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During the implementation process
of artificial neural networks, de-
viations from the desired ideal neural
network are frequently introduced.
These include parameter perturba-
tions, transmission delays, and inter-
connection constraints. In the present
article, we study the effects of these
realities of imperfection on the qualita-
tive behavior of artificial feedback
neural networks. To accomplish this,
we utilize a specific class of neural
networks (Hopfield-like neural net-
works) with a specific application (the
realization of associative memories) as
a vehicle for our study. The principal
issues which we address concern the
effects of parameter perturbations,
transmission delays, and interconnec-
tion constraints on the accuracy and on
the qualitative properties of the net-
work memories.

Introduction

An increasing number of applications of artificial neural
networks in a variety of areas has brought to the forefront
problems that arise in the implementation of such networks, be
it by VLSI, specialized digital hardware, opto-electronic means,
and even simulations. Specifically, in such implementations,
several limitations are encountered which may affect the quali-
tative performance of the neural networks, including limitations
due to neural network parameter uncertainties, interconnection
constraints, and time delays (especially in VLSI). One or more
of these limitations are encountered in most applications that
employ artificial neural networks, especially feedback neural
networks, which are also called recurrent neural networks.

In this article we present a systematic analysis of artificial
feedback neural networks which addresses limitations to the
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qualitative behavior (performance) of such networks which are
due to parameter uncertainties, time delays, and constraints in the
interconnecting structure of a network. Our objective is to present
results which are as universal as possible. However, to fix ideas
and provide motivation, we will employ specific classes of neural
networks and specific applications. These include continuous-
time (i.e., analog) Hopfield neural networks with applications to
associative memories, using sigmoidal functions or saturation
non-linearities as activation functions. The problems which we
will address are as follows:

(i) Given a neural network with a desired set of operating
points (e.g., in associative memories, a desired set of asymptoti-
cally stable equilibria which are used to store a desired set of
stable memories), and given an associated neural network with
perturbations in the parameters, determine conditions which
will ensure that the perturbed neural network will possess a set
of operating points which are near the operating points of the
original unperturbed neural network. Determine sharp estimates
of the distance between the operating points of the unperturbed
neural network and the corresponding operating points of the
perturbed neural network.

(ii) Given a neural network with a desired set of operating
points (and with no time delays), and given an associated neural
network with time delays, determine conditions which ensure
that for all time delays that are less than some upper bound, the
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operating points of the neural networks with time delays will
coincide with the operating points of the corresponding network
without delays and exhibit similar qualitative behavior (e.g., in
associative memories, the network with delays should possess
asymptotically stable equilibria which coincide with the asymp-
totically stable equilibria of the corresponding network without
delays). Determine a sharp estimate for the above upper bound
for the time delays.

(iii) Devise synthesis techniques (for associative memories)
which incorporate constraints on the interconnecting structure of
a network (e.g., prespecified sparsity constraints).

The issues addressed above have significant practical impli-
cations in VLSIimplementations. Specifically, parameter pertur-
bations will in general result in inaccuracies of the network
operating points (stable memories), transmission delays will in
general impose limitations on the size of a network, and inter-
connection constraints will in general result in a reduction of the
storage capacity of a network. For a good reference which
touches these issues, refer to Mead [19].

As mentioned earlier, we utilize implementations of associa-
tive memories by Hopfield-type networks as a vehicle for our
presentation. This choice was deliberate, since this class of
networks is well understood and is frequently used as a bench-
mark. It is not our intention here to compare such networks with
other types of nets which are usually assumed to be more effec-
tive implementations of associative memories (e.g., implemen-
tations of Hamming distance networks).

Neural Network Models
We consider a class of artificial feedback neural networks
which can be described by systems of first order ordinary differ-
ential equations given by

%=—Bx+TS(x)+U 1)

where x is a real n-vector (denoting the neuron variables), x
denotes the time derivative of x, B is a real n x n diagonal matrix
with positive elements (representing self-feedback), T'is a real n
X n matrix (representing the interconnections among the neu-
rons), U is a real n-vector (representing bias terms), and the real
n-vector valued function S(x) (representing the neurons) will
assume one of the following two forms:

(i) each component si(x;) of S(x) = [si(x1), ..., sn(xn)]T is a
sigmoidal function (i.e., s; maps the real numbers R into the real
interval (-1,1), it is smooth and monotonically increasing, and its
graph is symmetric with respect to the origin); or

(ii) each component of S(x) is a saturation function defined
by

Lx;>1
sat(x;)=4x;,-1<x; <1
-1, x; <-1

For the case when the activation functions si(x;) are sigmoidal
functions and the matrix T is symmetric, system (1), which is
frequently referred to as the Hopfield model, has been widely
studied (see, e.g., [7], [10-13], [20], [21], [25-27], [32]). (In the
present article, we will state explicitly when assuming that T is
symmetric.) Among other applications, when the components of
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S(x) are saturation functions, system (1) has been used to store
bipolar memories and as cellular neural networks (see, e. g., [3],
[4], [14-16]).

In the implementation of artificial neural networks (e.g., in
VLSI implementations), parameter errors are often unavoidably
encountered. We will use a perturbation model of system (1)
given by

x==(B+AB)x+(T+AT)[S(x)+ AS(X)|+ (U +AU)  (2)

where B,T,S(x) and U are defined as in (1), B=B+AB is areal
n x n diagonal matrix with positive elements, T + AT is a real n
x n matrix, U + AU is a real n-vector, and AB, AT, and AU are
perturbation terms. When the s; are saturation functions, we
assume that AS(x) = 0. When the s; are sigmoidal functions, we
assume that all components of S(x) + AS(x) = (S + AS)(x) are
also sigmoidal functions and we regard AS(x) as a perturbation
term. We view (2) as a perturbation model for system (1).

In implementations of artificial neural networks, time delays
are also frequently unavoidably encountered. Using once more
system (1) as a vehicle for study, we will consider neural net-
works with transmission delays, described by a system of delay
equations given by

%(1) = —bx; (1) + iz,-(jo)s 5 0x;(8)
Jj=1

M=

n
+3 YePs (-t )+ U i=1 .
1 j=1

k

3)

where x = (x1, ..., xu), B = diag[by, ..., ba]", U = (Uy, ..., Up)T.
where x, B, and U are defined similarly as in (1), where the t,fjk>

denote the neuron interconnections which are associated with
delay x>0, k = 1, ..., K, and where the t,%m denote the neuron

interconnections for which there are no time delays, 1 <i, j<n.
We will view (3) and (1) as having identical parameters, except
for time delays.

A special case of system (3), having identical time delays T«
=1,k=1, ., K,is given by

x(t) = -Bx(t) + LS(x(t)) + T,S(x(t — 1)+ U 4)

where the real n x n matrix 7 represents the neuron interconnec-
tions with no delays while T> represents the neuron interconnec-
tions which are encumbered with a delay 1 > 0.

Some Background Material

A great deal of the qualitative behavior of artificial feedback
neural networks concerns the stability properties of equilibria
which serve in a variety of applications as the operating points
of the networks. For example, in the case of associative memo-
ries, asymptotically stable equilibria of neural networks are used
to generate stable memories.

