time systems with time-varying matrix un-
certainty of polyhedral type and multiple time-varying sector
nonlinearities. Using the variational method developed in [29]
and [38] for the problem of absolute stability of nonlinear dis-
crete-time systems and the discrete version of Lyapunov second
method [24], [44], we establish criteria for the robust absolute
stability of the class of systems under consideration. The para-
metric classes of Lyapunov functions which define the neces-
sary and sufficient conditions of robust absolute stability of such
systems are identified. An algebraic criterion for robust absolute
stability in the form of solvability conditions of a set of matrix
equations is obtained using Lyapunov functions from a class of
piecewise-linear functions of the vector norm type.

In general, the main problem related to the implementation of
the obtained criteria of robust absolute stability is their compu-
tational complexity [35]. Therefore, following [4], [32], [39],
and [45], we obtain several simple and computationally effi-
cient sufficient conditions for robust absolute stability of the
class of discrete-time systems considered herein. We will indi-
cate that these conditions become necessary and sufficient for a
few special cases. We will conclude the paper with an example
of application of these results to a special class of systems with
time-varying interval matrices in the linear part.

II. PROBLEM STATEMENT AND PRELIMINARIES

Let denote real space. If , then
denotes the transpose of. Let denote

the set of real matrices. If , then
denotes the transpose of. We let denote any one of

the equivalent vector norms on . In particular, the norms
, , are defined by

and
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The matrix norm , defined on , and induced by the
vector norm in , are defined as

In particular, we have

We consider the following class of nonlinear discrete-time
systems described by the equations

(1)
where , ,

with , and and
are constant vectors for . The nonlinear functions

, are defined below. It is assumed
that for each , the time-varying matrix in
(1) is chosen arbitrarily from a given polytope of matrices

(2)

where denote the convex hull of a set. The matrix poly-
tope describes structured parametric uncertainty in the linear
part of (1). We assume that the uncertain time-varying non-
linear functions , are defined for
any and satisfy the conditions

; , and we assume the sector constraints

(3)
where and , , are given constants.
We use to denote the set of all such time-varying nonlinear
vector-functions , where

Thus, any solution of (1) is defined by an arbi-
trary choice of a time-varying matrix from the set and
a vector nonlinearity from the set , in addition to
an initial state .

Note that due to the fact that , we have

for any matrix sequence and
any nonlinearity . Therefore, we will use the
notation for the zero solution of (1).

Similar to the definitions given in [15], [43], in this paper, the
robust absolute stability of (1) will be considered in the sense of
the following definition.

Definition 2.1: The system (1) is said to berobustly abso-
lutely stablewith respect to the set defined by (2) and (3)
if its zero solution is globally asymptotically stable
for any time-varying matrix and any vector nonlin-
earity .

We note that if there is no uncertainty in the linear part of
(1), that is, if all matrices , in (2) are identical

and the set degenerates to the “sin-
gleton” or “point” in the matrix space , then the problem

of robust absolute stability becomes that of absolute stability of
(1) with respect to the set of time-varying vector nonlineari-
ties defined by (3), which was previously discussed
by many authors [3], [20], [29], [30], [38], [42], [44], [46]. On
the other hand, if , that is in accordance with
(3), if , for all , the problem of robust
absolute stability reduces to that of robust stability of the linear
time-varying system

(4)

with respect to the set defined by (2), which was also consid-
ered in many previous works (see [5], [6], [8], [10], [16], [17],
[23], [27], [32], [37], [40], [45], and the references in [12] and
[19]).

The main goal of this work is to obtain necessary and suffi-
cient conditions for robust absolute stability of (1) with respect
to the set defined by (2) and (3). Our main results are
given in Sections IV and V.

III. REDUCTION TO THEPROBLEM OF ROBUSTSTABILITY

In this section, we consider along with nonlinear system (1)
the linear time-varying system

(5)

where and , are arbitrary func-
tions satisfying the inequalities

(6)

for all . The set of such vector-function ,
where , will be denoted by .

