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SUMMARY

For linear systems with parameter uncertainties and subject to state saturation, we establish results
concerning the global asymptotic stability of an equilibrium. In addition to providing a means for a
qualitative analysis, these results also enable us to address the stabilizability of such systems by means of
linear state feedback.

Systems of the type considered herein capture two important phenomena commonly encountered in the
modelling process: (i) system parameter uncertainties (which in the present case are modelled by means
of interval matrices), and (ii) operation of systems over a wide range (which in the present case is
accounted for by state saturation nonlinearities).

We demonstrate the applicability of the present results by means of several specific examples.
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1. INTRODUCTION

In this paper, we first investigate the stability properties of a class of systems described by

x(k+1)=sat[Ax(k)], k=0,1,2,... 1)
where x(k)ER", A= [a;]ER"™", sat(x) = [sat(x)), sat(x,), ..., sat(x,)]", and
1, x; > 1
sat(x) = | x -lsxs1
[-l, x < -1

We assume that in system (1), the matrix A is known to belong to an interval matrix, i.e.
A€ [A™, A¥]. (An interval matrix [A™, AM] with A" = [a7)ER™", A¥=[a¥1€R™™", and
a7 <aj forall i and j is defined by [A™, A¥]2(C = [c;,JER™ :af<c,;<al, 1<i,j<n}.) We
will refer to system (1) as a ‘system with saturation nonlinearities and parameter uncertainties’.
Because of the presence of saturation nonlinearities in system (1), it is clear that for any
x(OED"&{xER":~1<x,<1, i=1,...,n), x(k)ED" for k=1 will always be true. Thus,
without loss of generality, we will assume that x(0)e D

By using the stability results for system (1), we will establish sufficient conditions for the

linear feedback stabilization of control systems described by
x(k + 1) =sat[Ax(k) + Bu(k)], k=0,1,2,..., )
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where u(k) € D", B=[b;]€R"*", and x(k), A, and the function sat(-) are defined in equation
(1). We refer to such systems as ‘systems with control constraints, state saturation and
parameter uncertainties’.

Systems described by equation (2) arise frequently in the modelling of certain control
systems. Systems described by equation (1) can be considered as such control systems with
no external inputs. Examples of systems (1) and (2) include mechanical systems with speed
and position limits, electric motor systems with limited power supply, and many other
process control systems. These types of systems capture three phenomena which are
encountered in systems descriptions: (i) system parameter uncertainties, which in the
present case are modelled by interval matrices; (ii) operation of systems over a wide range,
which in the present case is accounted for by saturation nonlinearities; and (iii) the use of
constrained controls in consideration of the limited energy in control signals. Generally
speaking, state saturation nonlinearities in control systems are very common in practice
(see, for example Reference 5). Parameter uncertainties also arise very often in system
modelling due to, among other things, modelling errors and measurement errors. In the
analysis and design of systems described by (1), the most basic question addresses stability:
under what conditions is x,=0 an equilibrium and when is this equilibrium globally
asymptotically stable? On the other hand, in the analysis and design of systems described by
(2) (in which the control signal is constrained in a hypercube), system stabilizability is of
fundamental importance.

Systems with saturation nonlinearities (and with no parameter uncertainties) have been
investigated by many researchers (see, for example, References 2, 5-7, 11, 15, 16). Systems
with parameter uncertainties characterized by interval matrices have also been widely
investigated (see, for example, References 1, 3, 4, 8, 12, 14, 17-21). The stability and
stabilizability of systems with saturation nonlinearities and parameter uncertainties do not
appear to have been addressed. We intend to investigate such problems in the present paper.
Among the above citations, References 3, 4, 7, 14, 17 and 20 include results which are perhaps
most closely related to the present work, making use of quadratic Lyapunov functions to
establish sufficient conditions (involving the testing of a finite number of matrices) to ensure
the stability of an equilibrium of linear systems with parameter uncertainties (characterized by
interval matrices). In particular, as in the present case, discrete-time systems are considered in
References 7 and 20.

