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Abstract: Sufficient conditions for the global asymptotic stability of the equilibrium x,=0 of dynamical systems which are
characterized by linear ordinary differential equations with saturation nonlinearities are established. The class of systems
considered herein arises in the modeling of control systems and neural networks.
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1. Introduction

In this paper, we will investigate stability properties of systems described by

i(t)=h[Ax(1)], t>0, (1)
where x(t1)€D":={x€R". -1<x;<1,i=1,...,n}, A=[a;]ER™",
n n T
h(Ax) = [h( Y aljxj),...,h( Y a,,jxj)] ,
j=1 i=1
and
0, x;=1,
h(Za,-,-xj)= Yoa;x;, —1<x,<1, fori=1,...,n.
j=1 i=1
0, X, =—1

We will refer to (1) as a ‘linear’ system operating on a closed hypercube.

Equation (1) represents a class of continuous-time dynamical systems with symmetrically saturating
states after normalization. Examples of such systems include control systems (see [3] for a discussion of
discrete-time systems of this type) and certain classes of neural networks [1,2].

When considering (1) as a control system (with no external inputs), some of the first fundamental
questions that arise concern the existence and uniqueness of an equilibrium or operating point (which we
assume to be the origin, without loss of generality) and the qualitative properties (specifically, stability
properties) of such an equilibrium. The condition that the matrix A4 be stable (i.e., that all of the
eigenvalues of A be located in the left half complex plane) does not ensure that x, = 0 is asymptotically
stable in the large. For example, the matrix

111 -20 4 -7
4= |30 -30 -1 -195

8.4 66 10 -20

10 -10 30 -30
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has eigenvalues A(A4) = —0.2921, —28.5009, —5.0535 + 21.6362i, i.e., A is stable. It is easily verified that
in addition to the origin, the system (1) with A specified above, has also equilibria at

x,=(—-1, 03167, -1, =1)" and x,=(1,03167,1,1)".

Thus, while x, = 0 is certainly asymptotically stable, it is not asymptotically stable in the large.

When considering system (1) as a neural network with applications to optimization problems, we wish to
construct a network with a unique equilibriurn which is globally asymptotically stable, in order to prevent
convergence to local minima of an objective function (see, e.g., [4]).

In the present paper we will establish a set of sufficient conditions which ensure the global asymptotic
stability of the equilibrium x, = 0 of system (1).

The remainder of this paper is organized as follows. In Section 2, we introduce some essential
notation, and in Section 3, we present our main result. We conclude the present paper in Section 4.

2. Notation

For x € R", we define the /, vector norm as

n l/p
le||p=(2 |x,-|p) , forl<p<oo.

i=1
Recall that when p = «, we have || x ||l = max, _; _.{|x,|}. For 4 € R"*", we define the norm of A by
Al =inf{y: | Ax |l <yl x| for all x € R"}.

Recall that for p =, the norm of A, induced by the I, vector norm, is given by | A|.=

max, ; X7 la;1}
The measure of a matrix 4 € R**" is defined as

4 i lI+6A4ll,-1

= lim ——M—,

mp(A) Jim, p

where |- ||, denotes the matrix norm induced by the [, vector norm and [ is the identity matrix. In

particular, when p = o, we have u(A)=max, ., _fa,;+ L7 ;. 1a;l}

We denote the interior and the boundary of a set £2 by (£2)° and 3£2, respectively.

For x=(x,...,x,)T and y=(y,,...,y,)7, we let x*y=(x;y,,...,x,y,)7, and we let min(x) =
min, _, _ {x;]}. Also, the notation x <y will mean x, <y, for 1 <i<n.

3. Main result

We recall that for a general autonomous system
i =f(x), (2
with x € R" and f: R" - R", x, is an equilibrium for (2) if and only if

f(xe) =0.

We can assume, without loss of generality, that x, = 0 (see, e.g., [S]). Thus, for system (1), we assume that

A 1s nonsingular.
We are now in a position to establish the following result.
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Theorem. The equilibrium x, =0 of system (1) is globally asymptotically stable, if
ud 4) <0. (3)

Since Re A(A4) < u{A) <0 (see [6]), the equilibrium x, = 0 is clearly asymptotically stable. We need
only to prove that it is also globally asymptotically stable. We will prove this in the following two steps.

(1) For any x(0) € D™, x(¢) will not always stay on D" for > 0.

(2) x(t) > 0 as t — « for any x(0) € (D")°.

In the proof of he first step, we will utilize the notation given below, which was first introduced in [1]
and [2].

For each integer m, 0 <m < n, let

Am={§=(§1,...,§n)TeA: £,,=0,1<i<mand ;)= £1, m <i<n, for some o-ESym(n)}

where A ={¢£=(¢,,...,£,)": & =11 o0r 0, 1<i<n} and let Sym(n) denote the symmetric group of
order n. For each £ € A, let

C(&)={x=(xp,...,x,) €R" x| <1if §=0,and x, = if &+ 0}.
Suppose that ¢ € A,, and o € Sym(#n) such that
£,,=0, 1<i<m and §,,==x1, m<i<n. 4)
We denote
A= 2wep)icijem AL =[%woi)icicmm<ion
Ay, = [aa(i)o-(j)]m<i<n,1<j<m’ Ay = [ao'(i)o'(f)]m<i,j<n’
and

fl = (gcr(l)’ MR ga(m))T’ §II = (ga(m+l)’ A §a’(n))T'

Remark 1. For a given £ € A,,, there may exist different permutations in Sym(n) for which (4) is true.
For these different permutations, the notation given above will be the same up to different orders in the
components. Thus, the subsequent analysis and conclusions will be identical for any of the permutations
used.