The system (5) can be obtained from (1) by considering
the functions of the particular type given by

, which form a
subset of . In this case, the inequalities (6) are a direct
consequence of inequalities (3).Robust absolute stabilityof (5)
with respect to the set will be understood in the sense
of Definition 2.1 given in Section II, replacing by and

by .
Following [8], [16], and [30], it is easy to show that the non-

linear system (1) on the set and the linear system (5) on
the set are equivalent to the following time-invariant
difference inclusion:

(7)

where the multivalued vector-function is defined for all
by

(8)
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The equivalence is regarded in the sense of coinci-
dence of the sets of solutions of (1) [for all admissible

, ], of (5) [for all admissible
], and of the difference inclusion (7) and

(8). Therefore, the problem of robust absolute stability of the
nonlinear system (1) with respect to the set is equivalent
to a similar problem for the linear system (5) with respect to the
set , and both problems can be reduced to the problem
of global asymptotic stability of the zero solution of
the difference inclusion (7) and (8).

As a result of the preceding discussions, we obtain the fol-
lowing lemma.

Lemma 3.1:For the robust absolute stability of (1) with re-
spect to the set , it is necessary and sufficient that (5) be
robustly absolutely stable with respect to the set .

We introduce into consideration the matrices

(9)

where the parameters can independently take only the ex-
treme values or , for . It can
easily be seen that any vector in (8) admits an equiv-
alent representation as , where the matrix
belongs to the matrix polytope

(10)

which is the convex hull of the matrices , ;
; , defined by (9). Therefore, in accordance

with Lemma 3.1, the problem of robust absolute stability of (1)
with respect to the set reduces to an equivalent problem
of robust stability of the linear time-varying system (4) with
respect to the set defined by (9) and (10) in the sense of the
following definition [5], [6].

Definition 3.1: The system (4) is said to berobustly stable
with respect to the set if the zero solution of this
system is globally asymptotically stable for any time-varying
matrix .

Note that for linear system (4) the concept ofglobal asymp-
totic stability is equivalent to that oflocal asymptotic stability
[24]. For the same reason, robust stability of (4) with respect to
the set is equivalent to the condition

(11)

for any solution of (4) corresponding to any
, any initial state , and arbitrary

choice of the matrix sequence
.

Note also that, it follows from the results obtained in [8], [11],
if the limit condition (11) is valid, then there exist constants

and such that the estimate

(12)

is fulfilled for any , any and any
matrix sequence . The oppo-
site assertion is obvious. Thus, the following statement holds.

Lemma 3.2:The system (1) is robustly absolutely stable with
respect to the set if and only if (4) is globally exponen-
tially stable [in the sense of the inequality (12)] with respect to
the set defined by (9) and (10).

Lemma 3.2 is the starting point for obtaining necessary and
sufficient conditions of robust absolute stability presented in the
next section.

Using the property that for any compact set the
difference inclusions (7) and

where , are asymptotic stable
simultaneously (see, e.g., [8, Proposition 3.2]); the well-known
fact that the convex compact set can be approximated with any
accuracy by convex polyhedron; and [11, Th. 6 and Corollary
7], we can show that robust absolute stability of (1) with respect
to the set , where is an arbitrary compact set in ,
is equivalent to robust absolute stability of (1) with respect to
some approximating set . In this sense, the
general case of a compact setfor (1) is reduced to the case of
a convex polytope. For this reason, we can restrict our analysis
in the present paper to the case of a convex polytopedefined
by (2) for (1).

IV. M AIN RESULTS

In this section, we will derive necessary and sufficient condi-
tions for robust absolute stability of (1) with respect to the set

. We will employ the variational method [6], [38] and the
discrete version of Lyapunov second method [24], [44], which
were also used in [29] and [30] for the problem of absolute sta-
bility of nonlinear discrete-time control systems with fixed ma-
trix in the linear part [i.e., when , in (2)].

First, we present a criterion for robust absolute stability that
can be obtained by the variational method. Following [6], we
use to denote the set of all matrix products
of vertex matrices , ; ; ,
defined by (9), of length

(13)

where

, and and are the th cross
products of the sets and , respectively.
It is assumed that , where is an identity
matrix. Obviously, the set contains matrix products

of the form (13). For brevity, we will use some-
times the notation for matrices .

We are now in a position to establish the following result.
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Theorem 4.1:The system (1) is robustly absolutely stable
with respect to the set if and only if there exists a finite
integer , such that

for all (14)

The proof of Theorem 4.1 is similar to the proof of [29,
Lemma A.1] with some minor modifications, and therefore, is
omitted here. Note that the statement of Theorem 4.1 can also
be considered as a corollary of the part 2 of [8, Theorem 3.1
and Proposition 3.2].

