Neural, Parallel & Scientific Computations 4 (1996) 305-324

Theory and Applications of
Sparsely Interconnected Feedback
Neural Networks

Anthony N. Michel! and Derong Liu?

1. Department of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556
Email: Anthony.N.Michel@nd.edu
2. Department of Electrical Engineering and Computer Science
Stevens Institute of Technology, Hoboken, NJ 07030
Email: dliu@stevens-tech.edu

ABSTRACT: This paper presents some recent developments in the analysis and
design of a class of feedback neural networks with sparse interconnecting structure.
The analysis results presented make it possible to determine whether a given vec-
tor is a stable memory of a neural network and to what extent implementation
errors are permissible. The design methods presented allow the synthesis of neu-
ral networks with predetermined sparse interconnecting structures with or without
symmetry constraints on the interconnection weights. Two examples are included
to demonstrate the applicability of the methodology advanced herein.

KEYWORDS - associative memories, sparsely interconnected neural networks,
robustness analysis, pattern recognition

1 INTRODUCTION

The two basic categories of artificial neural networks encountered in the litera-
ture are feedforward and feedback neural nets. In the former, neurons are arranged
on several layers and unidirectional (feedforward) connections are used between
neurons of adjacent layers. In the latter, all neurons are arranged in a single layer
and bidirectional connections (i.e., connections from neuron i to neuron j and from
neuron j to neuron i, where { # j) are used between various pairs of neurons in
the network. In feedback neural networks, every neuron of the network is usually
connected to all other neurons (including to itself), i.e., neural nets are usually
fully connected. Single-layer, fully connected neural networks are a special class of
nonlinear dynamical systems which are endowed with many asymptotically stable
equilibrium points (stable memories) as well as unstable equilibria. The study of

Received June 19, 1996 1061-5369/96 $03.50 © Dynamic Publishers, Inc.

306 Michel and Liu

such systems has been of great interest to many researchers in recent years (see, e.g.,
(1], [6]-[15), [18]-[22]). These works are concerned with the qualitative analysis of
neural networks (the existence and locations of equilibrium points, the qualitative
properties of the equilibria, and the extent of the basins of attraction of asymp-
totically stable equilibria. (see, e.g., (1], (6], [7], [9)-[15}, [18), (22])), and design
methodologies for such networks (including the outer product method (12], the pro-
jection learning rule [20], [21], the eigenstructure method [15], and other methods
(8], [19]). The study of single-layer, sparsely interconnected neural networks has also
been of recent interest (2]-{5], [16], [17]. In this paper, we will present some analysis
and synthesis results for a class of sparsely interconnected feedback neural networks.

We will concern ourselves primarily with the implementation of assoctative mem-
ories by means of a class of feedback neural networks. To this end, we will first
introduce a result concerning the qualitative properties of the class of neural net-
works considered herein. This result yields conditions which can be used for testing
whether a given vector is a stable memory. Next, we address a problem which
is unavoidably encountered in hardware implementations of neural networks, im-
plementation inaccuracies or parameter perturbations. This problem is of great
practical interest, especially in VLSI implementations of neural networks, since one
cannot realize precisely designed parameters. A robustness analysis result will be
presented to deal with parameter perturbations.

One of the major difficulties encountered in VLSI implementations of fully con-
nected neural networks is the realization of extremely large numbers of interconnec-
tions and the reduction of the number of connections in such networks is of great
interest from a practical point of view. A desirable solution for solving the prob-
lem of interconnection constraints encountered in the hardware implementation of
neural networks involves synthesis procedures which incorporate reductions in the
number of interconnections. This has been one of the major motivations for consid-
ering the study of sparsely interconnected neural networks [16], [17). In this paper,
we will provide a synthesis procedure for such neural networks with sparse con-
nection matrices in which the interconnecting structure is predetermined. Utilizing
the robustness analysis result mentioned above, we will be in a position to design
neural networks with predetermined interconnecting structure and with symmetric
interconnections.

We will demonstrate the applicability of the methodology advanced herein by
considering two specific examples.

2 THE NEURAL NETWORK MODEL CONSIDERED AND
ASSOCIATIVE MEMORIES

We consider a class of neural networks described by equations of the form

{ T = —Az + Tsat(z) + I

y = sat(z) (21)

e.g.,
s of
tive
mp-
sign
pro-
10ds
also
ysis
rks.
-em-
first
net-
ting

hich
im-

reat
one

1 be

con-
nec-

rob-
n of
. the
18id-
per,

zing
:sign
etric

Sparsely Interconnected Neural Networks 307

where z € R" is the state vector (representing neuron inputs), ¢ denotes the deriva-
tive of z with respect to time ¢, y = [y1, -, yn]T with |y;| < 1 represents neuron out-
puts, A = diagay, - - -, a,] is the state transition matrix with a; >0 fori=1,-.. n,
T = [Ti;) € R™*" is the connection (or weight) matrix, I = [I},---,I,]T € R" is a
(constant) bias vector, and sat(z) = [sat(z,),- - -,sat(z,)]" represents the activation
function (the neuron model), where

1, z;>1
sat(z;)={ =, -1<z;<1
-1, z; < -1

We assume that the initial states of (2.1) satisfy |z;(0)| < 1fori=1,---,n.

