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Asymptotic stability of systems operating 
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Abstract: Sufficient conditions for the global asymptotic stability of the equilibrium x e = 0 of dynamical systems which are 
characterized by linear ordinary differential equations with saturation nonlinearities are established. The class of systems 
considered herein arises in the modeling of control systems and neural networks. 
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1. I n t r o d u c t i o n  

In  this  pape r ,  we will inves t iga te  s tabi l i ty  p r o p e r t i e s  of  systems desc r ibed  by 

} c ( t ) = h [ A x ( t ) ] ,  t>~O, 

w h e r e  x ( t )  ~ D n := {x E Rn: - 1 ~< x i <~ 1, i = 1 , . . . ,  n}, A = [aij] E R n ×n, 

t t] h ( A x )  = h a l j x  j . . . . .  h a~jxj  
j= l  

and  

(1)  

0, X i ~ 1, 

h ( ~ a i j x j ) =  ~ a i j x j , - - 1  <xi<l ,  for  i =  1 . . . . .  n. 
j= l  j = l  

O ,  x i = - 1 

W e  will re fe r  to  (1) as a 'linear' system operating on a closed hypercube. 
E q u a t i o n  (1) r ep r e sen t s  a class of  con t inuous - t ime  dynamica l  systems with symmetr ica l ly  sa tu ra t ing  

s ta tes  a f te r  normal iza t ion .  E x a m p l e s  o f  such systems inc lude  cont ro l  systems (see  [3] for  a discussion of  
d i sc re t e - t ime  systems of  this  type)  and  ce r ta in  classes o f  neu ra l  ne tworks  [1,2]. 

W h e n  cons ide r ing  (1) as a control system (with no ex te rna l  inputs) ,  some of  the  first f u n d a m e n t a l  
ques t ions  tha t  ar ise  conce rn  the  exis tence  and  un iqueness  of  an equ i l ib r ium or  ope ra t i ng  po in t  (which we 
assume to be  the  origin,  wi thou t  loss of  genera l i ty)  and  the  qual i ta t ive  p r o p e r t i e s  (specifically,  s tabi l i ty  
p rope r t i e s )  of  such an equi l ibr ium.  T h e  cond i t ion  tha t  the  mat r ix  A be  s table  (i.e., tha t  all of  the  
e igenvalues  of  A be  loca ted  in the  left  hal f  complex  p lane )  does  not  ensure  tha t  x e = 0 is asymptot ica l ly  
s table  in the  large.  F o r  example ,  the  mat r ix  

' 11.1 - 2 0  4 - 7 
A =  30 30 - 1  - 1 9 . 5  

8.4 6.6 10 - 20 
, 1 0  10 30 - 30 
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has eigenvalues A(A) = -0 .2921 ,  -28 .5009 ,  - 5 . 0 5 3 5  + 21.6362i, i.e., A is stable. It is easily verified that 
in addit ion to the origin, the system (1) with A specified above, has also equilibria at 

Xl----(--1,  --0.3167, --1,  - -1)  T and x 2 = ( 1 ,  0.3167, 1, 1) "r. 

Thus, while x~ = 0 is certainly asymptotically stable, it is not  asymptotically stable in the large. 
W h e n  considering system (1) as a neural network with applications to optimization problems, we wish to 

construct  a network with a unique equilibrium which is globally asymptotically stable, in order  to prevent  
convergence to local minima of  an objective function (see, e.g., [4]). 

In the present  paper  we will establish a set of  sufficient conditions which ensure the global asymptotic 
stability of  the equilibrium x e = 0 of  system (1). 

The remainder  of  this paper  is organized as follows. In Section 2, we introduce some essential 
notation,  and in Section 3, we present  our  main result. We conclude the present  paper  in Section 4. 

2. Notation 

For  x ~ R ", we define the lp vector norm as 

' l X l l P = ( ~ l x i l P )  '/p' i=1 for 1 ~<p ~< oo. 

Recall  that  when p = m, we have II x I1~ = m a x  ~ .< i .< n{ I xi I}. For  A ~ R  ~×~, we define the norm of A by 

[I A II = inf{y:  II Ax II < r II x l[ for all x ~ R ~ } .  

Recall  that  for p = m, the norm of A,  induced by the l~ vector norm, is given by II A I1~ = 
E n maxl.<i<n{ ~=1 [aii f}. 

The  measure  of  a matrix A e R  ~×" is defined as 

txp(A) = lim 
O--.0 + O 

III+OAIIp- 1 

where ]1" I] p denotes  the matrix norm induced by the lp vector norm and I is the identity matrix. In 
particular, when p = % we have /z=(A)  = max I <i<n{aii + E~.=l,j,~i[au I}. 

We denote  the interior and the boundary  of  a set I2 by (~)o  and ag2, respectively. 
For  x = (x  1 . . . . .  x , )  T and y = (Yl . . . . .  yn) T, we let x * y = ( X l Y l , . . . ,  XnYn )T, and we let min(x)  = 

min~ .<i.<n{xi}. Also, the notat ion x ~<y will mean  x i <~Yi for 1 ~< i ~< n. 

