
2005 Special Issue

Identification of motifs with insertions and deletions in protein

sequences using self-organizing neural networks*

Derong Liua,b,c,*, Xiaoxu Xionga, Zeng-Guang Houb, Bhaskar DasGuptac

aDepartment of Electrical and Computer Engineering, University of Illinois, Chicago, IL 60607, USA
bThe Key Laboratory for Complex Systems and Intelligence Science, Chinese Academy of Sciences, Beijing, People’s Republic of China

cDepartment of Computer Science, University of Illinois, Chicago, IL, USA

Abstract

The problem of motif identification in protein sequences has been studied for many years in the literature. Current popular algorithms of

motif identification in protein sequences face two difficulties, high computational cost and the possibility of insertions and deletions. In this

paper, we provide a new strategy that solve the problem more efficiently. We develop a self-organizing neural network structure with

multiple levels of subnetworks to make an intelligent classification of the subsequences obtained from protein sequences. We maintain a low

computational complexity through the use of this multi-level structure so that the classification of each subsequence is performed with

respect to a small subspace of the whole input space. The new definition of pairwise distance between motif patterns provided in this paper

can deal with up to two insertions/deletions allowed in a motif, while other existing algorithm can only deal with one insertion or deletion.

We also maintain a high reliability using our self-organizing neural network since it will grow as needed to make sure all input patterns are

considered and are given the same amount of attention. Simulation results show that our algorithm significantly outperforms existing

algorithms in both accuracy and reliability aspects.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: DNA; Motif identification; Multiple sequence alignment; Neural network; Self-organization
1. Introduction

DNA, RNA and protein are the three most important

molecules of life. DNA and RNA are made of four different

letters, and proteins are made of 20 different letters. DNA,

RNA and protein sequences can be thought of as being

composed of motifs interspersed in relatively unconstrained

sequences. A motif is a short stretch of a molecule that

forms a highly constrained sequence, usually 8–20 letters

long. Motif discovery is a basic problem in computational

biology, as sequence similarity usually implies homology
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.06.007

* An abbreviated version of some portions of this article appeared in

Xiong, Liu, and Zhang (2005), published under the IEEE copyright.
* Corresponding author. Address: Department of Electrical and

Computer Engineering, University of Illinois, Chicago, IL 60607, USA.

Tel.: C1 312 355 4475; fax: C1 312 996 6465.

E-mail addresses: dliu@ece.uic.edu (D. Liu), xxiong@cil.ece.uic.edu

(X. Xiong), hou@compsys.ia.ac.cn (Z.-G. Hou), dasgupta@cs.uic.edu

(B. DasGupta).
and functional similarity of the proteins or genes encoded by

such sequences (Attwood & Parry-Smith, 1999).

The expression of a motif can be in one of the following

three forms.

(1) Use an actual sequence as the description of a motif.

Such a sequence is also called a consensus sequence.

Each column of the consensus sequence is the letter that

appears most frequently in all known examples of that

motif, e.g. ACTTATAA and AGTTATAA are two

examples of consensus sequence of a motif.

(2) Use the so-called ‘degenerate’ expression to show all

possible letters for each column of a motif. For

example, the expression

A K ½CG�KT KT K ½AC�K ½TCG�KA KA (1)

indicates that AGTTCTAA and ACTTAGAA are two of

the possible occurrences; see, for example, Linhart and

Shamir (2002) for similar concepts used in the design of

degenerate primers.

(3) Use a more biologically plausible representation to

describe a motif. In this case, a probability matrix can
Neural Networks 18 (2005) 835–842
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

Table 1

Frequency of each letter appearing in every column of a motif

1 2 3 4 5 6 7 8

A 1.0 0.0 0.0 0.0 0.67 0.0 1.0 1.0

C 0.0 0.5 0.0 0.0 0.33 0.2 0.0 0.0

G 0.0 0.5 0.0 0.0 0.0 0.3 0.0 0.0

T 0.0 0.0 1.0 1.0 0.0 0.5 0.0 0.0

D. Liu et al. / Neural Networks 18 (2005) 835–842836
be used to assign a different probability to each possible

letter in each column of the motif (Bailey & Gribskov,

1998). For example, Table 1 shows a probability matrix

representation of the motif given by (1). This matrix

representation not only gives the possibility of which

letter can appear in each column of the motif, but also

shows the probability of their appearances. For

example, the sixth column of this motif will have

letters C, G, and T appearing with probabilities of 20,

30, and 50%, respectively.