In the hardware implementation of artificial neural networks described by (2.1)
(e.g., in VLSI implementations), one cannot realize prectsely the synthesized param-
eters {A,T,I}. A bound for permissible parameter perturbations which guarantees
to retain the desired performance of the network is therefore of great interest from
a practical point of view. We will use a perturbation model of system (1) given by

{55 = —(A+ AA)z + (T + AT)sat(z) + (I + AI) (2.2)

y = sat(z)

where A, T, I, and sat() are defined as in (1), AA = diag[Aay, - -,Aa,} with
a;+Aa;>0fori=1,---,n, AT € R**", and Al € R".

In this paper, we consider the implementation of associative memories via neural
networks modeled by (2.1). The goal of associative memories is to store a set of
desired patterns as memories such that a stored pattern can be recognized when
the input pattern contains sufficient information about that pattern.

A vector a is said to be a memory vector (or simply, a memory) of system (2.1),
if a = sat(f) and if 8 is an asymptotically stable equilibrium point of system (2.1).
(Recall that an equilibrium z. of system (1) is asymptotically stable if (i) it is
stable in the sense of Lyapunov, i.e., the state z(t) of system (1) remains arbitrarily
close to z, for all ¢ > 0 whenever the initial state z(0) is sufficiently close to z.,
and (it) z(t) approaches z, as t tends to infinity whenever z(0) belongs to B(z.),
where B(z.) is an open neighborhood of z, in R™.) In practice the desired memory
patterns are usually represented by bipolar vectors (or binary vectors). We will not
consider the case where desired memory patterns are not bipolar vectors.

Equation (1) has the same form as the cellular neural network model employed
in [5] in which n = M x N neurons are arranged in an M x N array and only local
interconnections are used. Sparsity constraints on the interconnecting structure of
(1), in general, are expressed as prespecified zero elements in the connection ma-
trix T at given locations and therefore, the cellular neural network model in [5)
is a special case of the present neural network model. For other feedback neural
network models such as the Hopfield model [12], neural networks described on hy-
percubes [15], and iterated-map neural networks [18], similar sparsity constraints

308 Michel and Liu

can be developed. We emphasize that (1) is used as an example in the present
paper to demonstrate how results can be developed for neural networks with sparse
interconnecting structures and that similar procedures can be used in the synthe-
sis of neural nets with sparsity constraints involving the other models mentioned
above. We note, however, that the realization of associative memories is only one of

many possible applications of feedback neural networks for which interconnection
constraints are of interest.

3 ANALYSIS

In this section, we first present conditions for testing whether a given bipolar
vector is an asymptotically stable equilibrium point of system (1), and conditions
under which neural networks are globally stable. We then present a result for the
robustness analysis of (1).

3.1 Basic Analysis

We use B™ to denote the set of n-dimensional bipolar vectors, i.e., B® = {z €
R z;=10r —1,i=1,---,n}. For a € B*, we define C(a) = {z € R": z;0; >
1, i=1,---,n}.

A result proved in [16] states that if « € B" and if
B=AY Ta+I)eC(a) (3.1)

then (a, f) is a pair of memory vector and asymptotically stable equilibrium point
of (2.1). The proof of this result uses the fact that sat(y) = o € B™ for all ¥ € C(«).
For z € C(a), the first equation of (2.1) can be written as

i=—Az+Ta+] (3.2)

System (3.2) has a unique equilibrium at z, = A~}(Ta + I), and z. = 8 € C(a) by
assumption. Clearly, this equilibrium is also asymptotically stable, since in system
(3.2) all eigenvalues X\;(—A) of —A are negative (since \;,(A) = a; > 0).

This result constitutes the basis of our synthesis procedures to be presented in
the next section. In our design problem, we will be given a set of desired bipolar
patterns to be stored as memory vectors and our objective will be to determine A,
T, and I so that (3.1) is true for every desired pattern.

In the study of global stability of neural networks in the form (1), we usually
assume that T is symmetric. Recall that a neural network is globally stable if every
initial state of the network converges to some asymptotically stable equilibrium.
When this is the case, periodic and chaotic motions cannot exist in the network.
With system (1), we associate an energy function of the form (see, e.g., [5], [16]),

1 1
E(y) = —EyTTy —ITy+ inAy (3.3)

and Liu

resent
sparse
mthe-
:ioned
one of
ection

ipolar
litions
or the

: {z €
riag >

point
Cla).

(a) by
system

ited in
sipolar
line A,

1sually
f every
brium.
:twork.

[26]),

Sparsely Interconnected Neural Networks 309

where y is defined as in (1). It is easily verified that the function E(-) in (3.3) is
monotonically decreasing in time ¢ along the solutions of (1) if T is symmetric. This,
along with the fact that the set of asymptotically stable equilibria is discrete, can
be used to show that the network is globally stable.

3.2 Perturbation Analysis

When implementing a synthesized neural network, one usually assumes that all
the computed parameters are realized exactly, so that the network will exhibit a
desired performance (such as having desired memory points). It is a fact of life that
every implementation process will result in some inaccuracies. When considering
such inaccuracies, it is important to have criteria that enable one to determine
whether the implemented neural network will perform as expected.