This paper is organized as follows. In Section 2, we introduce some necessary notation.
In Section 3, we first establish our main results for the stability analysis of system (1)
(refer to Lemmas 1 and 2 and Theorems 1, 2, and 3). These results are then applied (also
in Section 3) to establish conditions for the stabilizability of system (2), using linear state
feedback (refer to Lemma 3 and Corollary 1). In Section 4, we demonstrate the
applicability of the present results by means of several specific examples (refer to
Examples 1, 2, and 3). In Section 5, we conclude the present paper with a few pertinent
remarks.

2. NOTATION

Before presenting our results, we introduce some necessary notation.

Let V and W be arbitrary sets. Then VU W, VN W, VAW, and V xW denote the union,
intersection, difference, and Cartesian product of V and W, respectively. If V is a subset of W,
we write VC W and if x is an element of V, we write x€ V. If x, y € R", then x <y signifies
that x,< y,, x<y signifies that x;<y;, and x>0 signifies that x;,>0 forall i=1, ..., n.
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For x € R", we define the /, vector norm as
1p

"x",,:(ZIX,I”) s fO]'lSp&oo (3)
i=1

For A€ R"*" and for an arbitrary vector norm ||-||, we define the norm of A by
Al =inf{y: || Ax || < y]| x|| for all xE€ R"}

In particular, for p = 1,2 and o, the norms of A, induced by the /, vector norm, are given by
Al = max > layl
M el

Al = VAu(A"A4)

and
n
"A||w= max Zlaijl
i<isn j=1

where 4,,(ATA) denotes the largest eigenvalue of ATA.
A square matrix is said to be positive definite, if it is symmetric {n/and if all its eigenvalues
are positive. A matrix H = [h;;] € R"*" is said to be diagonally dominant, if

n

|h| = Z |m;} fori=1,...,n @

jmjei
where |-| denotes absolute value.

We let I and J denote subsets of {1,...,n} satisfying the following properties (i)
TuJ={1,...,n} and (ii) I N J = ¢, where I and J are allowed to be ¢, but not simultaneously.
With I, J specified as above, we denote

R,={xER":x,20 and x,<0) (5)

where I=1{i, ..., i}, J={/j,..csfnsshs x,=[x,<,,...,x,-I]T, and x,=[x,l,...,xjn_,]T. For the set
{1, ..., n}, there are 2" different pairs (I, J). Note that

R"= UR”
n
For 1, J, I' and J' such that
IuJ=ruJ ={1,..,nj
InJ=rnj =¢

we let A/, = [a/'" 1€ R™*", where

Q)

M . . 1 [
oy M fE,NEl xIUJ' xJ
A A e ™
a; if@,HpelxJuJ xI

with the convention that /' x I = ¢ when I' = ¢ or when I = ¢.
Let v: B = R be continuous where B C R" is a convex set. We call the function v(x) a convex
function if for any finite set of points x,,...,x,in Band any 0<4,,...,4,;< 1 with X!, 4,=1,
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we have

‘/(i ;’ixi) < iliv(xi)
il =

3. MAIN RESULTS

We first establish some preliminary results.
Consider the system described by

x(k+1)=f(x(k)), k=0,1,... 8)
where x(k) E R", f: R"— R" and f is assumed to satisfy
fn(x(k)) < f(x(K)) < f(x(k)) ©)

where f,, and f,, are given functions and (9) is interpreted componentwise.

A point x,ER" is called an equilibrium of the system determined by equation (8) if
X, = f(x.), where f is known to satisfy (9). We can assume, without loss of generality, that
x. =0 (see, for example, Reference 13).