When using the term stability, we will have in mind the
concept of Lyapunov stability of an equilibrium. For purposes of
completeness, we provide here heuristic explanations for some
of the concepts associated with the Lyapunov theory. The precise
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delta-epsilon (8-€) definitions of these notions can be found, for
example, in Chapter 5 of [23].

The neural network models discussed in the previous section
are described either by a system of first-order ordinary differen-
tial equations (equations (1) or (2)) or by a system of first-order
delay differential equations (equations (3) or (4)). These equa-
tions describe the process by which a system changes its state.
To simplify our presentation, the focus in the following discus-
sion will be on system (1) and (4). We first note that system (1)
is defined on R", the real n-dimensional vector space with some
norm |-| defined on it (e.g., the Euclidean norm) while system (4)
is defined on the function space C«, consisting of all real, n-vector
valued continuous functions defined on a real interval of length
T (e.g., [f0 T, ®], © > 0) with norm given by
llxll = max,, _c<«, |¥(1)] Where || denotes some norm on R". For

each real n-vector xo, we let ¢(t, fo, x0), ¢ 2 to, denote the unique
solution of system (1) with initial condition §(tg, t0, x0) = x0. (The
existence of this solution is ensured by the assumptions that are
made on the right-hand side of (1) (refer, e.g., to [23])). Similarly,
for a real n-vector valued continuous function Yo defined on [7p
-1, to] (i.e., Yo is in Cz), we let (¢, f0, Wo), t = 1p -T, denote the
solution of system (4) with the initial condition ¢(s, 0, W0) = Yo(s)
for all s € [1p -7, to]. Now if for (1), it is true that ¢z, t0, xe) = xe
for all £ > 19, then x is called an equilibrium of system (1). Also,
if We = x. is a constant function on [# - T, #o] and if for (4), it is
true that ¢z, to, Ye) = Xe for all 7 > #9, then xe = e is called an
equilibrium of system (4).

The following characterizations pertain to an equilibrium x.
of system (1). Similar statements can be made for system (4).

(i) If it is possible to force the solutions ¢¢, fo, x0) to remain
as closely as desired to the equilibrium x. for all # > o by choosing
xp sufficiently close to xe, then the equilibrium x. is said to be
stable. If x, is not stable, then it is said to be unstable.

(ii) If an equilibrium x, is stable and if in addition, the limit
of ¢(¢, 10, xp) as t tends to infinity equals x. whenever xp belongs
to D(x.), where D(xe) is an open subset of R” containing x., then
the equilibrium xe is said to be asymptotically stable. The largest
set D(x.) for which the preceding property is true is called the
domain of attraction or the basin of attraction of xe. If D(x.) =
R", then x, is said to be asymptotically stable in the large or
globally asymptotically stable.

In the case of delay differential equations (4), the preceding
definitions are similar (in (ii) above, R" is replaced by Cr and
D(x,) is a subset of Cr).

In the literature on neural networks, the term global stability
is frequently used. This term should not be confused with the
concept of global asymptotic stability introduced above. A neural
network (such as, e.g., system (1) or system (4)) is said to be
globally stable if every trajectory of the system (every solution
of the system) converges to some equilibrium. Clearly, a globally
stable network cannot sustain oscillations. Usually, global stabil-
ity in a neural network is established by making use of an energy
function or functional for the network in a manner similar to
Lyapunov’s Second Method, discussed next.

For system (1) (or system (2)), the Second Method of
Lyapunov (also called the Direct Method of Lyapunov) involves
the existence of scalar valued functions (defined on R") having
certain properties. Frequently, these functions, called Lyapunov
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functions, may be viewed as generalized energy functions for a
given system or as a generalized distance function of the system
state from a given equilibrium point (which, without loss of
generality, may be taken to be the origin). If, for example, such
a function is positive definite and if its time derivative along the
solutions of system (1) is negative definite, then the equilibrium
under discussion (the origin) is asymptotically stable. An exam-
ple of another such result goes (for historical reasons) under the
name of Invariance Principle and has been used widely in the
qualitative analysis of artificial feedback neural networks. When
applied, e.g., to system (1), the Invariance Principle has been
used to prove that the neural network (1) is globally stable if the
following conditions are satisfied: (a) there exists a real, scalar
valued, and continuous function E defined on R" such that the
time derivative of E along the solutions of system (1), denoted
by E’, is a non-positive valued function; (b) every solution of
system (1) is bounded; and (c) the set of all equilibrium points of
system (1) is a discrete set.

For system (4), the Second Method of Lyapunov involves the
existence of scalar valued functionals (defined on Cy), called
Lyapunov functionals. For such systems, Lyapunov stability
results and invariance theorems have been established which are
similar to the results cited above for system (1) (or system (2)).

When considering delay differential equations, the above
discussion was given for system (4). All of the results enumerated
above are applicable to systems with multiple delays as well,
such as system (3), by incorporating appropriate refinements
which take into account the various time delays T, k=1, ..., K.

For the principal results of the Lyapunov theory (including
invariance theorems) for systems described by ordinary differ-
ential equations and delay differential equations, refer, €.g., to
[8], [22], and [23].

In applying Lyapunov’s Second Method to establish global
stability for neural networks in the form (1), we usually assume
that T is symmetric. When the activation functions si(-), 1 £i<
n, are sigmoidal functions, we utilize an energy function of the
form (see, e.g., [10], [11], [20]),

1 7 T n o Ji 1
E(y)=——y Ty=U'y+ X b [s; (mdn

2 i=l 0 ®)
where y = (yj, ..., yn)T and y; = si{x)), i = 1, ..., n. When the
activation functions are all saturation non-linearities, the energy
function associated with system (1) can in this case be chosen as

(see, e.g., [3D),

1 7 ., Ll r
Ey)=-=y'Ty-U"y+=y" By.
(2] 2y y y+5y By )

It is easily verified that for the above choices of E, condition (a)
of the Invariance Principle given above is satisfied for system
(1). Furthermore, it is easily shown that every solution of system
(1) is bounded (see, €.g., [13,14]), and thus, condition (b) of the
Invariance Principle is also satisfied for system (1). Finally, it can
also be shown that for almost all U € R" (except on a set with
Lebesgue measure 0), the set of equilibria of system (1) is discrete
(see, e.g., [13,14]), and thus, condition (c) of the Invariance
Principle, given above, is satisfied as well. This shows that if T
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is symmetric, then for almostevery U € R", system (1) is globally
stable.

In the case of system (3) or (4), energy functionals are
employed in establishing global stability. We defer our discussion
of this topic to the fifth section (dealing with time delay effects).

Globally stable artificial neural networks with discrete sets of
equilibria can be used to partition the state space by means of the
domains of attraction of the asymptotically stable equilibria of
the networks. Such partitions determine equivalence relations
which can be employed in a variety of applications of data
classification, including associative memories. In such applica-
tions, a desired set of asymptotically stable equilibria determines
a set of neuron output vectors that are used as stable memories
to store information while the remaining undesirable asymptoti-
cally stable equilibria are viewed as spurious states. The loca-
tions of the desired stable memories are determined by choosing
the network interconnections, given by 7, in an appropriate
manner. We will call this process of selecting T synthesis.