From Theorem 4.1, the following corollary can easily be ob-
tained.

Corollary 4.1: The system (1) is robustly absolutely stable
with respect to the set if there exists in a vector norm

such that the induced matrix norm for any matrix
defined by (9), ; ; .

Corollary 4.1 is obvious because

and under the above condition, we will have the inequality (14)
with .

Let

denote the spectral radius of matrix, where
, are eigenvalues of the matrix. Recall that an

matrix is said to be Schur stable if . It is well known
that the condition is equivalent to the existence of a
finite integer , such that . Since
for any matrix of the form (9), it follows from (14) that

. As a result, we obtain the following corollary.
Corollary 4.2: For the robust absolute stability of (1) with

respect to the set , it is necessary that every vertex matrix
defined by (9) is Schur stable.

The next two corollaries represent special cases when Schur
stability of the vertex matrices is not only necessary but also
sufficient for robust absolute stability of (1). Other special cases
are given in Theorem 5.2 in Section V.

Corollary 4.3: If the vertex matrices ;
; defined by (9) are pairwise commutative, i.e.,

if for all ; ;
then for robust absolute stability of (1) with respect to the set

, it is necessary and sufficient that the matrices
; ; , are Schur stable.

Proof: Necessity follows from Corollary 4.2. For the
proof of sufficiency, let us note that in the case of pairwise
commutative matrices , ; ;

, any matrix can be represented in the form

(15)

where

Since

for any induced matrix norm there exist constants and
such that

Therefore, using the last estimate, we have from (15) the in-
equality

for all (16)

By choosing the integer , we obtain from
(16) the inequality (14), which completes the proof of Corollary
4.3.

We note that Corollary 4.3 follows also from the discrete-time
counterpart of [25, Th. 2].

Note that sufficiency in Corollary 4.3 can also be proved by
the Lyapunov second method [24]. As is shown in [33], in this
case, the linear time-varying system (4) has a common quadratic
Lyapunov function for any time-varying matrix .

To formulate the next corollary, we recall that a real matrix
is said to be normal if [18], [28]. If
is normal, then , where

is the spectral norm of the matrix and

is the Euclidean vector norm (cf. [18] and [28]). Therefore,
using this property and Corollaries 4.1 and 4.2, we obtain the
following corollary.

Corollary 4.4: If every vertex matrix , ;
; , defined by (9) is normal, then for ro-

bust absolute stability of (1) with respect to the set , it
is necessary and sufficient that the matrices, ;

; , are Schur stable.
Note that the conditions of Corollary 4.4 assure the existence

of the common Lyapunov function for
(4) with any time-varying matrix .

Theorem 4.1 forms the basis for a computer-aided test of ro-
bust absolute stability. Based on this result, we can develop a
numerical algorithm, analogous to that in [6], which, for a ro-
bustly absolutely stable system (1), is theoretically capable of
determining robust absolute stability in a finite number of steps.
However, since in reality the condition (14) may be fulfilled
for extremely large , this algorithm can not always be imple-
mented due to the restrictions of computational capacity. There-
fore, this computer-aided test usually provides only sufficient
conditions for robust absolute stability. For this reason it is very
important to obtain other necessary and sufficient conditions of
robust absolute stability which could be less involved in actual
implementations.

By using the discrete-time version of the Lyapunov second
method [24], [44], and its applications in [9], [10], [16], and [30]
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to the problem of absolute stability of nonlinear discrete-time
systems with fixed linear part and to the problem of robust sta-
bility of uncertain discrete-time systems, one can establish nec-
essary and sufficient conditions of robust absolute stability of
(1) in the form similar to [30, Th. 3–5] and corresponding results
in [9], [10], and [16]. We note that the present results are mostly
concerned with identifying the parametric classes of Lyapunov
functions defining the necessary and sufficient conditions of ro-
bust absolute stability of (1).

The main result of this paper obtained in the framework of
this approach is stated in the following theorem.