Definition 1

The equilibrium x, =0 of system (8) and is said to be globally asymptotically stable if (i) it
is stable, i.e. for every £>0 there is a 8= 6(¢) such that ||x(k)|| <e for all k=0,1,2,...,
whenever | x(0)|| <6 (I|-|| denotes any vector norm), and (ii) it is artractive, i.e., x(k) -0 as
k—> eo,

We recall that the equilibrium x, =0 for system (8) is globally asymptotically stable, if there
exists a continuous function v: R" — R which is positive definite, radially unbounded, and along
solutions of (8),

D (x(k)) 2 v(x(k + 1)) = v(x(k)) = v(f(x(k))) — v(x(k)) (10)

is negative-definite for all x(k)€R". Such a function v is an example of a Lyapunov
Sfunction.

Definition 2

A system x(k + 1) = f,(x(k)) is said to be an extreme system of the system determined by (8)
and (9) if each component of f, is a corresponding component of either f,, or fu (e. for
ft= (fL ""f:)Ts fm= (fr'm "'vfm")T' fM= (f:lh )fA’rlI)T and 1= {il’ cvy i:{lr ‘I>= (jlr ""jn—:}v
such that JUJ={1,...,n}, and INJ = ¢, we have f'. = f. for i€land f,=f}, for j€J with
I= ¢ orJ = ¢ allowed).

It is clear that there are 2" extreme systems for the system determined by (8) and (9). We denote
these 2" extreme systems by

x(k+1) = f,(x(k)) (e

i=1,..,2"
The following lemma is required in establishing our first result.
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Lemma 1
Suppose that v: R"—> R is a convex function. Then,
Dug,(x(k)) = v(fix(k))) - v(x(k)) s max {Du,(x(k))} 1)
I A

for any x(k) € R", where Dv,,,(x(k)) 2 v(f, (x(k))) - v(x(k)).
Proof. From (9), we see that for any x(k) € R", f(x(k)) is in the (closed) hypercuboid in R"

with vertices f, (x(k)), i=1,...,2" Since a hypercuboid is a convex set, there exist
a;=a,(x(k)),0<a,<1,i=1,...,2" such that ¥}, @;=1and

Sy = Y auf o (x(k)

inl

We now have, using the convexity of function v,

Duggy(x(k)) = v( f(x(k))) — v(x(k)) = v(z a.f, (X(k)))gi(X(k))
i=]

2" 2" 2"
<Y au(f, (k) = 3. av(xk) = ) @Dy (x(k))
i=l i=1

i=1

< max {Duy,(x(k)}

1cic2"

for any x(k) € R". O
Associated with the nonlinear system (1), we will consider linear interval systems given by
wk+1)=Aw(k) 12)

where wER" and A is defined in (1) (ie., A€[A™ AM)). For I={i,...,i;) and
J={j1yrrjns) satisfying ITUJ={1,...,n} and INJ = ¢ (refer to (5) for an interpretation of
the index sets I, J), we define

AIJ = LQZ]eRnxn

U {a[.',’ forlel

a’ -

. a,f,' forieJ
and

Al =la)ER™"

PN a; forl€l

“ ay forleJ
Since

R'=|JRy,
()]
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it can be seen that, for w€E€ R", A € [A", A¥] implies that
Alw<Aws<Alw, wEeER,

where A/ and A/ are defined by (13) and (14), respectively.
Forwe€R"I'uJ'={1,....n}andI'NJ' = ¢, we denote

far )=, W), ... fo., W] (16)
where
£ )= Ajw forj€l'andwER,
o Alw forj€J andw€ER,
A straightforward calculation yields
f([']'(w)= A:",_,'W, WER[J (18)

where A/, is defined in (7). From (16) and (17), we see that each component of Ser, (W) is
either the lower bound or the upper bound in (15). By Definition 2,

wk+1)=f,,, (w(k)) = A%, w(k), w(k) ER,, rs)

represents the 2" extreme systems for the system given by (12). Therefore, equation (11) in
Lemma 1, when applied to system (12), becomes

Dy (w(k)) < ma: {Dye, (wlk)}, wik) € R, (19)
a'J

The following lemma is also required in establishing our results.