Multiple sequence alignment is another basic problem in

computational biology. One of the potential applications of

motif discovery is multiple sequence alignment in which

identified motifs are used as marks for sequence alignments.

The alignment of a set of sequences is basically a matrix

where the rows correspond to the sequences in the set,

possibly with some spaces inserted, or some gaps in

between (Thompson, Higgins, & Gibson, 1994). Fig. 1

shows an example of alignment of six protein sequences

which are obtained from the Swiss-Prot protein library.1 By

aligning protein sequences, we can discover similarities and

changes in the group of sequences, which may help make

further decision including gene classification as well as

finding cause of disease.

In the motif discovery problem, we have to deal with

motifs with mutations, insertions and deletions. Current

motif finding algorithm such as MEME (Bailey & Elkan,

1995), Gibbs sampling (Lawrence, et al., 1993) and

WINNOWER (Pevzner & Sze, 2000), perform well in

finding motifs with only mutations. When dealing with

insertions and deletions, especially when there are more

than one consecutive insertion or deletion in the motif

patterns, these algorithms have trouble in identifying motifs.

The Bayesian algorithm (Xie, Li, & Bina, 2004) can deal

with cases with insertion and deletion, but not with more

than one consecutive insertion or deletion. Insertions and

deletions bring great difficulties to the motif discovery

problem because they make the result less predictable and

more variable. The motif discovery problem in protein

sequences can be described as finding similar fields with

certain length, with certain maximum number of columns

mutated and with certain number of tolerable insertions or

deletions. In this paper, we consider the case with at most

two insertions or deletions or their combinations in a single
1 Swiss-Prot, http://us.expasy.org/sprot/.
motif pattern. Both of the two insertions or deletions can be

consecutive.

This paper is organized as follows. In Section 2, we

introduce theself-organizingneuralnetworkstructure for iden-

tifying motifs with insertions and/or deletions, after introdu-

cing a new definition for calculating the distance between a

pair of two subsequences. In Section 3, we provide two

simulation examples using generated data set and real protein

sequences. In Section 4, we conclude the present paper.
2. Self-organizing neural network for motif

identification

In this section, we introduce our self-organizing neural

network approach for the identification of motifs with

insertions and deletions (Xiong, Liu, & Zhang, 2005). The

neural network structure has been used in our previous work

for identifying motifs with only mutations (Liu, Xiong, &

DasGupta, 2005). In this paper, we will use self-organizing

neural networks for identifying motifs with insertions and/or

deletions, after introducing a new definition for calculating

the distance between a pair of two subsequences.

In the present algorithm, subsequences will be divided

into 3-letter groups. The calculation of the pairwise distance

is based on the definition of distance between a pair of

3-letter groups.
2.1. Pairwise distance calculation

In the preceding section, we assume that there are at most

two consecutive letter insertions or deletions in a motif
Fig. 1. The alignment of protein sequences.

http://us.expasy.org/sprot/

Fig. 2. The aligned motif patterns with at most 2 insertions/deletions (‘—’

indicates a deletion in this sequence and ‘.’ indicates an insertion in another

sequence). (a) Protein sequence segments. (b) Test patterns of lengthZ17.

(c) Alignment. (d) Motif expression, lengthZ15.

D. Liu et al. / Neural Networks 18 (2005) 835–842 837
pattern. Under this assumption, we analyze a group of motif

patterns from protein sequences, e.g. patterns in Fig. 2. We

observe that in these patterns, when they are aligned

according to identified motifs, column i of a pattern can be

aligned to one of the columns in the range from iK4 to iC4

of other patterns. The two aligned columns can have a

maximum index difference of 4. The extreme case happens

when one of the pattern has two insertions and the other

pattern has two deletions, e.g. pattern #1 and pattern #2 in

Fig. 2. Before we align the patterns, pattern #1 has insertions

at column 4 (letter ‘A’) and column 14 (letter ‘C’), while

pattern #2 has deletions at column 2 (between two letter

‘D’s) and column 4 (between letters ‘M’ and ‘S’). We notice

that columns 15 to 17 of pattern #1 should be aligned to

columns 11 to 13 of pattern #2. In the illustration of Fig. 2,

we assume the length of motif to be 15. Since, we allow

each appearance of motif to have a maximum of 2 letter

insertions, we can choose test subsequences of length 17.