Theorem 4.2:For the robust absolute stability of (1) with
respect to the set , it is necessary and sufficient that for
some integer there exists a full column rank matrix

and a constant such that a piecewise-linear
Lyapunov function of the polyhedral vector norm type

(17)

satisfies the inequality

(18)

where the set is defined at each point by
(8).

The proof of Theorem 4.2 follows similar steps as the proof
of Theorem 3 given in [30] for absolute stability with some
nonessential modifications, and is therefore omitted here due to
space limitations.

We note that the positive definiteness of the polyhedral Lya-
punov function in Theorem 4.2 follows directly from the
rank condition on the matrix . The level surfaces of this func-
tion are boundaries of centrally symmetric convex polytope, and
each row , of the matrix specify the nor-
mals to the faces of the convex polytope. Note also that the in-
equality (18) guarantees the strict decreasing of the Lyapunov
function along the solutions of (1), and the constant
characterizes the rate of decrease.

From Theorem 4.2 and Corollary 4.1, the following corollary
can be obtained.

Corollary 4.5: The system (1) is robustly absolutely stable
with respect to the set , if and only if there exists in
a polyhedral vector norm of the type (17), such that the
corresponding induced matrix norm satisfies the condition

(19)
Theorem 4.2 makes it also possible to consider Lyapunov

functions of the type of even degree homogeneous polyno-
mial (see, e.g., [10], [30], and [31])

(20)

where , is th row of the matrix in
(17). Under the above-mentioned rank condition the function,

will be a strictly convex function in the space .
We have the following corollary.
Corollary 4.6: For the robust absolute stability of (1) with

respect to the set , it is necessary and sufficient that there
exists a full column rank matrix (with being its

th row, ), a finite integer and a constant
, such that the Lyapunov function defined

by (20) satisfies the inequality

The proof of Corollary 4.6 is similar to [30, proof of Th. 4]
and is omitted here.

One of the main advantages of the Lyapunov function
of the form (20) in comparison with the function

of the form (17) is that it is a smooth function every-
where in . It gives the opportunity of using a well developed
technique of smooth optimization for numerical construction
of such functions.

The use of Theorem 4.2 enables us to obtain a criterion for
robust absolute stability of (1) in algebraic form. Such algebraic
criterion of robust absolute stability is stated in the next theorem.

Theorem 4.3:For the robust absolute stability of (1) with
respect to the set , it is necessary and sufficient that there
exists a finite integer , a full column rank matrix

, and matrices ; ;
, satisfying the conditions ;

, such that the matrix relations

(21)
are satisfied.

The proof of Theorem 4.3 follows with some nonessential
modifications the proof of an analogous criterion in [30, Th. 5]
establishing the necessary and sufficient conditions of absolute
stability, and is omitted here.

Note that the conditions of Theorem 4.3 are automatically
satisfied if for any matrix , ;

; . In this case, , ,
; ; , and (see

also Corollaries 4.1 and 4.5).
In connection with Theorem 4.3 we also note that, in fact,

the matrix relations (21) are equivalent to the conditions (19)
for the matrix norm induced by the Lyapunov function
in (17), which defines a polyhedral vector norm . The re-
lations (21) can be understood as the conditions for the gener-
alized similarity of the vertex matrices ,

; ; , which define the set
for (4), to the matrices ,
; ; , which define the fol-

lowing time-varying linear system:

(22)

where and

The matrix in (21) plays the role of a generalized transforma-
tion matrix. The matrix relations (21) establish the existence of
a linear transformation , which connects (4) on the set

and (22) on the set .
We note that (22) is robustly stable with respect to the set
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since , ; ; .
Moreover, we can choosein (18) as

Thus, Theorem 4.2 reduces the problem of robust absolute
stability for (1) with respect to the set to the problem of
existence of a polyhedral vector norm type Lyapunov function
(17). In turn, Theorem 4.3 reduces the problem of the construc-
tion of such a Lyapunov function to the problem of solvability
of the matrix relations (21), which can be considered as a set of
matrix equations in terms of unknown matrices and

, ; ; .
In general, the problem of solving matrix equations (21), and

consequently, the problem of robust absolute stability for (1) can
effectively be solved only by numerical methods, i.e., with the
use of computers. Unfortunately, the situation is complicated
by the fact that Theorems 4.2 and 4.3 say nothing about how
large an integer should be to satisfy the conditions of these
theorems. In principle, the number can be much larger than
its lower bound , and it should be chosen experimentally in
practical numerical calculations by incrementing its value. If the
value of is fixed (for example, ), then the conditions of
Theorems 4.2 and 4.3 become only sufficient for robust absolute
stability of (1). We note that an efficient numerical algorithm
was proposed in [36] for solving matrix equations similar to (21)
with the use of linear programming and the idea of scaling; the
algorithm of [36] can also be used for checking the conditions
of Theorems 4.2 and 4.3. The improvement of these sufficient
conditions can be achieved only at the expense of increasing the
integer parameter .