Lemma 2

Let x, = sat(x) = [sat(x,), ...,sat(x,)]” for xER" and let H= [h;]€ R™" denote a positive-
definite matrix. Then, x/Hx, < x"Hx is true for all x€ R"\D" if and only if H satisfies the
diagonal dominance condition (4), where D" is the closed hypercube in R".

Proof. See Reference 6 O

We will utilize the following definition assumption in our results.

Definition 3

An interval matrix [A", AY]C R™" is said to possess Property ® if there exists a positive-
definite matrix H € R"*" which satisfies the diagonal dominance condition (4) such that

Q=H-(A/7,)HAY, (20)
is positive-definite for all 7, J, I' and J' satisfying (6), where A% s is defined in (7).

Remark 1

A matrix W=[w;]€[A", AY] with w;=a] or w;; = a;)' for all i,j=21,...,n is called an
extreme matrix of the interval matrix [A™, A¥]. It is clear that there are 2™ extreme matrices in
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[A™, AM). It can easily be shown that A}, is an extreme matrix of [A™, A¥] and that there are
2" different A/, where I, J, and I', J' satisfy (6). From (7) we see that A,. =A’!,.. Thus, there
are only 2*"~' distinct extreme matrices A,.. Therefore, to verify the Property R in Definition
3, we need to check the positive-definiteness of 2"~ different matrices.

Remark 2

We note that Lemma 1 implies that the equilibrium x,=0 of linear system (12) is
asymptotically stable if Q in (20) is positive-definite for 2>"~' distinct extreme matrices AY,..

We are now in a position to establish the next theorem.

Theorem 1

The equilibrium x, =0 of system (1) is globally asymptotically stable if the interval matrix
[A™, AM] possesses Property R.

Proof. Choose v(w)=w"Hw for system (12). Since ‘fv(—w) is a norm on R", and since any
norm is a convex function, it follows that Yw(w) is convex. Furthermore, it can easily be proved,
using the definition of convex function, that the square of any convex function is also convex.
Therefore, v(w) is convex. By Lemma 1 and equation (19), we now compute for w(k) € R",

V(AW(K) ~ v(w(K)) = Dy (k) < max { Dy, ,(w(k))}

(D]

< max (W' (WA}, )HA", - HIw(k))

4.7
where we have used, for w(k)ER,,,
Dy, (w(k) = v(f,,., (w(k))) = v(w(k)) = W (K)[(AY,)THAY . - HIw(k)
Now, we consider v(x) = x"Hx for system (1). From Lemma 2, we see that
v(sat(x)) < v(x) for any x€ R" 22)
since H satisfies the diagonal dominance condition (4). Using (21), we compute for x(k) € R",
D (x(k)) = v(sat(Ax(k))) - v(x(k)) < v(Ax(k)) - v(x(k))

< max {x"(OA],)HA], - Hx(®)} (23)
J.1'"J)
The hypotheses in the theorem imply that the right-hand side of (23) is negative for all
x(k) € R"\{0}. Then, Dv,(x(k)) is negative-definite for all x(k) € R" and for all A € [A™, A¥].
Therefore, by the Second Method of Lyapunov, we see that the equilibrium x, =0 of system
(1) is globally asymptotically stable. O
Our next result utilizes the following definition.

Definition 4

An interval matrix [A™, A¥)C R"™" is said to possess Property J if there exists a positive-
definite matrix H € R"*" which satisfies the diagonal dominance condition (4) such that

Q=H-AlHA, 4)



512 A. N. MICHEL, D. LIU AND K. WANG

is positive-definite, where A,23 (A" + A™), and if

La(A" - 4™ < a0 + ﬁ;ﬁ) - a(Ay)

where a(-) is defined as
a(W)=max{||W|,, [W|..} for we R""

and 4,,(Q) is the smallest eigenvalue of Q.