Test subsequences are obtained from the given protein

sequences. We call these test subsequences input patterns to

the self-organizing neural network. We use a sliding

window to get all input patterns. Let L be the length of a

protein sequence, and let m be the length of the motif to be

identified. The length of the sliding window will be m 0Z
mC2. Placing the sliding window at the beginning of the

sequence, we get the first input pattern with length of mC2.
Shift the window one column at a time to get all the input

patterns. The total number of input patterns we get from the

sequence will be LKm 0C1ZLKmK1. Due to the effects

of sliding window, when input patterns are finally aligned,

the maximum column index difference becomes 2 (a

positive difference of 2 or a negative difference of 2)

between any pairs of input patterns. In order to define the

pairwise similarity value (or distance) between a pair of

input patterns that may have column index difference up to 2

due to insertions and deletions, we put every three

consecutive letters into a group. We will now consider the

distance between groups of letters. Comparing between two

appearances of a motif, every group of three consecutive

letters in one appearance will have at least one letter in

common with the corresponding group in the other

appearance, assuming a maximum of 2 letter insertions or

deletions when there is no mutations. These groups can be

obtained by applying sliding window of length 3 to each

input pattern. For each input pattern with length of m 0, we

will get mZm 0K2 groups of letters, each group with length

of 3. For example, for input pattern #2 of Fig. 2(b), we get

the following groups of 3 letters:

{GKD, KDD, DDM, DMS, MSM, SMP, MPH, PHP,

HPH, PHQ, HQL, QLK, LKV, KVM, VMI}.

Next, we will encode all the input patterns using binary

digits. Each protein letter will be encoded using a 20-

digit binary vector, with one digit flipped from {1,1,.,1,0,

0,.,0} (ten 1 s followed by ten 0 s). This coding strategy

guarantees that the coded vectors of any two different

protein letters have exactly two digits that are different.

Encoding a protein pattern means encoding all the letter

groups of that pattern. For example, each of the above

groups of 3 letters will be encoded by a 60Z20!3 digit

binary code.

First, we study the 3-letter groups from corresponding

positions of two input patterns. We want to determine the

distance or the similarity value between two 3-letter groups.

We consider two possibilities. The first one is that there is

one insertion or one deletion in either of the groups. If this is

the case, a sub-group of 2 letters from one of the groups may

match a 2-letter sub-group from the other group. All these

2-letter sub-groups should follow the same order as they

appear in the 3-letter groups. For example, 2-letter sub-

groups are AC, CG or AG from ACG. Such 2-letter sub-

groups from a 3-letter group will always have 3 possibilities.

Second, there are two insertions or two deletions in either

one of the 3-letter groups. In this case, as long as there is a

common letter appearing in both groups, we would grant a

relatively smaller pairwise distance value between these

3-letter groups. The above strategy can be expressed by the

following mathematical description. Each input pattern

(length m 0ZmC2) is converted into a test pattern with m

3-letter groups. After encoding, each input pattern will be in

the form of binary vectors PZ{p1, p2,.pm}, where the

length of each binary vector pi is 60. Each binary vector pi

has 3 letters. Each binary vector can be expressed as pi,1K20,

Input neurons

a b c
Second subnetwork

First subnetwork

Third subnetwork

βα

1 2 3 4

*Input patterns

Fig. 3. Structure of the self-organizing neural networks.

D. Liu et al. / Neural Networks 18 (2005) 835–842838
pi,21K40 and pi,41K60. Now we form sub-groups using two of

the three vectors following the same order as they have in

the 60-digit 3-letter group vector. We will get three sub-

groups and we denote them as

p0
i Z p0

i½1�; p
0
i½2�; p

0
i½3�

� �
Z ðfpi;1K20pi;21K40g;

fpi;1K20pi;41K60g; fpi;21K40pi;41K60gÞ:

The distance between any two given vectors pi and qi will be

defined as

di Z min
j;k;l2f1;2;3g;jsksl

X40

rZ1

jp0
i½1�;r Kq0

i½j�;rjC
X40

rZ1

jp0
i½2�;r Kq0

i½k�;rj

C
X40

rZ1

jp0
i½3�;r Kq0

i½l�;rj

!
C
X20

kZ1

jðpi;k Cpi;kC20 Cpi;kC40Þ

Kðqi;k Cqi;kC20 Cqi;kC40Þj: ð2Þ

Let DðP;QÞ denotes the pairwise distance of any two

input patterns P and Q, each with mC2 letters. We get

DðP;QÞZ
Xm

iZ1

di: (3)

Eq. (2) shows the distance between two 3-letter groups.