In system (2.2), AA, AT, and Al may be considered as inaccuracies that are
incurred during the implementation process and/or as a limited precision imple-
mentation of system (1). A possible upper bound for the permissible perturbations
AA, AT, and Al in terms of the expression [[A™'AA|o + [|AT' AT oo + | A7 AT 0o
can be established, where || - ||, denotes the matrix norm induced by the [, vector
norm. Recall that the matrix norm induced by the I, vector norm for a matrix

F =[f;;] € R™*" is defined by
1Fle = gmax {3 17l}

We will make use of the notation §(z) = mimcica {|z:]} for £ € R". Suppose
that a!,---,a™ € B™ are desired memory vectors of system (2.1), and suppose that
B, --,B™ are asymptotically stable equilibrium points of system (2.1) correspond-
ing to a',---,a™, respectively, i.e., ' = A"} (Ta* + I)for i = 1,---,m. Let

= mi !
v=min {§(3)} > 1 (3.4)
Then, a!,---,a™ are also memory vectors of system (2.2) provided that
NAT' AAlle + AT AT |loo + | A7 Alffo < v — 1 (3.5)

The above robustness analysis result is proved in [17] using the results of Section 3.1.

Suppose that (a, f) is a pair of memory vector and asymptotically stable equilib-
rium point of (2.1). After perturbation, the new asymptotically stable equilibrium
point B is given by

B=(A+AA) (T +AT)a+ (I +AD) (3.6)

When condition (3.5) is satisfied, it can be shown that 8 ¢ C(a),'which implies
that o is still a memory vector of (2.1) after perturbation.

310 Michel and Liu

X2) Cla)

Figure 1: A geometric interpretation of the robustness analysis

To give a geometric interpretation, assume that o € R? is a (desired) memory
of system (2.1) and its corresponding asymptotically stable equilibrium point is 5.
Then, 8 = A~Y(Ta + I) must be in the region C(a) (cf. the crosshatched region in
Figure 1), since » = min{6(8)} > 1.

When we have perturbations AA, AT, and Al as in system (2.2), the vector
B will be displaced from its original location to, say, 8. In order for a to remain
a memory vector for system (2.1) after perturbation (i.e., for a to be a memory
vector for system (2.2)), we require that B also be in C(a). It is clear that as
long as f is in C(a), a will be a memory vector of the perturbed system (2.2).
The above robustness analysis result gives one of the possible upper bounds for the
perturbations, specified by | A1 A Al|oo + lA7'AT |0 + || A"* Al |0, which will ensure
that the perturbed vector B and the original vector 3 are within the same region
given by C(a). This upper bound is given by v — 1 where v is defined in (3.4).

In system (2.2), we have to require that a; + Aa; > 0 for each i. It is clear that a
perturbation AA with Ag; < 0 for i = 1,---,n will not change the desired memory
vectors al,---a™ € B" of system (2.1) (cf. equation (3.6)).

When considering perturbations due to an implementation process, the focus

is usually on the interconnection matrix T and not on the parameters A and [.

Assuming AA =0 and Al = 0, system (2.2) takes the form

{ & =—-Az + (T + AT)sat(z) + I

y = sat(z) (37)

of

:l and Liu

1emory
at is g.
gion in

vector
‘emain
emory
hat as
(2.2).
or the
snsure
region
.
that a
smory

focus

nd I.

(3.7)

Sparsely Interconnected Neural Networks 311

and condition (3.5) assumes the simple form

JAT ATl < v — 1

4 SYNTHESIS METHODS

In applications of neural networks to associative memories, a desired set of
asymptotically stable equilibria determines a set of neuron output vectors that are
used as stable memories to store information. The locations of the desired stable
memories are determined by choosing the network parameters, given by A, T, and I,
in an appropriate manner. We will call this process of selecting {A, T, I} synthesis.

4.1 Overview of Existing Synthesis Methods

In the following, we will summarize three synthesis procedures for associative
memories realized by neural networks (1).

The Outer Product Method [12]: We wish to store m desired bipolar patterns
o' € B, 1 <i < m, which correspond to m asymptotically stable equilibria §* = o'
of (1) (therefore, o' = sat(#')), as stable memories. A set of parameter choices
determined by the Outer Product Method is given by

m
T=Za’(a’)r, A=FEandI=0

J=1
where E denotes the n x n identity matrix. The name of this method is motivated
by the fact that T consists of the sum of outer products of the patterns that are
to be stored as stable memories. This method requires that the a',1<i<m,be
mutually orthogonal (i.e., (')Ta’ = 0 when i # j). .
The Projection Learning Rule [20], [21]: When the desired prototype patterns
o € B, 1 < j < m, to be stored in (1) as memories are not mutually orthogo-
nal, a method called the Projection Learning Rule can be used to synthesize the

interconnection parameters for (1).

Let T = [a!,-:,a™]. Recall that for L € R™*™, the Moore-Penrose pseudo-
inverse Bk R* — R™ defines the linear mapping of any b € R" to a unique r € R™
(i.e., = = B'b) which has the property that z is the vector that has the small-
est Euclidean norm ||z|| on the set {y € R™ ||y — b|? is minimized }. Then the
interconnection matrix T for system (1) is given by

T=x3! (4.1)

(vefer, e.g., to [20], [21]). We note that T determined by (4.1) satisfies the relation
TE = £, which shows that T is an orthogonal projection of R* onto the linear
space spanned by o’, 1 < j < m (hence, the name Projection Rule). It is easily

312 Michel and Liu

verified that when the o/, 1 < j < m, are mutually orthogonal, then the Projection
Learning Rule and the Quter Product Method coincide. The Projection Learning

Rule does not guarantee that an equilibrium of (1) corresponding to a given desired

memory is asymptotically stable. '