Most of the synthesis procedures for associative memories
realized by artificial neural networks of the type considered in
the present article are motivated by Hebb’s hypothesis [20]. In
the following, we will summarize three methods that pertain to
system (1). We allow the activation functions to be either satura-
tion non-linearities or sigmoidal functions. In the latter case, we

assume high gains for the sigmoidal functions (i.e., is

dSi
. 0)

very large). We mention in passing that the synthesis methods
which we are about to describe are applicable to a variety of
artificial feedback neural networks, including the discrete-time
Hopfield model (see, e.g., [20}), linear neural networks operating
on a hypercube (see, e.g., [14]), and so forth (see, e.g.,
[1,2,59,13]).

The Outer Product Method (see, e.g., [10,11])

We wish to store r desired patterns y’, 1 < i < r, which
correspond to r asymptotically stable equilibria x* of (1) (i.e., y'
= §(x')), as stable memories. A set of parameter choices deter-
mined by the Outer Product Method are given by

T=Sy/(), B=IandU=0
j (OPM)

where I denotes the n X z identity matrix. The name of this method
is motivated by the fact that T consists of the sum of outer
products of the patterns that are to be stored as stable memories.
This method requires that the y', 1 </ < r, be mutually orthogonal
(ie., )Y =0 when i # ).

The expression (OPM) constitutes hard wired learning. Adap-
tive or on-line learning by the outer product method is accom-
plished by modifying (OPM) as

T>T+oy'), B=1,U=0 (AOPM)

where yl is a new memory to be learned by the network, or by
modifying (OPM) as

T->T-a'(!)!, B=1,U=0 (30PM)

June 1995

where yl is a stored memory which is to be forgotten by the
network (see, e.g., [10,11]). In both cases, o > 0 is a small
constant which determines the rate of learning (or forgetting).

The Projection Learning Rule (see, e.g., [7,25,26])

When the desired prototype patterns ¥ = S('), 1 <j < r,tobe
stored in (1) as stable memories are not mutually orthogonal, a
method called the Projection Learning Rule can be used to
synthesize the interconnection parameters for (1).

Let

S=p .y

Recall that for £ € R™", the Moore-Penrose pseudo-inverse 3.
R" — R" defines the linear mapping of any b € R to a unique x
€ R" (i.e., x = £'b) which has the property that x is the vector that
has the smallest Euclidean norm Lxl on the set {y € R": IEy-bI2 is
minimized }. Then the interconnection matrix T for system (1)
is given by

T=x¥ (PLR)

(refer, e.g., to [20,25,26]). We note that T determined by (PLR)
satisfies the relation

TZ=X

which shows that T is an orthogonal projection of R" onto the
linear space spanned by y, 1 <j<r (hence, the name Projection
Rule). It is easily verified that when the y, 1 < j < r, are mutually
orthogonal, then the Projection Learning Rule and the Outer
Product Method coincide. Although the Projection Learning
Rule enables us to store arbitrary vectors as patterns y' = S(x"),
1 <i<r,corresponding to equilibria x’ of (1), there is no guarantee
that the equilibria x' are asymptotically stable.

The (hard wired) learning rule (PLR) can be modified to yield
adaptive learning (and forgetting) rules which are in the same
spirit as the on-line rules given by (AOPM) and (60PM), since
the Moore-Penrose pseudo-inverse can be computed iteratively
(see, e.g., [25,26]).

The Eigenstructure Method (see, e.g., [13,14,32])

Neural networks which are synthesized by this method are
guaranteed to store desired sets of patterns as stable memories
which need not be mutually orthogonal and which correspond to
asymptotically stable equilibria of (1). In the following, we
assume that the patterns to be stored are bipolar vectors, i.c.,
€B"={y=(l.oyn) € R":yi=%1,i=1,...n},1<j<r and
we assume that the activation functions for (1) are saturation
non-linearities.

The present method involves a singular value decomposition
of the n x (r - 1) matrix

Y= [yI _ yr, — yrAl _yr]
given by

Y=rzw’
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where I" and W are unitary matrices and X is a diagonal matrix
with the singular values of Y on its diagonal. Letting I" = [yl, .
¥"], we recall that { Yl, ...,Y'} is an orthonormal basis for the space
R".If we let k denote the dimension of the linear space L spanned
by the vectors y! -y, ...,y -y", then {, ..., 7"} is an orthonormal
basis for L, and {*/‘“, ves '{’ } is an orthonormal basis of LL, the
orthogonal complement of L. The parameters of the neural net-
work are now given by

T=p3a)aY -t Sahe)
i=1 i=k+1 (ESM)

U=py -Ty', B=1

where I denotes the n x n identity matrixand Te Rand p > 1 are
parameters. It can be shown (see, e.g., [13-16]) that when ©> 0
is sufficiently large, all prototype vectors y', ..., y" are stored as
stable memories (corresponding to the asymptotically stable
equilibriaxl ,u X, where y' = S(x),i=1, ..., ). Infact, all vectors
in Ly~ B” are stable memories, where Lq is the affine space given
byL+y".

For the eigenstructure method, iterative learning (and forget-
ting) rules which are in the spirit of the adaptive learning rules
discussed above for the outer product method and the projection
learning rule have also been considered (see, e.g., [32]).

It should be noted that the outer product method and the
projection learning rule are motivated by Hebb’s hypothesis.
Although a relation of the eigenstructure method to Hebbian
learning is not obvious, a connection can be established between
(ESM) and (OPM) or (PLR) for the case when the stored memo-
ries are mutually orthonormal.

For a more detailed and complete discussion of the above
synthesis procedures, refer, e.g., to [20].

Effects of Parameter Perturbations

In the implementation process of artificial neural networks,
parameter errors are unavoidably encountered. As discussed in
the second section (dealing with neural network models), for
system (1) such errors include perturbations of (interconnection)
weights, T + AT; perturbations of the activation functions, S +
AS; perturbations of the self-feedback terms B + AB; and pertur-
bations of the external inputs, U + AU. Such inaccuracies will
result in errors of the desired stable memories (or corresponding
asymptotically stable equilibria), or can even result in the disap-
pearance of stable memories, or the introduction of spurious
states. Accordingly, an understanding of qualitative robustness
properties of system (1) with respect to parameter variations is
of great importance. Of particular interest will be the robust
stability of equilibria and error estimates of equilibrium loca-
tions.

In the following, we consider neural networks (1) and (2) with
activation functions modeled by sigmoidal functions and satura-
tion non-linearities.
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Networks with Sigmoidal Activation Functions
In (1) and (2) we assume that the activation functions are
sigmoidal functions in the sense described in the second section.
We begin our discussion by making precise the meaning of
robustness for system (1). The system (1) is said to be robust if
for every asymptotically stable equilibrium x. of (1), there is an
asymptotically stable equilibrium ¥, of (2) which is near xe and

the distance between xe and %, , given by lxe - ¥, |, can be made

as small as desired by requiring that
max{|AB||AT},|AUL|AS(x, ), |AS"(x,)[} be sufficiently small, where
d(Asl)(xl) d(Asn)(xn)

AS (x)—dzag[ a ) eens i,
some norm in the real n-vector space R" or in the (n X n) matrix
space R™" (induced by the appropriate corresponding vector
norm on R"). Since all norms in a finite dimensional linear space
are equivalent, the above definition is independent of the particu-
lar choice of norm |+|. (For a more precise €-8 type definition of

robustness of (1), refer to {29]).