In the equation, the first part reflects the minimum sum of

distances between the sub-groups obtained from both

3-letter groups. For each 3-letter group, we get 3 possible

sub-groups. Then there are a total of 6Z3! possible cases of

putting together any two sub-groups from each group. The

second part of Eq. (2) is an absolute value that reflects the

sum of distances between single letters from each group. For

example, if we want to calculate the pairwise distance

between two 3-letter groups ACG and tag, the first part of

Eq. (2) reflects the sum of the distances between AG and ag,

CG and tg, and AC and ta. The second part reflects the sum

of the distances between A and a, G and g, and C and t. We

use this strategy because the given two 3-letter groups are no

longer alignable due to insertions and deletions. The present

definition of distance in Eq. (2) gives a good representation

of the similarity between a pair of 3-letter groups.
2.2. Self-organizing neural networks

This subsection describes the structure of our self-

organizing neural network for motif discovery. The basic

structure forms the subnetworks used in our self-organizing

neural networks and contains two layers, i.e. an input layer

and an output layer. The number of output neurons of a

subnetwork is the same as the number of categories

classified by this subnetwork. The number of input neurons

is determined by the projected length of motifs after

encoding, e.g. m 0!20, where m 0ZmC2 and m is the length

of projected motifs. The input patterns are obtained from the

given protein sequences by taking all subsequences with the

same length of m 0. Each output neuron represents a category

that has been classified by a subnetwork and each output
category is represented by the connection weights from all

input neurons to the corresponding output neuron. Subnet-

works perform the function of classification in a hierarchical

manner. The first subnetwork is placed at the top level and it

performs a very rough classification, e.g. dividing the input

space into 4–8 categories. The second subnetwork is placed

at the next level and it usually divides the input space into

16–32 categories, which indicates a slightly more detailed

classification of the input space. The last subnetwork in our

self-organizing neural network will be placed at the lowest

level and it classifies all the input patterns into either a motif

or a non-motif category with one or a few patterns.

Typically, the number of output neurons will be very

large for the last subnetwork and gradually reduced to a

small number for the first subnetwork. Fig. 3 shows the

structure of our self-organizing neural network with three

subnetworks. In the structure shown in the figure, there are

four input neurons and three subnetworks. The first

subnetwork has 2 output neurons, the second subnetwork

has 3 output neurons, and the third subnetwork has 4 output

neurons. Each of the output neurons represents a category

that has been created and it is represented by the connection

weights to the output neuron. The output category a of the

first subnetwork contains two patterns (a and b) and the

other contains one pattern (c). The output category a of

the second subnetwork contains two patterns (1 and 2) and

the other two categories each contains just one pattern. The

output categories 1 and 2 of the third subnetwork represent

two motifs while categories 3 and 4 are not motifs (if we

desire to have at least three patterns for each motif

identified).

The inputs to each subnetwork are binary codes from

protein patterns. We set the number of input neurons to be

MZm 0!60. The output neurons of each subnetwork are

categories classified by that subnetwork. Our target motif

sets will be obtained from the outputs of the lowest

subnetwork. Outputs of the higher subnetwork are cat-

egories with coarser classification. The weights connected

to each category are calculated as an m-dimensional vector

indicating the center of that category.

D. Liu et al. / Neural Networks 18 (2005) 835–842 839
When an input pattern is presented to our self-organizing

neural network, it will be either classified to an existing

output category or put into a new category by every

subnetwork. An output category of a lower level subnetwork

is said to belong to an output category of a higher level

subnetwork if one or more input patterns are classified to

both of these two output categories. The connection weights

for each category of the last subnetwork (at the lowest level)

are calculated as the center of the category, i.e. the

geometric center of all input patterns that are currently

classified into the category associated with the correspond-

ing output neuron. The connection weights for an output

category of all other subnetworks (except the last subnet-

work) are calculated as the geometric center of all categories

from the immediate lower level of subnetwork that belong

to this category.