The Eigenstructure Method [15]: Neural networks which are synthesized by this
method are guaranteed to store desired sets of patterns as stable memories which
need not be mutually orthogonal and which correspond to asymptotically stable
equilibria of (1). Suppose that we are given a set of desired patterns o',---,a™ €
B". We wish to design a system of form (2.1) which stores a!,---,a™ as memories.
Without loss of generality, we choose A4 as the n x n identity matrix and we choose
B' = pd!, for I = 1,---,m, with y > 1 (hence, ' € C(a')). T and I will be
determined by the relations

Aﬂ':pa':Ta'+I, I=1,---,m

Solutions of (4.2) for T and I will always exist. To see this, we let ¥ = [o! —
a™,.--,a™ 1 — a™]. We need to solve T from

TY = uY

and set | = pa™ — T'a™. This will guarantee that system (2.1) stores the desired
patterns a',- -, o™ as memories and that it will store Bt,---,B™ as corresponding

asymptotically stable equilibrium points. Solutions of (4.3) (for T) always exist
since

Y

nY
T can be determined from (4.3) using the singular value decomposition method (see,
e.g., [15]) as follows. Performing a singular value decomposition ot Y, we obtain

D i o[V

0 : oLV

rank[Y] = rank

where D € RP*? is a diagonal matrix with the nonzero singular values of matrix Y’
on its diagonal and p = rank[Y]. Then,

T= yUlUlT + WUZT

where W is an arbitrary n x (n — p) real matrix. We note that by special choice of

matrix W, e.g., W = U, with 7 a scalar, (4.5) can result in a symmetric matrix T
(16].

The above steps constitute a design procedure of neural networks with no con-
straints on the interconnecting structure. This procedure usually results in a fully
connected neural network. The consequence of the above design is that a!,---,a™

ind Liu

red
ing
cist

ee,

4)

|
|
|

Sparsely Interconnected Neural Networks 313

will be stored as stable memory vectors in system (2.1), that the states §° corre-
sponding to o', ¢ = 1,---,m, will be asymptotically stable equilibrium points of
system (2.1), and that all vectors in L, N B, including a!,---,a™, will be stored
as memory vectors of system (2.1), where L, = Aspan(c!,---,a™) 2 Span(c! -
a™,---,a™ ! —a™) + a™ and Span(y!,---,9") denotes the linear subspace of R"
generated by 71,---,9". a

4.2 Synthesis of Sparsely Interconnected Neural Networks

Based on the eigenstructure method summarized above, we provide in the fol-
lowing a design procedure for artificial neural networks which have predetermined
interconnecting structures, and which do not require that the interconnection ma-
trix be symmetric. In the next subsection, we will consider symmetry constraints
on the interconnection matrix.

We begin by introducing some necessary terminology.

A matrix S = [S;;] € R**" is said to be an index matriz, if it satisfies S;; = 1 or
0. The restriction of matrix W = [W;;] € R™*" to an index matrix S, denoted by
W|S, is defined by W|S = [h,;], where
he = Wi, if Si=1
hd 0, otherwise
We will say that (2.1) is a neural network with a sparse coefficient matrizif T = T|S

for some given index matrix S. Thus, the index matrix S specifies a (sparse)
interconnecting structure for a neural network.

Sparse Design Problem: Given an n x n index matrix § = S;;} with S;; # 0 for
t=1,---,n, and m vectors a',---,a™ in B, choose {A,T, I} with T = T|S in such
a manner that o',---,a™ are memory vectors of system (2.1). 1

A solution for the above sparse design problem is as follows (cf. [16]).

Sparse Design Procedure: Suppose we are given an n x n index matrix § =
[Si;] with Si; # 0 for i = 1,---,n, and m vectors a',---,a™ in B" which are to be
stored as memory vectors for (2.1). We proceed as follows:

1) Choose matrix A as the identity matrix.

2) Choose a real number x> 1 and set §* = pa’ fori =1,--,m.

3) Compute the n x (m—1) matrices Y =[y',-- - ,y™] = [a'—a™, -+, a™ 1 —a™],
and Z = [211“' azm-l] = [ﬂl - ﬂm,_ "aﬁm—l - ﬁm] We let y‘ = [y{»°",y3.]T and
2=z, 2T fori=1,--- , m—1.

4) Denote the i** row of the index matrix S by S; = [Si1,** -, Sin]. For each i =
1,---,n, construct two sets M; and N;, such that M;UN; = {1,---,n}, MiNN; = ¢,
and S;; =1 ifjeM,S;=0 if j € Ni. Let M; = {0,'(1),'“,0.'(171.")}, where
m; = L%, Si; and oi(k) < 0i(l) if 1 < k <1 < m;. (Note that m; is the number of
nonzero elements in the i** row of matrix S.)

314 Michel and Liu

§)Fori=1,---,n,andl=1,---,m—1, let v = [yf,(l),---,yf,(m‘.)]T.

6) For i = 1,---,n, compute the m; x (m — 1) matrices Y; = k-, y07Y), and
the 1 x (m — 1) vectors Z; = [z},---,z""1].

7) Fori=1,---,n, perform singular value decompositions of Y;, and obtain

Dt o|fvl
o : o]lVf
where D; € RPi*Pi jg 5 diagonal matrix with the nonzero singular values of Y; on its
diagonal and p; = rank(Y;).

8) Compute for i = 1,-.- o, Gy =[Gy, - yGimi] = Z.‘V.-,D,-‘IU,%' + W,U%, where
W, is an arbitrary 1 x (m; — p;) real vector.