Roughly speaking, robustness in the present context means
that system (1) is not overly sensitive to small parameter pertur-
bations. In synthesis procedures of associative memories for
system (1) (of the type discussed in the third section under
background material) robustness ensures that small errors in
parameters encountered in the implementation process will not
adversely affect the accuracy of the desired stored memories.
(That is, robustness ensures that small parameter errors encoun-
tered in the implementation process of neural network (1) will
not adversely affect the locations of the desired asymptotically
stable equilibria of system (1) to be used to generate the memo-
ries of the network). Clearly, robustness of system (1), as defined
above, is of great practical importance in the implementations of
such networks.

A natural question to ask is whether system (1) is perhaps
always robust. To see that this is not the case, consider the scalar
equation

] and where || denotes

. 2 2
X =——Xx+—arctan x
P @)

which is clearly a special case of system (1). For (7), x. =0 is an
asymptotically stable equilibrium. However, for any fixed € >0,
the perturbation of system (7) given by

x= —zx+(l +£)3arctan x
T T

®

has no asymptotically stable equilibrium in a sufficiently small
neighborhood of x. = 0 (refer to [29] for details).

It is shown in [29] that a necessary and sufficient condition
for the robustness of system (1) (in the sense defined above) is
that for every asymptotically stable equilibrium x. of system (1),
Xe is asymptotically stable with respect to the linearization of
system (1) (near x¢). This condition can be verified by testing the
Hurwitz stability of the coefficient matrix

B + TS(xe)
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for each asymptotically stable equilibrium x. (recall that a matrix
is Hurwitz stable if all its eigenvalues have negative real parts).

When the above condition is satisfied (i.e., when system (1)
is robust), Brouwer’s fixed point theorem (see [28]) can be used
to obtain the following estimate of the distance between the
equilibrium x, of (1) and the corresponding perturbed equilib-
rium X, (of system (2)),

|%. - x| < c max{|aB|_,|aT,,|AS(x,)|_.Jav],. } ©
when in the right-hand side of inequality (9), the maximal
number is sufficiently small. In the above, |-|_ denotes either the
infinity vector norm or the matrix norm induced by the infinity
vector norm. Also, ¢ = 2(2 + Rg + ITl)lA lleo With Rp > Ixeleo and
A =-B + TS'(xe).

A more complete statement of the above result is as follows.
Assume that x. is an asymptotically stable equilibrium with
respect to the linearization of system (1) near x (i.e., the matrix
A = -B + TS'(x) is Hurwitz stable which implies that x. is an
asymptotically stable equilibrium with respect to system (1)).
Then there is a constant M > 0 (which can be expressed explic-
itly—refer to [29]) such that if

max{|AB|_,|AT|__,|AS(x, ) .|AS"(x, )

Jaul <M,

then there exists a vector ¥, which is an asymptotically stable
equilibrium of the perturbed system (2) and %, satisfies the
estimate (9).

Summarizing, when the neural network (1) is robust and when
the implementation errors for (1) are reasonably small, then

(i) for every desired memory there exists a corresponding
actual stored memory; and

(ii) errors in memories < ¢x (parameter errors in the imple-
mented network), where ¢ is a computable constant (as specified
earlier).

Networks with Saturation Activation Functions

In the following, we assume that in (1) and (2) the activation
functions are saturation non-linearities (i.e., y = (ys, ..., y,,)T =

Clar)

N

X: A

v

Fig. 1. A geometric interpretation of the robustness analysis.
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A

(S1XD)s ooy S = (sGH(x1), ..., s0Gen))| = sat(x)), that AS(x) =
0, and that only bipolar vectors (i.e., vectors belonging to the set
B™) are to be considered as candidates for desired stable memo-
ries.

For x in R?, we let 8(x) = minlsis,,{|x,-|} and for o = (aty, ...,

on) € B"we let C(0)) = {x € R": xj0t; > 1} (refer to Fig. 1). Now
suppose that o', ..., o € B are desired stable memories of system
(1) corresponding to the asymptotically stable equilibria Bl, v
B’, respectively (i.e., o =satBl),j=1, ..., 7). Let

= mi J
v lrél;;{ﬁ(ﬁ)blv (10)

It is shown in [16] that (xl, ..., 0" are also stable memory vectors
of system (2) provided that

|57 aB)|_+|B'@am)|_+[Ba0)|_<v-1 ()
This robustness criterion is proved by using the result (which is
proved in [15]) that if o € B" and if B = B (Ta + U) e C(o),
then o is a stable memory and B is a corresponding asymptoti-
cally stable equilibrium (i.e., o = sat(B)) for system (1).

Now suppose that o is a stable memory and B is a correspond-
ing asymptotically stable equilibrium of system (1). After pertur-
bation, the new asymptotically stable equilibrium point B is
given by

B =(B+AB) (T + AT)a +(U + AU)L. 12)

When condition (11) is satisfied, it can be shown that
E € C(at), which implies that a is still a stable memory (of (2)).

To give a geometric interpretation of the above, assume that
a.e R%isadesired stable memory of system (1) with correspond-
ing asymptotically stable equilibrium of (1) given by B. Then B
=B (T + U) must be in the region C(o), since v = min{d(B)}
> 1 (refer to Fig. 1).

The perturbations AB, AT, and AU give rise to a displacement
of the equilibrium B (of system (1)) to a new equilibrium E (of
(2)). In order for o to remain an invariant stable memory for
system (1) after perturbation (i.e., in order for o to be a stable
memory for system (2)), we require that E also be in C(a). It is
clear that as long as ﬁ remains in C(ct), o will be a stable memory
of the perturbed system (2). This robustness result provides one
of the possible upper bounds for the perturbations, specified by
|B'1(AB)|” +|B'1(AT)|M + |B“(AU)L , which will ensure that the

perturbed equilibrium B and the original equilibrium [ are within
the same region C(c). This upper bound is given by v - 1 where
v is given in (10).

For system (2) we require that b; + Ab; > 0 for each i. It is clear
that a perturbation AB with Ab; < 0,i = 1, ..., n, will not change
the desired memory vectors ol .., of e B of system (1) (refer
to (12)).

When considering perturbations due to an implementation
process, the focus is usually on the interconnection matrix 7 and
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not on the parameters B and U. When the latter can be ignored
(i.e., when we can assume AB = 0, AU = 0), then condition (11)
assumes the simple form
B YAk <v - 1. (13)
In closing, we observe that the concept of robustness intro-
duced earlier in the first subsection of the present section (for
system (1) with sigmoidal activation functions) is applicable to
the present discussion as well (for system (1) with saturation
non-linearities). We conclude from (11) that under the present
assumptions (that AS = 0 and that the desired stored memories
be bipolar vectors), system (1) will always be robust (in the sense
of the present context). Not surprisingly, this tells us that for
applications of the type considered herein (e.g., associative
memories with bipolar memory vectors), system (1) with satura-
tion non-linearities for activation functions will in general be less
sensitive with respect to parameter perturbations than system (1)
with sigmoidal non-linearities tor activation functions.