Nevertheless, for (1), simpler sufficient conditions of robust
absolute stability, which often coincide with necessary and suf-
ficient conditions, exist in special cases. Some classes of these
systems are discussed in Section V.

In conclusion of this section, we make a general remark con-
cerning the necessary and sufficient conditions of robust abso-
lute stability established in Theorems 4.1–4.3 above.

As noted in Section II, if there is no uncertainty in the linear
part of (1), that is, if all matrices in (2) are identical (

constant matrix, ), then the problem of robust
absolute stability with respect to the set turns into the
classic problem of absolute stability with respect to the setof
time-varyingvector nonlinearities that satisfy sector
constraints (3).

In [3], it is shown (cf. [3, Theorem 3]) that for absolute sta-
bility of discrete-time systems of type (1) (with
constant matrix, ) in the class it is necessary and
sufficient that they are absolutely stable in the subclass
of time-invariantnonlinearities that do not depend
explicitly on the discrete time [i.e., depend
only on ] and satisfy the same sector constraints (3). There-
fore, in the case when constant matrix, ,
Theorems 4.1–4.3 of this paper give the necessary and suffi-
cient conditions of absolute stability both for time-varying Lur’e
system (1) in the class and for time-invariant Lur’e system (1)
in the class .

On the other hand, the well-known principal result for abso-
lute stability of discrete-time control systems both in the class

of time-varying nonlinearities and in the class
of time-invariant nonlinearities that satisfy sector con-
ditions (3) is Tsypkin’s frequency criterion [42] in the case of a
single nonlinearity ( ) and its generalizations [20], [46]
to the case of several nonlinearities ( ) in (1) (i.e., the
so-called circle criterion). The example given in [29], using the
conditions similar to (14) in Theorem 4.1, shows that Tsypkin’s
criterion does not yield necessary and sufficient conditions for
absolute stability in general case. Therefore, the results of the
present paper include the necessary and sufficient conditions of
absolute stability for discrete-time Lur’e control systems which
give opportunity to obtain wider domains of absolute stability
in parameter space of the system under consideration than suf-
ficient conditions of absolute stability given by Tsypkin’s crite-
rion and the circle criterion.

V. SOME SUFFICIENT CONDITIONS FOR

ROBUST ABSOLUTE STABILITY

In this section, we establish several simple sufficient condi-
tions for robust absolute stability of (1) with respect to the set

. The proposed conditions are special corollaries of the
results established in Section IV, and are relatively simple to
implement, because these conditions are reduced to checking
the Schur stability of some particular test matrix. It is shown
that these conditions become necessary and sufficient for sev-
eral special cases of (1).

Let denote the matrix obtained from by taking the ab-
solute value of all entries, i.e., if , then

. For two matrices,
and ( ) denotes an ele-
ment-wise inequality, i.e., ( , ;

. The Hadamard product of and is written
as and defined in [18], [32] by the element-wise product

. In the inequality , we use 0
to denote the matrix of appropriate dimension whose entries are
all equal to zero.

Let us associate with a given set of matrices ,
; ; , defined by (9), a

nonnegative majorant matrix

(23)

where the maximum is understood to be element-wise.
The following theorem can now be established.
Theorem 5.1:The system (1) is robustly absolutely stable

with respect to the set , if the matrix in (23) is Schur
stable, i.e., .

Proof: Since and , then from [21, Lemma
3.1] it follows that there exists a positive-definite diagonal ma-
trix

(24)

such that . Clearly, rank . Let us
denote . Obviously, .

It is easy to show that there exist matrices
such that and , ;
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; , where we use to denote the
matrix whose entries are all equal to one. We have

where ; ; , and
. Thus, in this case, the matrix relations

(21) are fulfilled with diagonal matrix defined by (24). This
completes the proof of Theorem 5.1.