9) The matrix T = [T;;] is computed as follows:

— 0, if S.‘j =0
T'J B {Giky if Sn'j # 0 and lf] = U{(k) (4.6)

10) Compute the bias vector I = g™ — Tqo™.

Then, a',---,a™ will be stored as memory vectors for system (2.1) with A, T,
and I determined as above. The states g corresponding to o', i = 1,-- -, m, will be
asymptotically stable equilibrium points of the synthesized system. 1

The idea used in the above sparse design procedure is to solve the matrix T on a
row-by-row basis. The following observations pertain to the above design procedure:
(¢) solutions for the sparse design problem always exist if S; = 1 for § = 1,---,n;
(¢i) the Sparse Design Procedure guarantees that T = T'|S; and (i41) the Sparse
Design Procedure guarantees that all vectors in L. 0 B", including o!,- -, a™, are
stored as stable memory vectors of system (2.1).

It is readily seen from the robustness analysis result of Section 3.2 that the
synthesis procedures presented above guarantee that a!,... a™ are also memory
vectors of system (2) provided that (refer to step 2 above and equations (3.4) and

(3.5))
147 AAlloo + | A7 AT lloo + A Alllo = [|AAlloo + | AT loo + | ATJoo < =1 (4.7)

The above enables us to specify an upper bound for the parameter inaccuracies
encountered in the implementation of a given network design to store a desired set
of bipolar patterns in system (1). This bound is chosen by the designer during the
initial phase of the design procedure. This type of flexibility does not appear to have
been achieved before (e.g., [8]-[15), [19]-[21]). Specifically, the synthesis procedure
advocated above incorporates two features which are very important in the VLSI
implementation of artificial neural networks: (1) it allows the VLSI designer to
choose a suitable interconnecting structure for the neural network; and (1) it takes

d Liu
e Sparsely Interconnected Neural Networks 315

4 into account inaccuracies which arise in the realization of the neural network by
an
’

hardware.
Modified Sparse Design Procedure: If we wish that the above design proce-
- dure results in a system of form (2.1) with J = 0, we can modify the Sparse Design
Procedure as follows:
a) In step 3, take Y = [a},---,a™] and Z = [#,---, f™].
b) In step 10, take I = 0.
on its Then all conclusions will still be true. In particular, all vectors in Span(a?,---,a™)N
B” including +a,---,+a™ are stored as memory vectors of the synthesized system
vhere (2.1) [16]. 1

4.3 Synthesis of Neural Networks with Sparsity and Symmetry Con-
straints

In this subsection, a synthesis procedure for associative memories which results in
sparse and symmetric interconnection matrices T for system (2.1) will be introduced.

For the A, T', and I determined by the Sparse Design Procedure with g > 1, let
AT, us choose

All be AT =(TT -T)/2 (4.8)
s Then, T, £ T+ AT = (T + TT)/2 is a symmetric matrix. From the robustness
"ona analysis result, we note that if
2dure:
o AT ATl = ITT = Tleo/2 < p = 1 (4.9)
>parse
™ are the neural network (3.7) will also store all the desired patterns as memories, with
! a symmetric connection matrix T + AT = T,.
2t the The above observation gives rise to the possibility of designing a neural network
emory (2.1) with prespecified interconnection structure and with a symmetric interconnec-
1) and tion matriz. (Note that in this case, we require that S = ST.) Such capability is of
great interest since neural network (2.1) will be globally stable when T is symmetric
(cf. Section 3.1). It appears that (4.9) might always be satisfied by choosing u suf-
ficiently large. However, large u will usually result in large absolute values of the
components of T which in turn may result in a large ||T7 — T'||c.. Therefore, it is
iracies not always possible for (4.9) to be satisfied by choosing u large. From (4.9), we see
ed set | that if our original synthesized matrix T is sufficiently close to its symmetric part
ng the (T +TT)/2, or equivalently, if || TT — T\, is sufficiently small, then (4.9) is satisfied
o have and we are able to design a neural network of form (2.1) with the following prop-
cedure erties: (i) the network stores a!,---,a™ as memory vectors; (it) the network has
- VLSI a predetermined (full or sparse) interconnecting structure; and (i¢t) the connection
ner to matrix T of the network is symmetric. ‘
t takes

An iterative algorithm (design procedure) can be utilized to achieve this.

Michel and Liu

Figure 2: The four desired memory patterns

Symmetric Design Procedure: Let AT be defined as in (4.8). For the given
g > 1, suppose that |AT]l = p# — 1. We can find a A, 0 < A < 1, such that
MAT| o < ¢ — 1, and we let T} = T + AAT. We use this T} as the new connection
matrix for our neural network (2.1). According to the robustness analysis result, we
see that a!,---,a™ are still memory vectors of system (2.1) with coefficient matrix
T:, and we can compute the corresponding asymptotically stable equilibrium points .
as F = AT+ 1) for =1, ---,m. Clearly F € C(c!). We can determine the
upper bound v for the permissible perturbation AT as in (3.4) and (3.5), where we
use F instead of 3'. We repeat the above procedure, until we determine a symmetric
coefficient matrix T or until we arrive at » < 1 4+ n (where 7 is a small positive
number, e.g., 7 = 0.001). 1

If we end up with T = TT, we have found a solution for our symmetric design
problem. If we end up with » < 1+ 17 and T # T7, our design procedure is not
successful in solving a symmetric T for the given problem. Experimental results
indicated that this procedure will frequently succeed in determining a symmetric
matrix T.