3. Main result 

We recall that  for a general  au tonomous  system 

= f ( x ) ,  (2) 

with x e R n and f : R"  --+ R ", x e is an equilibrium for (2) if and only if 

f(xO = 0 .  

We can assume, without  loss of  generality, that  x~ = 0 (see, e.g., [5]). Thus, for system (1), we assume that  
A is nonsingular.  

We are now in a position to establish the following result. 
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Theorem.  The equilibrium x e = 0 o f  system (1 ) / s  globally asymptotically stable, i f  

/zoo(A) < O. (3)  

Since R e  A(A) ~</zoo(A) < 0 (see [6]), the equi l ibr ium x e = 0 is clearly asymptot ical ly stable. W e  need  
only to prove  tha t  it is also globally asymptot ical ly stable.  We  will prove  this in the following two steps. 

(1) For  any x(0) ~ O n, x(t) will not  always stay on aD n for  t > 0. 
(2) x ( t )  ~ 0 as t ~ 0o for  any x(0) ~ ( D " )  °. 
In the p roof  of  he first step, we will utilize the nota t ion  given below, which was first in t roduced  in [1] 

and [2]. 
For  each  integer  m,  0 ~< m ~< n, let 

Am = (~ = (~1 . . . . .  ~n) T ~ A: ~o-(i) = 0, l ~< i ~ m and ¢~(i) = + 1, m < i ~< n,  for  some cr ~ S y m ( n ) )  

where  A = {¢ = (¢~ . . . . .  ~:n)T: ~:i = _+ 1 or 0, 1 ~< i ~< n} and let Sym(n)  deno te  the symmetr ic  group of  

order  n. For  each  ¢ ~ A, let 

C ( ¢ )  = { x =  ( x l , . . . , x , ) T ~ R " :  Ix~l < 1 if ~:i = 0, and x ~ = ¢  i if sc~ 4: 0}. 

Suppose  tha t  ~ ~ A m and cr ~ Sym(n)  such that  

~:~(i)=0, l ~ < i ~ < m  and ¢,~(i)=-+1,  m < i ~ < n .  (4)  

W e  deno te  

A I ,  I = [a~r(i)~r(j)]l<~i,j,~m, AI , I I  = [a~r(i)~r(j)]l¢i<~m,m<j~ n, 

AII , I  = [acr(i)cr(j)]m<i,n,l~j<~ m, h l I , l l  = [acr(i)~r(j)]m<i,j~n, 

and 

~1 = (~:o'(1) . . . . .  ~o'(m)) T, ~II = (~o'(m+l) . . . . .  ~o-(n)) T" 

R e m a r k  1. For  a given ~ ~ A m, there  may  exist d i f ferent  pe rmuta t ions  in Sym(n)  for  which (4) is true.  
For  these  di f ferent  permuta t ions ,  the nota t ion  given above will be  the same  up to different  orders  in the 
componen ts .  Thus,  the subsequent  analysis and conclusions will be identical  for  any of  the pe rmuta t ions  
used. 

R e m a r k  2. I f  m = n, we have AI, I = A ,  ~I = ~ and the AI,I1, AII,I, AII,I I, ~lI do not  exist. I f  m = 0, we 
have AII,I  I = A ,  ~II = ~ and the AI, I ,  A i , n ,  AII , I ,  ~I d o  not  exist. 

Proof  of  the Theorem.  (1) Cons ider  ~ ~ Am, 0 < m < n, with ~ ~ Sym(n)  such that  ~ ( i )  = 0, 1 ~< i ~< m,  
and ~( i )  = + 1, m < i .<< n. W h e n  x ~ C(~),  system (1) becomes  

~ x  = 0 (5)  3f I = A I , I X  I +AI , I I~ : I I ,  

where  

X I = (Xo.(1) . . . .  , Xo-(m)) T, 

and 

XII = (Xo-(m+l) . . . . .  Xo'(n)) T = (~o'(m+l) ,  """,  ~o'(n)) T = ~II ,  

- l < x , , ( i  ) < 1  for l ~ < i ~ < m .  

In o rder  to satisfy )~11 = 0, i.e., in order  to main ta in  x in C(¢),  it is necessary  that  (cf. [1,2]) 

m i n ( ( A m l X i  +Ai i , i i ~n )  * ¢ii)  >/0. (6) 
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, (2)1 Denote Aml = [a!J )] ~ R ¢'-m)×m, A I I , I  I = tai/j ~ R (n-m)×(n-m), 

XI = (Xo ' ( l ) '  • " ' '  Xa(m))  T = (X~ 1), " • ",--mY(I)'~T, , and Ell  = (Eo,(m + 1),"" " '  Eo'(n)) T = (E l  2 ) , ' "  ", g-n'~(2)-m)T" 

Then, we have 

( A I I , I X I  ÷ A I I , I I E I I ) *  El l  = ( / l l , t X l ) *  El i  ÷ ( / I I , I I E I I ) *  El l  

(1) (1) = ~7~2) t'lj~j'~(l) v( '  ) , . . . ,  En(2) m a,,_,n,yxj 
j = l  j = l  

n - m  n - - m  ~T 
+ El2) y '  ,¢2).c~2) c~2) 3-" a ¢2) ,c!2)/ 

" l j b j  . . . . . . .  - m  ~ n--m,J:'3 } •  ( 7 )  
j = l  j = l  

By noting that I x~o) l < 1 for 0 ~< i ~< m and ~(i) = + 1 for m < i ~< n, we have 

( A..lx~ + An,llCi) * ~. 