Remark 2. If m =n, we have 4, =A, é;=¢ and the Ay, Ay, Ay, §y do not exist. If m =0, we
have Ay, =A, £ =¢ and the A,;, Ayy, Ay, £, do not exist.

Proof of the Theorem. (1) Consider £ € A,,, 0 <m <n, with o € Sym(n) such that £,,=0, 1 <i<m,
and £,,,=+1, m<i<n When x & C(¢), system (1) becomes

x1=A1,1x1+A1,n§11’ ¥y=0 (5)
where
T T T
xl=(x¢7(1)""’x(7(m)) s xll=(xa(m+1)""’x0'(n)) =(§o'(m+1)""’§a(n)) =¢n,

and

-1<x,,5<1 forl<i<m.
In order to satisfy £,; =0, i.e., in order to maintain x in C(£), it is necessary that (cf. [1,2])

min(( Ay Xy + Ay pén) * én) > 0. (6)
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Denote A, =[a{)l€ R ™" A, =[aP]eR"—*0=m,

T T T T
xlz(‘xu(l)""’xa(m)) z(x(ll)v“-’xfrlz)) ., and §ll=(§u(ln+l)""’§u(n)) :(5(12) 5(2) ) .
Then, we have

(ApyxitApuén) *én=(Awx) *én+ (Aunén) * én

m T
@ e 2 1 t
& )Za( D2 Y el ))

i=1 i=1
n—m T
(2) 2 2 2 2 2
B - T ) | )
j=1 Jj=1

By noting that |x,, | <1for0<i<m and £,,, = +1 for m <i<n, we have

o(f

(Apgxy Ay pén) *én

m m m T
[ (1) )
< Zlalj ’ Z|a2j|""’ Zlan m]‘
j=1 j=1 j=1

n—m n—m n—m-—1 T
(2) (2) @ 2) (2) (2)
a + Z |a a22+ Z ‘a2] <, m,n— m+ Z 'an m;l
j=2 J=1,j#2 j=1
m n—m -
- 2) ) (2) (1)
= a11+2“11;|+ Z' a22+2|a |+ ) ’ 2 ,
ji=1 j=2 j=1,j#2
T
m n—m-—1
2) (h 2)
Ay - m+ Z ’an m1‘+ Z ‘an m/‘) . (8)
j=1 j=1

Notice that the entries in the right hand side of (8) are just rearrangements of

n
a;+ Y, layl, fori=o(m+1),...,0(n),

j=1j i
and thus, since u(A) <0 (by assumption), every entry in the right hand side of (8) is less than 0.
Therefore, condition (6) will fail to hold and this is true for every m, 0 <m <n. It is also true for m =0
by noting that (An)*n <0 for any n € A, when u.(A) <0. Thus, the state of system (1) will not stay on
the boundary of D” for all time ¢, since

n—1

ap"= | {C(&): ¢€4,).

m=0

(2) Thus far, we have proved that for any x(0) € D", it is impossible for x(¢) to remain in aD” for all
t > 0. We now show that under the conditions of our Theorem, once x(¢) leaves 9D", it will never enter

aD" again.
Therefore, without loss of generality, we assume that x(0) € (D”)°. Then, system (1) is equivalent to
% =Ax (9

as long as x(z) does not reach aD”" and the solution for (9) is given by

x(t) =e?x(0).
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We compute || x(6) ]l = le*x(0) | < le*" || x(O) ... Using the fact that (see [6], p.59) lle™'ll, <
et for any ¢ > 0 and any p > 1, we have

| x(£) o< e[ x(0) |« < | x(0) l«, for any ¢ >0,
since p.(A) < 0. This in turn implies that
x(t)ye(D")°, forallt >0,

i.e., when x(0) € (D"P, x(t) will never reach the boundary of D". Therefore, system (1) is equivalent to
(9) for all t » 0 when x(0) € (D"). Hence, x(¢) > 0 as t - «, since Re A(4)<0. O

Summarizing, above we have shown that
(i) x(0) & D" is not allowed;
(i) if x(¢,) € 0D", x(¢) cannot stay in 8D" for all ¢t > ¢; and
(iii) once x(¢) is in (D")°, it will never enter 3D" and x(¢) — 0 as t — .

Remark 3. In [3], we consider the discrete-time counterpart of system (1), given by
x(k+1) =sat[ Ax(k)], k=0,1,..., (10)
where x € R", A € R"*", and

1, x;=21,

sat(x)=[sat(x,),...,sat(xn)]T with sat(x;) = x, —-l<x;<1,
-1, x, < —1.

t

The condition which ensures the equilibrium x, = 0 of system (10) to be globally asymptotically stable
(see [3]), given by

lAll.<1, (11)

constitutes a discrete-time counterpart to condition (3).

4, Conclusion

Equation (1) describes a class of continuous-time dynamical systems with state saturation nonlineari-
ties — special kinds of hard limiters. Systems of this type arise frequently in the modeling of control
systems and neural networks. Thus, the stability properties of such systems are of great interest. Our
result states that the null solution of system (1) will be globally asymptotically stable, if the measure of
the coefficient matrix A4, induced by the matrix |- ||. norm is negative. This suggests that matrix
measure may play an important role in the stability analysis of systems described by (1).
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