5 APPLICATIONS

Two specific examples will be considered in this section to demonstrate the
applicability of the results presented in the preceding sections.

Simple Pattern Recognition Problem

We consider a neural network with 12 neurons (n = 12) with the objective
of storing the four patterns shown in Figure 2 as memories. As indicated in this
figure, twelve boxes are used to represent each pattern (in R'?), with each box
corresponding to a vector component which is allowed to assume values between —1
and 1. For purpose of visualization, —1 will represent white, 1 will represent black,
and the intermediate values will correspond to appropriate grey levels, as shown in
Figure 3.

In all cases, we seek to design a neural network described by (1) with the inter-
connection configuration given in Figure 4 (in which interconnections are restricted

hel and Liu

Sparsely Interconnected Neural Networks 317
-1 0 +1
T
Figure 3: Grey levels
oS ax ®
he given
ach that
nnection G 3 O
sult, we
t matrix
1 points . G s D)
nine the
‘here we
mmetric ©; QY {12
positive
| Figure 4: Interconnecting structure of a cellular neural network
: design
e is not to a radius r = 1, i.e., a cellular neural network with M =4, N=3,and r = 1.
results cf. [5]). The index matrix for this interconnecting structure is as follows, where “0”
ametric represents no connection and “1” represents a connection.
(1 1. 0 1 1 0 0 0 0 0 0 0]
1 1 1 1 1 1 0 0 0 0 o0 0
0 1.1 0 1 1 0 0 0 0 0 O
ate the 1 1 0 1 1 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
T 0 1.1 0 1 1 0 1 1 0 o0 O
S=S‘000110110110(5'1)
0 0 0 1 1 1 1 1 1 1 1 1
Jective 0 0 0 0 1 1 0 1 1 0 1 1
in this 0 0 0 0 0 0 1 1 0 1 1 o0
ch box 0 0 0 0 0 0 1 1 1 1 1 1
een ~1 0 06 06 0 0 0 0 1 1 0 1 1
black,
owh 1z Case I: Nonsymmetric Design. We utilize the Sparse Design Procedure summa-
rized in Section 4.2 to design a non-symmetric cellular neural network with the the
s inter-

index matrix given in (5.1). We obtain A as the identity matrix, and we obtain
tricted '

318 Michel and Liu

Figure 5: A typical evolution of pattern No. 1 of Figure 2

[0.333 -0.000 0o 0.333 -14.333 1} 0

)) 0 0 o 1
—3.500 15.000 —3.500 —3.500 —10.500 0 o 0 0 0 0 0
0 0 0500 0 —14500 0000 O 0 0 0 0 0
0250 0 0 0250 -14250 0 0250 O 0 0 0 0
—5.941 —0.000 -5.941 -5941 —-8.059 0353 —5941 —0.706 0353 0 0 0
re| 0O 0000 -5125 O -8875 56256 0 3750 5625 0 0 0
0 0 0 -2111 -11.888 0 -2111 -9.444 0 ~2.111 —9.444 0
0 0 0 -7158 -6.847 0211 -7.158 0368 0.211 —7.158 —14.211 —0.000
0 0 0 0 -3143 -0.T14 0 3143 -0.714 0 -13.286 0.000
0 0 0 0 0 0 1800 ~11400 0 1.800 -11.400 0
0 0 0 0 0 0 -5375 -10.750 -9.125 —-5.375 -4.875 —0.000
L o 0 0 0 0 ° 0 0000 -7.000 O -7.000 15.000
and

I = [0, 0.000, —-0.000, —0.000, 0.708, —3.750, 9.444, 14.632, —3.143, 11.400, 10.750, O.OOO]T.

In the above computations, we chose y = 15 for the Sparse D-~sign Procedure.
From the robustness analysis result, we see that the upper bound for the admissible
perturbation ||AT||e is g — 1 = 14. (For simplicity, in our examples, we consider
AA =0 and Al = 0. For the case when they are not zero, we can make similar
conclusions and give similar examples.)

The performance of this network is illustrated by means of a typical simulation
run of equation (2.1), shown in Figure 5. In this figure, the desired memory pattern
is depicted in the lower right corner. The initial state, shown in the upper left
corner, is generated by adding to the desired pattern zero-mean Gaussian noise
with a standard deviation SD=1. The iteration of the simulation evolves from left
to right in each row and from the top row to the bottom row. The desired pattern
is recovered in 13 steps with a step size h = 0.06 in the simulation of equation (2.1).

All simulations for the present paper were performed on a Sun SPARC Station using
MATLAB.

Case II: Symmetric Design. Using the Symmetric Design Procedure outlined

Sparsely Interconnected Neural Networks 319

d sl
£ £

= By

Figure 6: A typical evolution of pattern No. 3 of Figure 2

in Section 4.3 we can easily determine a symmetric matrix T for the present de-
sign. Starting with matrix T obtained in Case I, we determine that v = 14. Using
our iterative algorithm for symmetric design summarized in Section 4.3, we find a
symmetric matrix T} in four iterations as '