~< ~" [a~)l, ~ lanai," ~ (l) • . ,  a ~ _ , ,~ , j  

/ = 1  j = l  j = l  

+ af,' + E [ a~'[,-220(e) + E [ a~2j) 1, . . . ,  an(2) m,,.--,n + E [ a~2~-m,j 
j = 2  j =  l,j=~ 2 j =  1 

( = a] 2, + a 5) l + E [a'~'l, a(222 ) + l a ',l + E [a~ l  l j  , ' "  ", 
j = l  j = 2  j = l  j =  1,jv~2 

i) a (2) + ~ a O) [ + ~ ]a~)_m,j (8) n - m , n  --m n --m,j  
j = l  j = l  

Notice that the entries in the right hand side of (8) are just rearrangements of 

aii + ~ I%1, f o r i = ¢ r ( m + l )  . . . . .  o-(n),  
j ~  l , j + i  

and thus, since /z~(A)< 0 (by assumption), every entry in the right hand side of (8) is less than 0. 
Therefore, condition (6) will fail to hold and this is true for every m, 0 < m < n. It is also true for m = 0 
by noting that ( A t / ) .  ~7 < 0 for any r / ~  A 0 when/z~(A) < 0. Thus, the state of system (1) will not stay on 
the boundary of D ~ for all time t, since 

n- - I  

a D " =  U {C(E):sC~A,,}.  
m = 0  

(2) Thus far, we have proved that for any x(0) e D ", it is impossible for x(t) to remain in aD" for a// 
t > 0. We now show that under the conditions of our Theorem, once x(t) leaves aD", it will never enter 
aD ~ again• 

Therefore,  without loss of generality, we assume that x(O) ~ (D~) °. Then, system (1) is equivalent to 

=Ax  (9) 

as long as x(t) does not reach aD" and the solution for (9) is given by 

x ( t )  = 
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lie A' II p -<< We compute  II x(t)ll~== I l e A t x ( 0 ) [ [ ~  lie At I1~11 x(0)ll~. Using the fact that  (see [6], p.59) 
e tz,'(A)t, for any t >/0 and any p >/1, we have 

Ilx(t)ll~<e~'aA)'llx(O)ll~< I Ix(0)  ll~, f o r a n y  t > 0 ,  

s ince /z=(A)  < 0. This in turn implies that  

x ( t )  E ( D n )  °, for  all t > O, 

i.e., when  x(0) ~ (Dn)  °, x ( t )  will never reach the boundary  of  D n. Therefore ,  system (1) is equivalent to 
(9) for  all t >1 0 when x(0) ~ ( D " )  °. Hence,  x ( t )  ~ 0 as t --, 0% since Re A(A) < 0. [] 

Summarizing,  above we have shown that  
(i) x(0) ~ D n is not allowed; 

(ii) if x(t~) ~ OD ~, x ( t )  cannot  stay in ~D ~ for all t > tl; and 
(iii) once x ( t )  is in (D~)  °, it will never enter  OD" and x ( t )  ~ 0 as t ~ ~. 

Remark  3. In [3], we consider  the discrete-t ime counterpar t  of  system (1), given by 

x ( k + l ) = s a t [ A x ( k ) ] ,  k - - 0 ,  1 . . . . .  (10) 

where x ~ R ' ,  A c R ~×n, and 

1, xi>~l  , 

s a t ( x )  = [ s a t ( x , )  . . . . .  s a t ( x , ) ]  T with sa t (x / )  = x i, - 1  < x  i < 1, 

- 1 ,  xi~< - 1 .  

The  condit ion which ensures  the equilibrium x e = 0 of  system (10) to be globally asymptotically stable 
(see [3]), given by 

II A II~ < 1, (11) 

consti tutes a discrete-t ime counte rpar t  to condit ion (3). 

4. Conclusion 

Equat ion  (1) describes a class of  cont inuous- t ime dynamical systems with state saturation nonlineari-  
ties - special kinds of  hard  limiters. Systems of  this type arise frequently in the model ing of  control  
systems and neural  networks. Thus,  the stability propert ies  of  such systems are of  great  interest. Ou r  
result states that  the null solution of  system (1) will be globally asymptotically stable, if the measure  of  
the coefficient matrix A,  induced by the matrix II" I[~ norm is negative. This suggests that  matrix 
measure  may play an impor tant  role in the stability analysis of  systems described by (1). 
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