When a new input pattern is introduced to a subnetwork,

its classification to an output neuron of every subnetwork

involves the following three steps.

(1) A similarity test will be performed between the new

input pattern and the output neurons of the subnetwork

at each level. At the top level, all the output categories

will be tested. At the next level, only those neurons

classified to the winner of the upper level will be tested,

so on and so forth. By this means only a small number

of categories will need to be tested to save computation

time. These groups of neurons form a tree of

classification as shown in Fig. 3. For the network

example shown in Fig. 3, an input pattern will be first

compared to the two categories at the top level. At the

next level, it will be either compared to {a, b} or {c}

depending on which of the two output categories at the

first level becomes the winning category. The pairwise

distances between the input pattern and patterns in each

category are calculated according to Eq. (3). The largest

pairwise distance within each category is determined

and compared to a threshold value. If the largest

pairwise distance of a category is smaller than the

threshold value, we will regard this category as a

winning category.

(2) There may be more than one category that wins in the

first step, but only one of them will be the final winner at

each level. In this step, we perform a distance test

between the input pattern and the center of each

winning category in Step 1. This test is calculated by

comparing the input pattern with the connection

weights to each neuron in all winning categories. The

minimum of these distances is determined and thus a

final winning category is also determined. This step

works similarly to the winner-takes-all networks

(Haykin, 1999).

(3) If in the preceding step, there are still more than one

winning category (categories have the same minimum

distance from the input pattern to the center), the final
winning category will be chosen as the one that has the

most number of members.

Assume that there are a total of L subnetworks for lZ1,

2,.,L. Assume that there are M input neurons and the lth

subnetwork has Nl output neurons. The patterns obtained

from the given protein sequences are used as input

sequences to each subnetwork of our self-organizing neural

network. The outputs of the last subnetwork correspond to

classifications of all subsequences into motifs and non-motif

categories.

We denote the input patterns as xi, iZ1, 2,.. Suppose

that t input patterns have been presented to the network and

have been classified. When a new input pattern, i.e. the (tC
1)st pattern xtC1, is introduced to the network, we do the

similarity test in the three steps described above. In the lth

subnetwork, if output neuron q is one of the categories that

have been classified into the winning category in the (lK1)

st subnetwork, the pairwise distance calculations in category

q of the lth subnetwork are described as

dl
j Z D xtC1; elC1

j

� �
; j Z 1; 2;.; pq;

where

elC1
j Z

xj;
if l Z L and xj belongs to the

category q of the lowest level;

wlC1
j ;

if 1% l!L and wlC1
j belongs

to the category q of the lth level;

8>>><
>>>:

(4)

D is defined in Eq. (3) and pq is the number of patterns in

category q. We then perform the following threshold tests. If

max
1%j%pq

dl
j

 �
!rl; (5)

this new input pattern will be considered to match the

category q of the lth subnetwork. The threshold value rl in

Eq. (5) takes different values for different levels of

subnetworks. We note that all pairwise distances in this

category will be less than the threshold rl if Eq. (5) is

satisfied for the new input pattern since all other patterns are

previously classified into this category using the same

threshold value.

If there is only one category wins the similarity test, this

new input pattern will be classified into the category q of the

lth subnetwork. Otherwise we need to perform further

similarity test described in Step 2. We calculate the distance

from the new input pattern to the center of each winning

category and then choose the winner that has the smallest

distance to the new input pattern. If there are more than one

category having the same smallest distance, we will pick the

category that has the most number of patterns in it as the

final winning category.

If there is a category q wins in Eq. (5), this new input

pattern will be classified into the winning category of the lth

subnetwork. Otherwise, the new input pattern cannot be

classified into any existing category at this level.

D. Liu et al. / Neural Networks 18 (2005) 835–842840
We describe in the following some more details about

our calculation procedure.

(a) We start from the top level, i.e. the first subnetwork,

and work down the levels one by one, when classifying

a new input pattern. After a winning category is

determined at the lth level, the input pattern will only

be compared to those patterns at the (lC1)st level that

are classified to belong to the winning category at the

lth level.