Theorem 2

The equilibrium x, =0 of system (1) is globally asymptotically stable if the interval matrix

[A™, AM] possesses Property 7.

Proof. Choose v(x) = x"Hx for system (1). It suffices to show that Dv,,(x(k)) is negative-

definite for all x(k) € R" and for all A € [A™, AM]. For x(k) € R", we compute

D (x{k)) = v(sat(Ax(k))) - v(x(k)) < v(Ax(k)) - v(x(k)) = x" (k) (ATHA - H)x (k)

where we have used equation (22). We will show that ATHA - H is negative-definite for all

AE[A™ AM].
Let AA=A-A,=A-3(A"+A"). Then AA = [Aa,] € R"" satisfies the relation

|aa| =1a; -3 (af+alf)| <3(aff-af

@7

for all 1<, j<n, where we have used the fact that a]'< a; < a}. We note that : (a}f-a7) is the

(i, j)th element of 3(AY - A™) and (27) implies that

llaal, <illa¥ - A,
and

llAA]l <3 ]|A% - A™l..
Thus, we have

a(AA)<)a(A¥ -A™)
where a(-) is defined in (26).

Next, we compute

ATHA-H=(A,+AA)H(A,+ AA)- H
=AjHA,+ ATH(AA) + (AA)"HA, + (AA)TH(AA)- H
=-Q+AjH(AA) + (AA)THA, + (AA)TH(AA)
The matrix ATHA - H is negative-definite if
Au(AGH(AA) + (AA)'HA, + (AA)TH(AA)) < 4,(Q)
where 4,,(-) denotes the largest eigenvalue. It suffices to show that
|ACH(AA) + (AA)THA, + (AA)'H(AA) || . < A,,(Q)
since A, (W) < ||W||.. forany W=WT€& R"" (cf. Reference 9). We note that
|ASH(AA) + (AA)THA,+ (AA)TH(AA) ..
<[ AgllAHTI AAl L+ QAT H [N Aol < + lAA)TIL I H Il AA
= (I Aoll, lAAT. + 1AANL | Aoll. + 1 AA L IAA L) THI.
< (2a(Aj).a(AA) + [a(AA))IH .
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Let s = a(AA)=0. By (30), it suffices to show that

An(Q)

s* + 2a(Ay)s < THIL

to prove that (29) is true. By (25) and (28), we have
Am
s<taA" - AN < (@A) + : Ifﬁ’ - alA)

An(Q)
=0
IH|l

Consider equation

r* + 2a(Ay)r -

The two roots of the above equation are

An(Q)
lIH [l

r = —a(Ag) + 1/(a(Ao»2 ¥ ﬁ"ﬁi

Clearly r, <0< s<r,, which implies that

n= -aA)-,[(alA)) +

and

An(Q)
=" <
NH |-

i.e., (31) is true. This completes the proof of the theorem.

57+ 2a(Ag)s - 0

Remark 3

513

(€1

Theorem 1 is in general less restrictive than Theorem 2; however, Theorem 2 is
considerably easier to apply than Theorem 1, since Theorem 2 involves less computational
complexity. If in system (1), A"=AY=A4, i.e., the parameters of the system are known
exactly, then, Theorem | and Theorem 2 reduce to the same result, in which case we have

AIUJ = Ao = A.

Remark 4

In applications of Theorems 1 and 2, a question which arises naturally is how to
determine a matrix H (if it exists) which satisfies the diagonal dominance condition (4) for
a given interval matrix [A™, AM]. One way of solving this problem is to use linear
programming. We will demonstrate this idea in Section 4 by means of a specific

example.

We close the present section by establishing the following result.
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Theorem 3
The equilibrium x, = 0 of system (1) is globally asymptotically stable, if
(i) |w@)l,<1or[|[W(A)||l.<1, where W(A) = [w;] € R"*" and

m

aj; if|aj;| > Iaf,'-l
w;={ al if|al}| < |al]
aloral  ifla]j|= |}

or
(i) IV(A)ll,< 1, where V(A) = [v;] € R"*" and v,, = max{|aj}|, |a;]} forall i, .