Effects of Time Delays

In the implementation process of artificial feedback neural
networks, especially by VLSI, transmission delays are unavoid-
ably introduced. It is known that in globally stable feedback
neural networks without time delays, oscillations can occur after
the introduction of delays (see, e.g., [9] and [17]). It is therefore
mmportant to take the effects of time delays into account in the
qualitative analysis of such networks.

To simplify our discussion, we present global and local results
for system (4) endowed with the same time delay for various state
variables. We then present extensions of these results to systems
with multiple delays described by equation (3). In both cases,
these results show that for a given set of parameters system (1)
and system (3) (or system (4)) will possess similar global and
local qualitative behavior, provided that the time delays are
sufficiently small.

Global Stability Results

We first assume that in system (4) the activation functions s;
are sigmoidal functions and we assume that the matrix T =T +
T2 is symmetric. In applying the Invariance Principle discussed
in the third section (dealing with background material) to estab-
lish global stability of system (4), we associate with this system
the energy functional given by

17 T n Yilt) 1
E(l‘z):‘zy Oy®)-U"y)+ Zb; | 57 (0)do
0

i=1

t
+ J yw) = YOI T f(w =0T, [y(w) = y(O)ldw

-t

where x/() denotes a continuous function on [-t, 0] defined by

ids) = xit + ) for all s € [-1, 0], y() i S(x(?)), and fis a
continuously differentiable, non-negative, scalar valued function
detined on [-7, 0]. It can be shown that there exists a function f{-)
such that the time derivative of E along the solutions of system
(4) is a non-positive valued function. The determination of such
an f(*) is lengthy. We refer the interested reader to [30] for the
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details of these computations. It turns out that a sufficient condi-
tion for the existence of such f{-) is given by

BIT2r < 1 (15)

where T > 0 denotes the time delay in system (4),
A ds; ds,
= S’(x),, §'(x)=diagl —(xy), ..., —2(x,,) |,
B=max|s'(x),, 5'(x) tg[dxl( s ,,)}

and |-I2 denotes the matrix norm induced by the Euclidean vector
norm (i.e., /A/2 = [Ama{AT A)] 12 where Amax(AT A) is the largest
eigenvalue of A” A).

Now similarly as in the case of system (1) (without delays),
it is easily shown that every solution of system (4) is bounded
and for almost all U € R" (except a set with Lebesgue measure
zero), the set of equilibria of system (4) is a discrete set (refer to
[301). It now follows from the Invariance Principle that when T'
=T+ T2is symmetric and when (15) is satisfied for almost every
U € R", then system (4) is globally stable.

To get an idea of how conservative (15) might be, we refer
the reader to {17], where through a linearization process, the
bound TBAmiT) < /2 for the (local) asymptotic stability of an
equilibrium of a special case of (4) is obtained. Backed by a
simulation study, it is then conjectured in [17] that if the above
bound is true at all asymptotically stable equilibria of (4), then
(4) is globally stable.

For the case when all components of S(x) in (4) are saturation
non-linearities, an energy functional which is similar to (14)

¥i(D
(with the term Zi f 1b,- | s57'(oMo replaced by the term
= 0

%zi " B3O is used in the application of the Tnvariance
Principle to obtain (15) as a sufficient condition for the global
stability of system (4) for almostall U € R"when T =T + T2 is
symmetric. (Under additional assumptions on T, a more conser-
vative result for the global stability of (4), given by TIT2l2 < 2/3,
was originally established in [4].)

Using a refinement to the functional given in (14) involving
the various delays for system (3), the Invariance Principle is
invoked in [31] to establish the sufficient condition for the global
stability of (3) given by

S ln),B<
T <
iy KTk (16)

where T, =[t'§jk)]nxn (refer to (3)), and B is the same as in

inequality (15).

Local Stability Results

As mentioned earlier, in the application of artificial neural
networks to associate memories, as well as in other applications,
the aim is to store information in stable memories which corre-
spond to specific asymptotically stable equilibria. Good criteria
which ensure such (local) stability properties are therefore very
important. We address this question in the following for system
(3) and (4).
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‘We begin by emphasizing that even for the case of linear delay

equations given by

x(t)=Ax(t)+ Bx(t - 1) a”n
where A and B are real n X n matrices and T > 0 is a delay, there
are no known general results which constitute necessary and
sufficient conditions for the asymptotic stability of the equilib-
rium x. =0 (see, e.g., [8]). Accordingly, the problem of determin-
ing the local stability properties of an equilibrium of a delay
differential equation is non-trivial, even in the case of linear
systems. It turns out, however, that by utilizing the special
structure of Hopfield neural networks with time delays, we can
prove that under the conditions of global stability given in the
preceding subsection, the asymptotic stability of any equilibrium
of system (4) (or of system (3)) can be deduced from the asymp-
totic stability of the same corresponding equilibrium of system
(1). In other words, if (15) is satisfied for system (4) (or if (16)
is satisfied for system (3)), then the Hopfield neural network (1)
without delays and the Hopfield neural network with delay, (4)
(or the Hopfield neural network with multi-delays, (3)) are
globally stable (for aimost every U € R"™), and furthermore, both
system (1) and system (4) (or, both system (1) and system (3))
have identical equilibria with the same local stability properties
at each equilibrium.

We summarize the above results in the following more gen-
eral and precise equivalent statements (given here for system
(4)). When system (4) satisfies (15) (and thus, (4) is globally
stable), then the following statements are equivalent (refer to [30]
for the proof):

(i) xe is a stable equilibrium of (4);

(ii) xe is an asymptotically stable equilibrium of (4);

(iii) .xe is a local minimum of the energy functional given

by (14); *

(iv) xe is a stable equilibrium of (1);

(v) xe is an asymptotically stable equilibrium of (1); and

(vi) X is a local minimum of the energy function E given

by (5).

We now see from the above results that when the time delay
7 is sufficiently small (i.e., when TBIT2l2 < 1), then a study of the
stability properties of the equilibria of a Hopfield neural network
with delay (system (4)) can be reduced to a study of the stability
properties of the equilibria of a corresponding Hopfield neural
network without delays (system (1)).

All of the preceding statements apply also to Hopfield neural
networks with multi-delays (system (3)) with condition (15)
replaced by condition (16) (refer to [31]).

For specific examples which demonstrate applications of the
results given in the present section, refer to {17,18,30,31].

‘We conclude the present section by noting that the robustness
properties with respect to time delays discussed above are not
only true for Hopfield-like neural networks, but for a much
broader class of recurrent artificial neural networks, such as, e.g.,
Cohen-Grossberg neural nets (refer to (2] and [5)]).

Interconnection Constraints
One of the major difficulties encountered in VLSI implemen-
tations of artificial neural networks is the realization of extremely
large numbers of interconnections in the network. Current VLSI
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technology restricts the connectivity in neural network imple-
mentations to a level at which one cannot expect to achieve more
than a few hundred neurons in an implemented neural network
chip. Accordingly, in many applications where large numbers of
neurons are required, fully connected neural networks are not
practical. This has motivated a specific neural network structure,
the cellular neural network structure (see, e.g., [3]), in which one
considers only local interconnections (among neurons), re-
stricted to small neighborhoods.