Note that in the proof of Theorem 5.1, we in essence use the
fact of existence of a majorant linear time-invariant system

and the Lyapunov function [21], [32]

which is a weighted infinity vector norm with weights
. In this case, we can let

in the inequality (18).
Theorem 5.1 is a natural generalization of [5, Th. 1] and [32,

Th. 2.1] for the problem of robust stability of linear time-varying
interval discrete systems. The condition of Theorem 5.1 is only
sufficient for robust absolute stability of (1). However, if this
theorem is applied to (1) satisfying some additional conditions,
Theorem 5.1 becomes a necessary and sufficient condition for
special cases of (1).

We recall that from [39], a matrix is called a Mor-
ishima matrix if by symmetric row and column permutations it
can be transformed into the form

where are square submatrices and ,
. A matrix is a Morishima matrix if and

only if for some matrix
with . If is a Morishima matrix, then
it is Schur stable if and only if is Schur stable.

Our next result characterizes several classes of (1) whose ro-
bust absolute stability is equivalent to Schur stability of a single
test matrix in (23).

Theorem 5.2:The sufficient condition in Theorem 5.1 is also
necessary for each of the following cases of (1).

Case 1) In the given set of vertex matrices
; ; , defined by

(9), there exists at least one matrix such that
or .

Case 2) In the given set of vertex matrices
; ; , defined by

(9), there exists at least one matrix such that
and is a Morishima matrix.

Case 3) All matrices , ; ;
, defined by (9), are either all upper triangular

or all lower triangular.
Proof: In Case 1), the proof follows immedi-

ately from Corollary 4.2 and the obvious relation
.

In Case 2), from Corollary 4.2, it follows that the matrix
is Schur stable. Since is a Morishima matrix, then the matrix

is also Schur stable.
In Case 3), if all matrices , ; ;

, are upper triangular, then from the definition in (23) for
the matrix , it follows that it is also upper triangular and

From Corollary 4.2, we have , ;
; , and consequently, , i.e., the matrix

is Schur stable.
In the case of lower triangular matrices , ;

; , the proof is fully analogous. This completes
the proof of Theorem 5.2.

Note that in the case of upper or lower triangular matrices
, ; ; , the robust absolute

stability of (1) depends only on their diagonal elements. There-
fore, the off-diagonal elements have no effect on robust absolute
stability of (1) in this case. The results of Theorem 5.2 are a gen-
eralization of the results derived in [5], [32], and [39] for linear
time-varying interval discrete systems. Note also that the state-
ment of Case 3) of Theorem 5.2 is a natural consequence of the
discrete-time counterpart of [25, Th. 2].

VI. EXAMPLE

In this section, the use of the present results to analyze the
robust absolute stability of (1) will be illustrated by a particular
example.

Let us consider the case when the convex polytopedefined
by (2) is a family of interval matrices defined by

where and are
fixed matrices, and the inequalities are element-wise. The
family is a hyper-rectangle in the space of the
coefficients .

When , , the set defined by (10) is
contained in the family of interval matrices given by

and a corresponding matrix defined by (23) for the set is
determined as

where the maximum is element-wise. If

or
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then

If

or

then

Therefore, the conditions of Theorem 5.2 Case 1) are fulfilled in
these cases, and the necessary and sufficient condition for robust
absolute stability of (1) is the inequality

or , respectively.
We can obtain similar results for the case when ,

. In this case, we only need to replace in the
above formulas by , , and vice versa.

VII. CONCLUSIONS

In this paper, we have studied the problem of robust absolute
stability of a class of nonlinear discrete-time systems with
time-varying matrix uncertainty of polyhedral type and with
multiple time-varying sector nonlinearities. By using the vari-
ational method and the discrete version of Lyapunov Second
Method, necessary and sufficient conditions for robust absolute
stability have been obtained in different forms for the given
class of systems. It was shown that in general, the problem
of checking these conditions can be effectively solved by nu-
merical methods, admitting a computer-aided implementation.
Several simple sufficient conditions for robust absolute stability
have been provided which become necessary and sufficient
for several special cases. As an example, we have applied the
present results to a specific class of systems with time-varying
interval matrices in the linear part.
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