(b) If the threshold test in Eq. (5) is successful for lZ1, 2,

.,L, we perform the following updates for the Lth

subnetwork:

wL
kq :Z

1

pL
q C1

XpL
qC1

jZ1

x
j
k Z

1

pL
q C1

pL
qwL

kq CxtC1
k

�

;

pL
q :Z pL

q C1;

where kZ1, 2,.,M and the pL
q C1

� �
st term in

PpL
qC1

jZ1

x
j
k indicates the kth component of the new input pattern

xtC1. We perform the following updates for the rest of

subnetworks:

wl
kq :Z

1

pL
q

XpL
q

jZ1

wlC1
kj ; k Z 1; 2;.;M;

for l Z L K1; L K2;.; 2; 1:

(c) If the threshold test in Eq. (5) is successful for lZ1,

2,.,L1 where L1!L, we will add an output neuron to

subnetworks L1C1, L1C2,.,L. Each of these newly

added categories will contain only one pattern and the

weights of the new categories are chosen as

wl
kn Z xtC1

k ; k Z 1; 2;.;M; n Z Nl C1;

for l Z L1 C1; L1 C2;.; L:

We also update the number of output neurons for these

subnetworks as

Nl :Z Nl C1; pNl
Z 1; l Z L1 C1; L1 C2;.;L:

In this case, it is not necessary to perform threshold

tests for subnetworks L1C1, L1C2,.,L anymore. For

subnetworks 1, 2,.,L1, we will perform the following

updates:

p
L1
q :Z p

L1
q C1

wl
kq :Z

1

pl
q

Xpl
q

jZ1

wlC1
kj ; k Z 1; 2;.;M;

for l Z L1; L1 K1;.; 2; 1:
2.3. Optimal choice of consecutive patterns

Consecutive patterns are input patterns from the same

protein sequence and with their location differences
being smaller than the desired length of motif. For example,

xt, xtC1, xtC2,. are consecutive patterns. According to the

pairwise distance defined earlier, consecutive patterns can

win the similarity test in the same category. Apparently,

they should not be included in the same category. We need

to determine which of the consecutive patterns should really

be in the category. During the classification procedure of a

new input pattern, if there is a consecutive pattern to this

new input pattern in a category, we need to determine

whether this new input pattern matches better with the

category than its consecutive pattern that is already in the

category. To achieve this, we use the average pairwise

distance within a category. When we find a consecutive

pattern in the category to be checked, we make pairwise

similarity tests between the new input pattern and all

patterns in the category except its consecutive one. If Eq. (5)

is satisfied for this category, we need to examine whether

the new input pattern is a better choice than its consecutive

pattern in the category. We compare two average pairwise

distance values. The first one is the average of all the

pairwise distance values from the new input to all the

patterns in the category except the consecutive pattern.

The second one is the average of all the pairwise distance

values from the consecutive pattern to the rest of patterns in

the category. For example if the qth category in the lth

subnetwork wins, meanwhile the sth pattern in this

category, xs is a consecutive pattern to the new input

pattern xtC1 (sstC1), we use the following equation to

calculate the average pairwise distance values for xk, kZs,

tC1,

davg
q ðxkÞ Z

1

pq K1

Xpq

jZ1; jss

Dðxk; xjÞ: (6)

If d
avg
q ðxtC1Þ!d

avg
q ðxsÞ, we choose the new pattern as a

replacement of the consecutive pattern classified earlier. We

delete the old pattern from the category and add the new

one. Change the weights of the winning category

accordingly. If d
avg
q ðxtC1ÞOd

avg
q ðxsÞ, we skip this category

and do the similarity test for the rest of categories.
2.4. Order randomization of input patterns

In our approach, the order in which the input patterns

are presented to the network will be chosen randomly. To

avoid the problem of missing classifications of some

patterns, we will perform multiple trials with randomly

selected order of presentation for the whole set of input

patterns. After the learning procedure of each input cycle,

we may get a certain number of output categories in the

lowest subnetwork. Some of these categories are kept for

the next cycle. For each category, the number of patterns

classified in the category decides whether this category

will be kept. If the following condition for the qth

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of mismatches

P
er

fo
rm

an
ce

s

Motif length = 17

NN without ins/del
NN with ins/del
Gibbs without ins/del

Fig. 4. Comparison result for motif lengthZ17.