In this section we present synthesis procedures for associative
memories involving neural networks with three different inter-
connection constraints. The methodology advanced herein is
potentially also applicable to the Outer Product Method and the
Projection Learning Rule (summarized in the third section), as
well as other synthesis procedures. For purposes of discussion,
we confine ourselves in the following to a procedure which
constitutes a generalization of the Eigenstructure Method pre-
sented in the third section and which incorporates the perturba-
tion and robustness results of the fourth section for the case of
system (1) with saturation activation functions (refer to the
second subsection of the fourth section). We will consider three
specific cases: no interconnection constraints, prespecified spar-
sity constraints with no symmetry requirement, and prespecified
sparsity constraints with symmetric interconnection require-
ment.

Networks Without Interconnection Constraints

Suppose we are given a set of desired patterns al, e 0. We

wish to synthesize a system of form (1) which stores 0!1, ey
as stable memories. Without loss of generality, we choose B as
the n x n identity matrix and choose [/ = u(x’, forj=1,...,r, with
1> 1 (hence, / € C(ct))). Then T and U will be determined by
the relations

B =pod =T/ + U, j=1,..,r (18)

Solutions of (18) for T and U will always exist. To see this, let Y
=[a!-o, ..., o/ - &']. We need to solve T from

TY = pyY (19)

and set

U=pd -Td. (20)
This guarantees that system (1) will store the desired patterns o,
..., 0" as stable memories and Bl, ..., B" as corresponding asymp-
totically stable equilibrium points. Solutions of (19) (for T)
always exist since

Y
rank[Y)= rank| ---
ny

Indeed, a trivial solution for T is the n  n identity matrix
multiplied by . We wish to determine non-trivial solutions for
matrix T. This can be accomplished by many methods, including
the singular value decomposition method (refer to the third
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section). Performing a singular value decomposition of Y, we
obtain

D i o]V
Y=[F1§F2]

: T

0 : 0}V Q1)

where D € RP*? is a diagonal matrix with the non-zero singular
values of matrix Y on its diagonal and

p = rank [Y]. 22)
Then, (19) yields
T =l (23)
Solutions of (23) for T can be expressed as
T=punI +Wr; 4)

where W is an arbitrary n x (n -p) real matrix. It can easily be
verified that T given in (24) is also a solution of (19) and it is
non-trivial when p < n. The bias vector U can be computed as in
(20). We note that by special choice of matrix W, (24) can result
in a symmetric matrix T (refer to the third section and to [14] for
a special case).

The above steps constitute a synthesis procedure of neural
networks with no constraints on the interconnecting structure.
This procedure usually results in a fully interconnected neural
network. The consequence of the above design is that al, ..o
will be stored as stable memory vectors in system (1), that the
states [/ corresponding to o¢, j = 1, ..., r will be asymptotically
stable equilibrium points of system (1), and that all vectors in Ly,
~ B" including al, .., o, will be stored as memory vectors in
system (1), where Lo =

A
(a',...,0")=Span (' o, ..., ")+’ and Span (x,
..., Xn) denotes the linear subspace of R" generated by x;,

Aspan

vey X1

Networks with Prespecified Sparsity Constraints

The synthesis technique developed above will result in neural
networks with symmetric or non-symmetric coefficient matrix T
which in general will not be sparse. Fully interconnected artificial
neural networks with even a moderate number of neurons give
rise to large numbers of /ine-crossings resulting from the network
interconnections, and thus, pose formidable obstacles in VLSI
implementations. For this reason, it is desirable to establish
synthesis procedures which will result in interconnecting struc-
tures which do not demand large numbers of interconnections.
We will first consider the procedure which does not require
symmetric interconnections.

Sparsity constraints on the interconnecting structure for a
given neural network are usually expressed as constraints which
require that predetermined elements of T be zero. To simplify the
subsequent discussion, we consider without any loss of general-
ity the specific case when n =4 and the constraints on T are given,
for example, by
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I, 0 T3 0O

r=| @ T2 0 Ty
T 0 Ty 0
0 T, 0 Ty (25)

where the Tj’s are to be determined. The question to be answered
is whether for a given 4 X (r - 1) matrix Y, it is possible to
determine (non-trivial) solutions of T with structure (25) from
the matrix equation (19). We will show in the following that
(non-trivial) solutions for such T always exist as long as all the
diagonal elements of matrix T are assumed to be non-prespeci-
fied elements (e.g., as given in (25)) and p < n (p is defined in
(22)). One class of sparsely interconnected neural networks
which satisfies the above structural condition are cellular neural
networks, [3]. Cellular neural networks (which are also described
by equation (1)), require that the matrix T have a special sparse
structure in which all the diagonal elements of T are required to
be non-zero.

Solutions of Equation (19) for T with prespecified zero entries
will always exist, provided that the conditions mentioned above
are satisfied. To see this. we write (19) as

T.Y =wYifori=1,..,n, (26)
where T’ and Y; represent the ith row of T and Y, respectively. For
the example considered in (25), we have, when i =2,

h
Y,
0 T, 0 Tulr=[0 T, 0 Tyl v, =uy,.

Y,

This equation is equivalent to

Y.
(72 Tz4][Y2} =uh,
4

@7
and solutions of (27) for [T22 T24] always exist since
Y,
Y, 2
rank v~ rank | Y,
4
ur, (28)

Generally speaking, when T, i = 1, ..., n, are not prespecified as
zero elements, one of the rows of Y appearing on the right-hand
side of (27) will also appear on the left-hand side, which implies
that the rank condition (28) is satisfied. The condition p < n is
also required, since when p = n, one cannot guarantee to find a
non-trivial solution (p = n will sometimes result in the trivial
solution T equal to the identity matrix [14]). Solutions of (27) can
be determined using the singular value decomposition method as
was done when solving (19). Specifically, we perform a singular
value decomposition of
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and determine

[T Tos]=n0VuD'T + W), (30)
where W is an arbitrary row vector with appropriate dimension
and i = 2 for the example in (27). The bias vector U = [U], ...,
U n] iscomputedina 51m11armanner asin (20) The consequence
of this synthesis procedure is that o', ..., o will be stored as stable
memory vectors for system (1) with B, T, and U determined as
above, that the states ' corresponding to o, i = 1, ..., r, will be
asymptotically stable equilibrium points of the synthesized sys-
tem, and that the matrix T has the desired sparse interconnecting
structure.

It is readily seen that the synthesis procedures presented
above guarantee that ot , o are also memory vectors of system
(2) provided that (refer to equation (1))

B8+ |'a1|_+|B~'aU|_=|aB)_ +|aT], +|AUL, <p-1.

(3D

The above enables us to specify ar upper bound for the parameter
inaccuracies encountered in the implementation of a given net-
work design to store a desired set of bipolar patterns in system
(1). This bound is chosen by the designer during the initial phase
of the design procedure. This type of flexibility does not appear
to have been achieved before (e.g., [6,7,10,11,13,14,20,21,24-
27]. Specifically, the synthesis procedure advocated above incor-
porates two features which are very important in the VLSI
implementation of artificial neural networks: (i) it allows the
VLSI designer to choose a suitable interconnecting structure for
the neural network; and (ii) it takes into account inaccuracies
which arise in the realization of the neural network by hardware.