(-0.746 2918 0 ©.795 -9.150 0 o 0 o 0 0 0 1
-2918 15671 -1.980 -3.410 -5.805 0607 O 0 0 0 0 0
0 -1980 0436 0 -9.849 -1827 O 0 0 0 0 0
0.795 -3410 © 2089 -10875 0 —0.708 -2971 0O) 0 0
~9.150 —5.805 —0.849 —10.875 —7.145 —4.282 —9.086 —4519 —-1.640 O 0 0
| © 0607 -1827 0 4282 7226 0 2629 3043 O 0 0
= 0 0 0 -0708 -9.086 0 —2.955 —9039 0 1431 -8339 0
) 0 0 -2871 -4519 2620 -9.039 -1.274 1.641 -10.205 —12.411 —1.602
) 0 0 0 -1640 3043 0 1641 -1539 0 -10.976 —3.569
0) 0 0 o 0 -1431 -10205 0O 2924 -9.015 ©
) 0 0 0 0 0 -8339 —12411 —10.976 —9.015 —4.517 —3.630
| L o 0 0 0 0) 0 -1.602 -3.568 0 -3.630 15821
It can be verified that a!, a?, a®, and o are also memories for system (2.1) with
the symmetric matrix T; given above. From the robustness analysis result, we can
verify that the allowable upper bound for the perturbation for system (2.1) with
the above symmetric matrix T} is given by ||AT ||, < 6.2807 — 1 = 5.2807.
.
ble A typical simulation run for system (2.1) with T} given above is shown in Fig-
prs ure 6. In this case, the noisy pattern is generated by adding the same noise as in
:lalr Case I (i.e., Gaussian noise N(0,1)) to the desired pattern. Convergence occurs in
‘ 8 steps with A = 0.06.
1om . ops
S 5.2 Chinese Character Recognition
!?[t In this subsection, we propose to solve a Chinese character recogmtlon problem
Tsf: using sparsely interconnected neural networks.
e |
tecn To demonstrate our method, we consider a small set of basic Chinese characters
2.1). as our desired memory patterns which are represented by bipolar vectors. We
ing consider the 25 desired memory patterns o, - -, a®® shown in Figure 7. (The upper
[left pattern is denoted by a' and the lower right pattern is denoted by a?®.) These
g patterns constitute modules which represent individually or in combination, Chinese
Ane

characters. They are coded in R®! in a similar manner as was done in Section 5.1
(including usage of grey levels).

320 Michel and Liu

We wish to synthesize a neural network (1) with n = 81 (M = N = 9) and with
local interconnections restricted to a radius r = 3 (i.e., a cellular neural network of
the form (1) with M = N = 9 and r = 3), which will “remember” these modules.
As mentioned above, some of the Chinese characters can be represented by two
modules. In particular, the patterns given in Figure 7 can be used to generate
at least 50 commonly used Chinese characters. To demonstrate this, we add one
more vector, a®®, with every entry equal to 1 (black), to the set of desired memory
patterns. In doing so, we can generate desired combinations for Chinese characters
which are made up of some of the basic modules given in Figure 7. For instance,
the character corresponding to a® means “sun” and the character corresponding
to a!* means “moon”. A new Chinese character can be generated as a?” = af +
a'* + a® € Span(e!,---,a%) N B®, which means “bright” (see Figure 8). Using
the Modified Sparse Design Procedure (with I = 0) as discussed in Section 4.2, we
only need to synthesize a system (1), in which the 81 neurons are arranged in a
9 x 9 array and the interconnections are restricted to local neighborhoods of radius
r = 3, by employing these basic patterns. The resulting system will automatically
“remember” all possible combinations of these basic components, which include the
50 commonly used Chinese characters mentioned above. This system has 2601 total
interconnections, while a fully connected neural network with n = 81 will have a
total of 6561 interconnections. By using the cellular neural network of the present
example, we are able to reduce the total number of required interconnections to less
than 40%.

A typical simulation run, involving the pattern a?” = o® + a! + o is depicted
in Figure 9. The noisy initial pattern in Figure 9 (upper left corner) is generated
by adding to ®” zero-mean Gaussian noise with a standard deviation SD=1. The
desired pattern o is recovered in 24 steps with a step size h = 0.227 (lower right
corner in Figure 9).

Simulation results showed that all the other vectors corresponding to the afore-
mentioned 50 commonly used Chinese characters are indeed stored as memory vec-
tors of the synthesized cellular neural network.

For the same initial noisy pattern shown in Figure 9, the desired pattern is
recovered in 8 steps, with the same step size, when using a fully connected neural
network (1) designed using the eigenstructure method summarized in Section 4.1
for the same desired set of memory patterns a',--+,a?. One of the reasons for

the lower convergence speed of cellular neural networks is that we only use local
interconnections in such systems.

The most commonly used Chinese characters are roughly 6700 in number. More
than half of these consist of approximately 500 basic characters (modules) or com-
binations of these characters, as described above. This example can be expanded by
designing a cellular neural network which will store these 500 basic Chinese char-
acters as well as combinations of these characters. In doing so, we will have stored

Sparsely Interconnected Neural Networks 321
el and Liu

and with
etwork of
modules.
d by two
generate
* add one
{ memory
haracters
instance,
sponding
"= a4+
). Using
n4.2, we
ged in a 1111
of radius T T T
natically
:lude the
501 total
1 have a]
I N]
* present =] |
15 to less

0

depicted .

>nerated
1. The oA i

ver right

IT1

11

|IEEENI
1111
1

1e afore-

ory vec- Figure 7: The twenty-five desired memory patterns

ttern is
| neural
tion 4.1

sons for
se local

r. More | —
Jded by | mmm

se char-
: stored Figure 8: The Chinese character composed of patterns No. 6 and No. 14

322

Michel and Liu

Figure 9: A typical evolution of the Chinese character composed of patterns No. 6
and No. 14

AN

1

:l and Liu

-ns No. 6

Sparsely Interconnected Neural Networks 323

over one half of the 6700 commonly used Chinese characters. The remaining com-
monly used characters (numbering about 3000), will have to be stored separately,
using the design procedure described in Section 4.