D. Liu et al. / Neural Networks 18 (2005) 835–842 841
category is satisfied,

pL
q Rl;

we will keep this category, where pL
q is the number of

patterns in the qth category of the Lth subnetwork and l is

determined by the user, e.g. lZ3.

After picking out these categories, we use them to

initialize the network for the next cycle in the lowest

subnetwork. This lowest subnetwork will be used to

initialize all other subnetworks. Following the three steps

we mentioned in the last section, we build categories from

subnetwork to subnetwork until the initialization of the

network for the new input cycle is done.

In each cycle after the first one, we validate every input

pattern before we apply it to the network. It is necessary to

determine if this pattern is already classified in an existing

category. If it is, we will skip this input pattern. We do this

in order to prevent classifying the same pattern into more

than one category or to the same category twice. From

simulation results, we find that usually two or three trials

with order randomization are enough for the motif

discoveries in protein sequences.
2.5. Alignment of motif patterns

The outputs of the lowest subnetwork are the target motif

sets or non-motif categories. Every motif set contains a

group of patterns. These patterns are with the length of

mC2. They are not yet the final aligned motif sets with

insertions/deletions. We need to align them and to get a

consensus form from them. At the current stage of our

research, the alignment of motif patterns will be done

manually for each set identified using our algorithm. Due to

the length of 8–20 letters for projected motifs, their

alignment can easily be performed by hand once they

have been classified into to a category.
Table 2

Entry name, accession number and length of DNA repair protein RAD51

sequences

Index Protein name Accession number Length

1 RA51_CHICK P37383 339

2 RA51_CRIGR P70099 339

3 RA51_DROME Q27297 336

4 RA51_HUMAN Q06609 339

5 RA51_LYCES Q40134 342

6 RA51_MOUSE Q08297 339

7 RA51_RABIT O77507 339

8 RA51_SCHPO P36601 365

9 RA51_USTMA Q99133 339

10 RA51_YEAST P25454 400
3. Simulation results

Example 1. We first test our algorithm for motif

identifying in randomly generated protein sequences. We

randomly generate 20 protein sequences with average

length of 300 letters in each sequence. We generate a

motif set of 20 appearances with insertions, deletions and

mutations at random columns in each appearance. We insert

these appearances into random locations of the protein

sequences. It is not necessary that each sequence has exactly

one motif appearance. Some sequences may have more than

one appearance and others may have none. The length of the

motif is fixed. The number of mutations in the appearance

are not fixed. Let R denote the motif set we generated and T

denote the motif set identified by the self-organizing neural

network. Then the performance of the motif discovery
algorithm is defined as

PER Z
jRhTj

jRgTj
: (7)

Fig. 4 shows the comparison of three cases of identifying

motifs with length of 15. The horizontal axis represents the

percentage of mismatch of the motifs (i.e. 3=M, where 3 is

the number of letters that is tolerable in the representation of

a motif), and the vertical axis indicates the average

performance of 8 simulation runs defined above. In this

simulation, we fix the distribution of the number of

insertions and deletions. Thirty percent of the motif

appearances we generated have two insertions or deletions

or their combination. Forty percent of them have only one

insertion or deletion. The rest appearances do not have

insertion or deletion. Besides these insertions and deletions,

all the appearances have a certain number of columns

mutated according to the horizontal axis of the figure. In

Fig. 4, we compare our results to that of the Gibbs

algorithm.

From the figure, we can see that compared with the Gibbs

algorithm, our algorithm has much better performance.

Table 3

Patterns and their locations in the RA_51 protein sequences

Patterns Contents Sequence Location Mutations InsertionsCdeletions

Consensus LQGG.IETGSITELF.GEF – – – –

1 LQGG.IETGSITELF.GEF 1 113 0 0

2 LQGG.IETGSITEMF.GEF 2 113 1 0

3 L–GG.IETGSITEIF.GEF 3 110 1 1

4 LQGG.IETGSITEMF.GEF 4 113 1 0

5 LEGG.IETGSITEIFYGEF 5 116 2 1

6 LQGG.IETGSITEMF.GEF 6 113 1 0

7 LQGG.IETGSITEMF.GEF 7 113 1 0

8 LQGG.VETGSITELF.GEF 8 135 1 0

9 L–GG.METGSITEL-.GEF 9 113 1 2

10 L–GGKVETGSITELF.GEF 10 171 1 2

‘—’ indicates a deletion in this sequence and ‘.’ indicates an insertion in another sequence.