Networks with Sparsity and Symmetry Constraints
In this subsection, a synthesis procedure for associative
memories is presented which results in sparse and symmetric
interconnection matrices T for system (1). Presently, we assume
that in (2) AS=0, AB=0, and AU = 0.
For the B, T, and U determined by the synthesis procedure
with sparsity constraints with i > 1, we choose

AT=(TT-T)p2. (32)

A
Then, Ts=T+AT=(T + TT)/2 is a symmetric matrix. From our
robustness analysis result, we note that if
B'ATeo = ITT - T2 < 1 - 1, (33)
the neural network (2) will also store all the desired patterns as
memories, with a symmetric connection matrix T + AT = T.

The above observation gives rise to the possibility of design-
ing a neural network (1) with prespecified interconnection struc-
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Fig. 2. The four desired memory patterns.

Fig. 3. Grey levels.

ture and with a symmetric interconnection matrix. Such capabil-
ity is of great interest since neural network (1) will be globally
stable when T is symmetric [20]. It appears that (33) might be
satisfied by choosing p sufficiently large. However, from (30) it
is seen that large p will usually result in large absolute values of
the components of T which in turn may result in a large 177 - Tee.
Therefore, it is not always possible for (33) to be satisfied by
choosing | large. From (33), we see that if our original synthe-
51zed matrix T is suff1c1ently close to its symmetric part (T +
b )2, or equivalently, if 177 - Tl is sufficiently small, then (33)
is satisfied and we are able to design a neural network of form
(1) with the following properties: (i) the network stores (11 Lol
as stable memory vectors; (ii) the network has a predetermmed
(full or sparse) interconnecting structure; and (iii) the connection
matrix T of the network is symmetric.

An iterative algorithm (design procedure) can be utilized to
achieve this. Let AT be defined as in (32). For the given 1 > 1,
suppose that ATl > 1 - 1. We can find a A, 0 < A < 1, such that
MAT|e < p - 1, and we let 77 = T + AAT. We use this T} as the
new connection matrix for our neural network (1). According to
our robustness analysis, we see that al, ., o are still memory
vectors of system (1) with coefficient matrix T;, and we can
compute the corresponding asymptotically stable equilibrium

points as BJ=B_1(7"10£]+U) for j = 1, ..., r. Clearly

Bj € C(ar)). We can determine the upper bound v for the permis-
sible perturbation AT as in (10) and (11), where we use Bj instead

of B’ We repeat the above procedure, until we determine a
symmetric coefficient matrix T or until we arrive at v < 1 + 1
(where 1 is a small posmvc number, e.g., 1} = 0.001).

If weend up with T = T, we have found a solution. If we end
up with v < 1+ and T # T7, our design procedure is not
successful in solving a symmetric T for the given problem.
Experimental results indicate that this procedure will frequently
succeed in determining a symmetric matrix T [16].

Examples

We now apply the results of the preceding section to specific
cases. In all of these, we consider a neural network with 12
neurons (n = 12) and our objective is to store the four patterns
shown in Fig. 2 as memories. As indicated in thlS figure, twelve
boxes are used to represent each pattern (in R'?), with each box
corresponding to a vector component which is allowed to assume
values between -1 and 1. For the purpose of visualization, -1 will
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Fig. 4. Interconnecting structure of a cellular neural network.

represent white, 1 will represent black, and the intermediate
values will correspond to appropriate grey levels, as shown in
Fig. 3. The four desired patterns in Fig. 2 correspond to the
following four bipolar vectors:

o' =[1,1,1,1,-1,-1,1,-1,-1,1,1,107, o®=[1,-1,1,1,-1,1,1,1,1,1,-
1,117

o _ CLicro1g @ = LLLLLLLLL-A]

The casés wWhich we consider below involve different prespe-
cified constraints on the interconnecting structure of each net-
work.

Fig. 5. A typical evolution of pattern no. 1 of Fig. 2.

Fig. 6. A possible structure for a neural network without
line-crossings in the interconnecting structure.

Case I: Cellular neural network. We synthesized a cellular
neural network with the configuration given in Fig. 4. In doing
so, we chose B as the 12 12 identity matrix, u = 15, and we
determined T and U as specified in Table 1.

The performance of this network is illustrated by means of a
typical simulation run of equation (1), shown in Fig. 5. In this
figure, the desired memory pattern is depicted in the lower right
comer. The initial state, shown in the upper left corner, is generated
by adding to the desired pattern zero-mean Gaussian noise with a
standard deviation SD=1. The iteration of the simulation evolves

r 3.3333e—01 —-1.0991e—-15 o 3.3333¢—01 —1.4333¢401 [} 4] [1] [ 0 0 [\] b
—~3.5000¢+00 1.5000e+401 —3.5000e400 —3.5000¢c+ 00 =1.0500¢ 401 1] o [] [ 0 0 ]
[+] /] 5.0000¢ —01 ] =1.4500e 401 1.7764e—15 0 1] o 0 o 0
2.5000e ~01 [} 0 2.5000e ~01 —1.4250e401 1] 2.5000e =01 1] [ 1] 1} 0
—=5.9412¢+400 —8.3438e~16 —5.9412¢4 00 —5.9412¢+400 —8.0588¢+4+00 3.5284e—01 —5.9412¢+00 —7.0588¢—01 3.5294e~01 0 0 0
P 0 3.1371e~15 =5.12502400 o ~B8.8750e400 5.6250e+400 o 3.7500e¢ 400 5.6250e+00 0 0 o
-
0 0 0 =2.1111e400 —1.1889¢+401 o =2.1111e400 ~9.4444¢400 o =2.1111¢ 400 —~9.4444¢4 00 o
0 0 0 ~7.1579¢+400 ~-6.8421¢400 2.1053e—01 —7.1579¢400 3.6842¢—01 2.1053e¢-01 ~7.1579¢ 400 —1.!‘211:1-01 —3.8186e—18
[ 0 0 ] —3.1429¢ 400 —7.1429¢—-01 0 3.1429¢c+00 —7.1429¢—01 0 —~1.3288e+01 5.4089e—~18
0 0 0 o ] 0 1.8000e¢ 400 —1.1400e401 0 1.8000e¢ 400 —1.1400e+401 0
0 [} 0 0 V] [] —5.3750e+00 ~1.0750e 401 —9.1250e400 —5.3750e+4+00 —4.8750e+00 ~4.3001e—16
L o 0 [1] 0 0 [] [ 2.1089e—16 —=7.0000e+00 4] =7.0000¢400 1.5000e+01 J
U =0, 1.0658¢~14, —1.7764e—15, ~7.1054e—~15, 7.0588¢—01, —3.7500¢ + 00, 9.4444e + 00
1.4632¢+01, —3.1429¢+00, 1.1400e+01, 1.0750e+01, 8.88186—15]T
Table I.
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Fig. 7. A typical evolution of pattern no. 2 of Fig. 2.

from left to right in each row and from the top row to the bottom
row. The desired pattern is recovered in 12 steps with a step size
h = 0.06 in the simulation of equation (1). We do not identify a
unit for the step size h. All simulations for the present examples
were performed on a Sun SPARC Station using MATLAB.