Proof. This is a consequence of Theorem 6 in Reference 8. We omit the details. 0

By making use of the stability results presented in the previous section, we establish in this
section some results concerning the stabilizability of systems described by (2).

Definition 5

System (2) is said to be stabilizable (by means of linear state feedback) if there exists a
matrix F € R™" such that (i) Fx € D™ for any x € D"; and (ii) for the system given by

x(k+1)=sat[Ax(k) + BFx(k)], k=0,1,2,...

the equilibrium x, = 0 is globally asymptotically stable.

The following lemma is required in the proof of our next result. Its proof is straightforward
and is therefore not included here.

Lemma 3

Suppose F € R™". Then Fx&€ D™ for any x€ D" if and only if IFll.<1, where ||-|l.
denotes the matrix norm induced by the /.. vector norm.

We now establish our final result.

Corollary 1

System (2) is stabilizable (by means of linear state feedback) if there exists an F€ R"™"
with || F||. <1 such that

(i) the interval matrix [A" + BF, A¥ + BF] possesses Property &; or
(i) the interval matrix [A™ + BF, A¥ + BF] possesses Property I
Proof. (i) From Lemma 3, we know that if ||F||.<1, then Fx€ D" for any x € D". We can
substitute the linear state feedback wu(k) = Fx(k) into (2) to obtain
x(k + 1) = sat[Ax(k) + BFx(k)] = sat[Gx(k)], k=0,1,2,... 32)
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where G =A+BF €[A"+BF,A" + BF). Since [A" + BF, A + BF) possesses Property ®, we
know from Theorem 1 that for (32), x, =0 is globally asymptotically stable.
(ii) This part of the proof follows along similar lines as the proof of part (i). )

We will utilize a second-order example in the next section to demonstrate how to determine a
state feedback matrix F in a given problem.

4. EXAMPLES

To demonstrate the applicability of the present results, we consider several specific
examples.

Example 1
In system (1), let A € [A™, AM],

005 02 0 0
an| 01 07 -015 046
02 01 04 0
[-005 01 019 -0-5

and
05 003 02 01
A¥=| 02 -029 0O 0-8

-01 02 08 0l
[ 01 0 03 -03

Using Theorem 1, we choose

14 0 -02 04
Hol 0 16 02 -04
-02 02 184 -05
04 -04 -0.5 41

which satisfies the diagonal dominance condition given by (4). Since n=4 in the present
example, there are 22"~! = 128 matrices in equation (20) which need to be checked. We used
MATLAB to generate the 128 matrices A}/, from A" and A¥ and to verify the positive-
definiteness of matrices Q in (20). In particular, the matrix given by

T 05 -02 02 0
An= 01 029 015 08
02 02 04 01l
01 -01 03 -05

corresponds to the matrix

08354 03458 -0-3458  0.7208

AT _ 03458 1.2892 01966 -0-3698
Qus = H = AipgHA vz -0-3458 0-1966 1-1766 02574
07208 -0-3698 02574  1.6306
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having an eigenvalue 4,,(Q) =0-0021>0 which turns out to be the smallest eigenvalue among
all the Q matrices involved. Thus, with the matrix H chosen as above, all conditions in
Theorem 1 are satisfied and therefore, the equilibrium x, =0 of (1) with A™ and A given above
is globally asymptotically stable.