D. Liu et al. / Neural Networks 18 (2005) 835–842842
Let (17, 5) denote the case of setting motif length to 17 and

number of mismatch columns to 5. Our neural network

algorithm performs well and finds nearly all the patterns

generated in the case of (17, 5). In the case of having

insertions and deletions, for (17, 7), our algorithm finds

nearly 60 algorithm missed all patterns.

Example 2. In this example we will apply our algorithm

to motif discovery problem in DNA Repair Protein RAD51

homolog protein sequences. The 10 samples are collected

from Swiss-Prot Genes Library. Their names and descrip-

tions are listed in Table 2. We apply these 10 sequences to

our network, and get 17 motif sets that have at least 5

appearances in each set. A typical output of the aligned

motif set is shown in Table 3.

In the table, a motif set with 11 appearances is listed,

along with a consensus sequence. All the appearances are

aligned in the format we introduced in Fig. 2(c). These motif

appearances can be located by the sequence and column

indexes listed in the table. The total number of mutations of

each appearance to the consensus sequence is also shown in

the table. In the last column of the table, we list the total

number of insertions and deletions in each appearance.
4. Conclusions

In this paper, we studied the problem of motif discovery

in protein sequences with insertions and deletions. We

developed a self-organizing neural network structure with

multiple levels of subnetworks to make an intelligent

classification of the subsequences obtained from the protein

sequences. We maintain a low computational complexity

through the use of the multi-level structure so that each

subsequence’s classification is performed with respect to a

small subspace of the whole input space. Our algorithm can

find motifs with up to 2 insertions, deletions or their

combinations. The simulation results show that the

performance of our algorithm is more accurate and costs

less computation than existing algorithms.
Acknowledgements

D. Liu was supported in part by Open Research Project

Grant (ORP-0501) from KLCSIS-IA-CAS. B. DasGupta

was supported in part by NSF grants CCR-0296041, CCR-

0206795, CCR-0208749 and IIS-0346973.
References

Attwood, T. K., & Parry-Smith, D. J. (1999). Introduction to bioinfor-

matics. New York: Prentice Hall (pp. 132–144).

Bailey, T. L., & Elkan, C. (1995). Unsupervised learning of multiple motifs

in biopolymers using expectation maximization. Machine Learning,

21(1–2), 51–80.

Bailey, T. L., & Gribskov, M. (1998). Combining evidence using p-values:

Application to sequence homology searches. Bioinformatics, 14(1), 48–

54.
Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.).

Upper Saddle River, NJ: Prentice Hall (pp. 443–483).

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F.,

& Wootton, J. C. (1993). Detecting subtle sequence signals: A Gibbs

sampling strategy for multiple alignment. Science, 262(5131), 208–214.

Linhart, C., & Shamir, R. (2002). The degenerate primer design problem.

Bioinformatics, 18(Suppl. 1), S172–S181.

Liu, D., Xiong, X., & DasGupta, B. (2005). A self-organizing neural

network structure for motif identification in DNA sequences. In

Proceedings of the IEEE international conference on networking,

sensing and control, 129–134, Tucson, AZ.

Pevzner, P.A., & Sze, S.H. (2000). Combinatorial approaches to finding

subtle signals in DNA sequences. In Proceedings of the 8th

international conference on intelligent systems for molecular biology,

269–278, San Diego, CA.

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W:

Improving the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-specific gap penalties and weight

matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

Xie, J., Li, K. C., & Bina, M. (2004). A Bayesian insertion/deletion

algorithm for distant protein motif searching via entropy filtering.

Journal of the American Statistical Association, 99(466), 409–420.

Xiong, X., Liu, D., & Zhang, H. (2005). A self-organizing neural network

approach for the identification of motifs with insertions and deletions in

protein sequence. In Proceedings of the International Joint Conference

on Neural Networks, July 31–August 4, 2005, Montreal, Canada.

	Identification of motifs with insertions and deletions in protein sequences using self-organizing neural networks
	Introduction
	Self-organizing neural network for motif identification
	Pairwise distance calculation
	Self-organizing neural networks
	Optimal choice of consecutive patterns
	Order randomization of input patterns
	Alignment of motif patterns

	Simulation results
	Conclusions
	Acknowledgements
	References