Case Il: Quinquediagonal interconnecting structure resulting
in no line-crossings. We chose the interconnecting structure
shown in Fig. 6 in which there are no line-crossings, resulting in
a quinquediagonal matrix 7. We note that this configuration can
be generalized to arbitrary n. A typical simulation run for the
present case is depicted in Fig. 7. In this figure, the noisy pattern
was generated by adding Gaussian noise N(0.1, 0.7) to the desired
pattern. Convergence occurred in 16 steps with / = 0.06.

Case Ill: Non-symmetric T with perturbations. We generated
randomly a matrix AT, given in Table II, which has the same
sparse structure as T and which satisfies the condition that IAT1.

A
< -1, where T was obtained from Case I. We used T3 = T + AT
in system (2) (with AB =0, AU = 0).

T L e
geli=f
T

Fig. 8. A typical evolution of pattern no. 3 of Fig. 2.

Fig. 9. A typical evolution of pattern no. 4 of Fig. 2.

—-1.0794 —1.1747 0 0.8750 0.3025 0 V] 0 0 0 0 0 b
—1.1603 0.6712 -0.8235 -1.6491 -0.1272 1.1939 0 0 0 0 0 0
0 0.3633 —0.0644 0 1.7388 1.1622 0 0 0 (1] ] 0
0.1312 -1.6710 0 1.8394 -0.1047 0 -1.2227 0.1839 0 0 0 0
1.6731 -0.9829 -0.9946 —1.4540 0.9143 1.8469 -1.4393 -0.5019 -1.5160 0 0 0
AT= 0 0.0208 0.3095 0 -1.8896 1.6014 [ 1.3049 1.1495 0 0 0
0 0 0 1.6675  1.0976 ] ~0.8437 ~-1.2986 0 —-1.2319 —0.9470 0
0 0 0 1.0311 -0.9883 -0.0074 -0.1775 -1.6428 1.6352 -0.5880 0.1074 -1.9514
0 0 0 0 1.0265 0.0255 0 ~1.7075 -0.8249 0 1.1790 -0.7365
0 (] 0 0 0 0 —-1.3197 -1.2635 0 1.1235 ~-0.4117 0
0 0 ] 0 ¢} 0 -0.9107 0.0318 -0.7197 -0.8434 0.3578 -1.8620
L o 0 0 (] 0 0 0 ~1.2534  0.5991 0 1.6019  0.8208 ]
Table II.
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[—-0.7460 -2.9175 0 0.7948 -9.1495 0 0 0 [] ] 0 0 1
-2.9175 15.6712 -1.9801 -3.4101 -5.8051 0.6073 V] 0 0 o 1] 0
0 —-1.9801 0.4356 0 -9.8485 —1.8267 V] ] V] 0 1] (1]
0.7948 -3.4101 0 2.0894 -10.8749 0 -0.7082 -2.9714 0 0 0 0
~9.1495 -5.8051 —9.8485 -10.8749 —7.1446 —4.2824 -9.0859 —4.5191 —1.6397 0 0 0
1] 0.6073 -1.8267 0 —~4.2824 7.2264 0 2.6290 3.0429 V] )] 1]
h= 0 0 0 -0.7082 —9.0859 (1] —-2.9548 -9.0392 0 -~1.4314 -8.3386 1]
0 0 0 -29714 —4.5191 26290 -9.0392 -1.2743 1.6406 -10.2047 -12.4107 -1.6024
(] 0 0 0 -1.6397  3.0429 0 1.6406  —1.5392 0 ~10.9757 —3.5687
0 0 0 [1] 0 0 -1.4314 -10.2047 ] 2.9235 -9.0150 0
0 (1] 0 0 0 0 —8.3386 -12.4107 -10.9757 -9.0150 —4.5172 —3.6301
L 0 1] ] 1] 4] 1] o -1.6024 -3.5687 0 -3.6301 15.8208 |
Table 111.

Since |ATleo < - 1, o, ..., a* are still stable memories for

system (2). A typical simulation run of equation (2) with DT given
above is depicted in Fig. 8. In this figure, the noisy pattern is
generated by adding to the desired pattern uniformly distributed
noise defined on [-1,1]. Convergence occurred in 6 steps with h
= 0.06.

Case IV: Symmetric design. With 1} = 0.001, starting with
matrix T3 = T + AT (where T was obtained from Case I and AT
was obtained from Case III), we determined for this case that v
=9.5512, and we determined the symmetric matrix T4, given in
Table III, in four iterations.

A typical simulation run for system (1) with T4 given in Table
1T is shown in Fig. 9. In this case, the noisy pattern was generated
by adding Gaussian noise N(0,1) to the desired pattern. Conver-
gence occurred in 14 steps with 4 = 0.06.

Concluding Remarks

In the implementation of artificial feedback neural networks,
parameter perturbations, transmission delays, and interconnec-
tion constraints are frequently encountered. These phenomena
can potentially give rise to a degradation in the qualitative
behavior of the neural networks.

In the present article we used as a vehicle of study the
realization of associative memories by means of neural networks
with Hopfield structure and with activation functions specified
either by sigmoidal functions or by saturation non-linearities.

We studied the effects of parameter perturbations of neural
networks by using the notion of robustness. For networks with
sigmoidal functions we established necessary and sufficient con-
ditions for robustness and we showed that when a neural network
is robust and when the implementation parameter errors are
reasonably small then for every desired stable memory of the
ideal network, there will exist a corresponding actual stored
stable memory for the implemented network. Furthermore, the
errors in the memories can be estimated from the parameter
errors. We also showed that networks with saturation non-lineari-
ties will always be robust and, as expected, networks with
saturation functions will in general be less sensitive with respect
to parameter perturbations than networks with sigmoidal non-
linearities for activation functions. Furthermore, for neural net-
works with saturation non-linearities, we established an upper
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bound for the parameter perturbations which ensures the invari-
ance of stable stored memories under perturbations.

In studying the effects of time delays on neural networks, we
considered global and local results. For networks with a single
delay and with multiple delays, we first established sufficient
conditions for the global stability of the network which involve
a bound for the time delays. We then showed that when these
conditions for global stability are satisfied, the local qualitative
properties of the stable memories of a network with delays and
a corresponding network without delays are essentially identical.

We demonstrated how existing synthesis methods can be
generalized to incorporate interconnection constraints, simulta-
neously taking into account parameter perturbations. This was
accomplished by realizing associative memories in the form of
bipolar vectors, utilizing Hopfield-like neural networks with
saturation non-linearities as activation functions. We demon-
strated the applicability of these results by means of specific
examples. We did not address the effects of interconnection
constraints on the memory storage capacity of a network. This
important topic is beyond the scope of the present discussion.

Results of the type considered herein have clearly important
practical implications. Furthermore, the methodology used in
arriving at these results can readily be adapted to a variety of
applications involving many different types of neural network
structures.
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