6 CONCLUDING REMARKS

In the present paper we considered a class of artificial neural networks which
have the basic structure of analog Hopfield neural networks [12] and which use the
(piecewise linear) saturation function to model the neurons. This model is closely
related to the cellular neural networks introduced in [5] and to the neural networks
defined on hypercubes in [15].

We provide upper bounds for the perturbations of parameters under which de-
sired memories stored in a neural network (2.1) are preserved. This type of in-

formation is of great practical interest during the implementation process of such
networks.

For system (2.1), a synthesis procedure for sparsely interconnected neural net-
works is provided. This procedure results in neural networks which satisfy a prespec-
tfied interconnecting structure and which do not require symmetric interconnections.
Finally, a design procedure which enables us to design artificial neural networks with
prespecified interconnecting structure and with symmetric interconnection matrix
for storing a given set of desired bipolar patterns as memories is presented

Results presented herein are applicable to many other neural network models
such as neural networks described on a closed hypercube [15], iterated-map neural
networks (18], and discrete-time Hopfield model [11].

References

[1] S. V. B. Aiyer, M. Niranjan, and F. Fallside, “A theoretical investigation into
the performance of the Hopfield model,” IEEE Trans. Neural Networks, vol. 1,
pp. 204-215, June 1990.

[2] L. O. Chua and T. Roska, “The CNN paradigm,” IEEE Trans. Circuits Syst.-I,
vol. 40, pp. 147-156, Mar. 1993.

[3] L. O. Chua and P. Thiran, “An analytic method for designing simple cellular
neural networks,” JEEE Trans. Circuits Syst., vol. 38, pp.1332-1341, Nov. 1991.

[4] L. O. Chua and C. W. Wu, “On the universe of stable cellular neural networks,”
Int. J. Circuit Theory App., vol. 20, pp.497-572, 1992.

[5] L. O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Trans.
Circuils Syst., vol. 35, pp- 1257-1272, Oct. 1988.

[6] M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formation
and parallel memory storage by competitive neural networks,” IEEE Trans.
Syst., Man, Cybern., vol. 13, pp.815-826, Sep./Oct. 1983.

324 Michel and Liu

[7] M. Cottrell, “Stability and attractivity in associative memory networks,” Biol.
Cybern., vol. 58, pp. 129-139, 1988.

[8] S. R. Das, “On the synthesis of nonlinear continuous neural networks,” I[EEE
Trans. Syst., Man, Cybern., vol. 21, pp-413-418, March/Apr. 1991.

(9] R. M. Golden, “The ‘brain-state-in-a-box’ neura! model is a gradient descent
algorithm,” J. of Math. Psych., vol. 30, pp. 73-80, March 1986.

(10] A. Guez, V. Protopopsecu, and J. Barhen, “On the stability, storage capacity,
and design of nonlinear continuous neural networks,” IEEE Trans. Syst., Man,
Cybern., vol. 18, pp. 80-87, Jan./Feb. 1988.

[11] J. J. Hopfield, “Neural networks and Physical systems with emergent collective
computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79, pp. 25542558,
Apr. 1982,

(12] J. J. Hopfield, “Neurons with graded response have collective computational
properties like those of two-state neurons,” Proc. Nat. Acad. Sci. USA, vol. 81,
pp. 3088-3092, May 1984.

[13] S. Hui and S. H. Zak, “Dynamical analysis of the brain-state-in-a-box (BSB)
neural models,” IEEE Trans. Neural Networks, vol. 3, pp. 86-94, Jan. 1992.

{14] J. D. Keeler, “Basins of attraction of neural network models,” AIP Conf. Proc.
151, Snowbird, UT, pp. 259-264, 1986.

(15] J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neu-
ral networks: Linear systems operating on a closed hypercube,” IEEE Trans.
Circuits Syst., vol. 36, pp. 1405-1422, Nov. 1989.

[16] D. Liu and A. N. Michel, “Sparsely interconnected neural networks for asso-
ciative memories with applications to cellular neural networks,” JEEE Trans.
Circuits Syst.-II, vol. 41, pp. 295-309, Apr. 1994, '

(17} D. Liu and A. N. Michel, Dynamical Systems with Saturation Nonlinearities:
Analysis and Design, New York: Springer-Verlag, 1994.

(18] C. M. Marcus and R. M. Westervelt, “Dynamics of iterated-map neural net-
works,” Physical Review A, vol. 40, Pp-501-504, July 1989.

(19] R. Perfetti, “A neural network to design neural networks,” IEEE Trans. Circuits
Syst., vol. 38, pp. 1099-1103, Sept. 1991.

[20] L. Personnaz, I. Guyon, and G. Dreyfus, “Information storage and retrieval
in spin-glass like neural networks,” J. Physique Lett., vol. 46, pp. L359-365,
Apr. 1985,

(21] L. Personnaz, I. Guyon, and G. Dreyfus, “Collective computational properties
of neural networks: New learning mechanisms,” Physical Review A, vol. 34,
pPp-4217-4228, Nov. 1986.

[22] F. M. A. Salam, Y. Wang, and M.-R. Choi, “On the analysis of dynamic feed-
back neural nets,” IEEE Trans. Circuits Syst., vol. 38, pp. 196201, Feb. 1991.

-