The matrix H in (33) is determined by the following procedure. Compute A, = 1(A™+ AM), let
H=[h;], and express Q = [¢q;] = H-A{HA, in terms of h;. Choose 0,>0, i=1,2,3,4. Define
a cost function J as

4
J= ltgl&‘@%- j_;‘iojlq.-j I] (34)
We can maximize the function J defined in (34) under the constraints given by equation (4)
using linear programming. If the maximization of J results in J>O0, then, the matrix
Q = H - A} HA, is positive-definite. (In fact, />0 implies that Q is an M-matrix (see Reference
(10], p. 47 for the definition and some properties of M-matrices). In particular then, Q is
positive-definite.) In the present example, we chose 0,=1:9, 0,=1-02, ;=1, and 0,= 1.23,
and we determined the matrix H given in (33). (In the present example, the solution which
guarantees that J> 0 is not unique and we picked one of them for purpose of demonstration.)
We note that different choices of o s will result in different matrices H and for some of these,
the maximization of the function J may not result in a positive-definite matrix Q. A natural
choice of the o;s is to set o,=1 (which does not work for the present example). In the
procedure demonstrated above, we wanted to determine a matrix H which satisfies the
conditions in Definition3. To start with the matrix Ay= ; (A™+A") in this procedure has been
found to work in most cases.

Example 2
We consider system (1) with A € [A™, A¥] and
“-1 -02 -01 -02

Ciama M. 03 04 -01 05
A=3A"+AD=" 01 01 -03 -03 (35

01 -01 02 -05
According to Theorem 2, we choose (using the procedure outlined in Example 1)

1.1 04 01 02
g-|04 07 01 0

01 01 08 -01

02 0 -01 06
which satisfies condition (4). We then compute a(A4,)=1-5, |H||l.=18,
0219 0123 0017 0025
CH-ATHA -|0123 0468 0057 0051
¢ Aol I0-017 0057 0662 -0-077
0025 0051 -0077 0247

A,(Q)=0-1683, and

Am
(a(Ao)) + "7(|Q|2 - a(A,) = 00308
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We conclude from Theorem 2 that
la(A¥ - A™)<0-0308

is a sufficient condition for the equilibrium x, =0 of (1) to be globally asymptotically stable if
A, is specified as in (35).

Example 3 ( A€ ,
M
]

To apply Corollary 1(i), we consider system (2) with [A™, A

m _ '—0'5 0'4
A '[-0-7 1-1]
AM= —0‘1 l'l

[—0-4 18

and

-l

In the present case, the constraints for matrix F = [f, f,] € R'*? can be written as

(P IV ARIVARS

We choose the point (f,,f,)=(0-2, —0-8) on the edge of the region in the f,—f, plane
determined by the above condition. Selecting F = [0-2, —0-8], we have || F l.=1,

Am + BF= _0’5 0'4
|-05 03

and

A" pro[-01 11
(02 1

It can easily be verified that [A™ + BF, A¥ + BF] possesses Property ® for this specific choice
of F.To see this, we compute G, = A, + BF, where A, = 1 (A™ + A¥). We determine a matrix H
which satisfies condition (4) in a similar manner as in Example 1 to obtain

1 =07
H=
[ -07 21 ]
Then, corresponding to every matrix AY,. (there are a total of 8), the matrix Q in Definition 3
(equation (20)) is positive-definite. In particular, the matrix

_[-05 04
Gs‘[—o-z 1]

yields

H-G'HG. = | 0806 0486
O GsHG;s [—0-486 0-4
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he matrix Qs has the smallest eigenvalue A =0-0763 among ai. the involved Q matrices. In
accordance with Corollary 1(i), system (2) with (A, B) given above is stabilizable by linear
state feedback.

5. CONCLUDING REMARKS

For linear systems with parameter uncertainties and subject to state saturation, we established
results concerning two important issues. First, for the case when the input is zero, we
established results for the global asymptotic stability of the equilibrium x, = 0. Because of wide
interest in such systems in engineering, our results have potentially many applications. Next, for
linear systems with parameter uncertainties and subject to state saturation, we applied the above
results to establish some results for the stabilizability of such systems by means of linear state
feedback. We demonstrated the applicability of our results by means of several specific
examples.
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