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Abstract

We first conduct an analysis of the robustness properties of a class of neural networks
with applications to associative memories. Specifically, for a network with nominal parame-
ters which stores a set of desired bipolar memories, we establish sufficient conditions under
which the same set of bipolar memories is also stored in the network with perturbed
parameters. This result enables us to establish a synthesis procedure for neural networks
whose stored memories are invariant under perturbations. Our synthesis procedure is
capable of generating artificial neural networks with prespecified sparsity constraints (on
the interconnecting structure) and with nonsymmetric and symmetric interconnection matri-
ces. To demonstrate the applicability of the present results, we consider several specific
examples.

Keywords: Sparsely interconnected neural networks; Parameter perturbations; Robustness
analysis; Associative memories; VLSI implementation of neural networks

1. Introduction

We consider neural networks described by equations of the form
{'=—Ax+Tsat(x)+I (1)

y =sat(x)
where x € R" is the state vector, x denotes the derivative of x with respect to time
t, yeD"&£{xeR"~1<x;,<1,i=1,---,n) is the output vector, A =
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diagla,, -, a,] with a;>0 for i=1,---,n, T=[T;;]J€ R"™*" is the coefficient (or
connection) matrix, /=[I,"--,I,]' €R" is a bias vector, and sat(x) =
[sat(x,),- - -, sat(x,)]T represents the activation function, where

‘1, x;>1
sat(x;) = x;, —l<x;<1,
-1, x;< -1

We assume that the initial states of (1) satisfy | x(0)| <1 fori=1,---,n.

In [7], we established analysis results for system (1) which enable us to locate all
equilibrium points and ascertain their qualitative properties. Also, in [6] and [7], we
presented a synthesis procedure which guarantees to store a desired set of bipolar
patterns as memories and which results in a predetermined interconnecting struc-
ture for system (1). Thus, this synthesis procedure enables us to synthesize neural
networks which are either fully interconnected, or partially (or sparsely) intercon-
nected.

In the present paper, we address the implementation of associative memories
via neural networks modeled by (1). In practice the desired memory patterns are
usually represented by bipolar vectors (or binary vectors). We will call a vector « a
memory vector (or simply, a memory) of system (1), if @ =sat(8) and if 8 is an
asymptotically stable equilibrium point of system (1). We present in Section 2
robustness analysis of the stability properties of bipolar type memory vectors for
neural network (1). Specifically, we will assume that a!,---,a™ €B" 2 {x € R":
x;=1or —1,i=1,---,n} are the desired memory vectors of system (1) and we will
investigate under what conditions a!,--:,a™ are also memory vectors of the
perturbed system described by

{ = —(A+A4A)x+ (T +AT)sat(x) + (I + AI) y
- - )
y =sat(x) L
where AA = diaglAa,," -+, Aa,] with a, + Aa,>0for i=1,---,n, AT € R"*", and
Al € R". This problem is of great interest from a practical point of view, especially
in VLSI implementations of system (1), since one cannot realize precisely synthe-
sized parameters {A, T, I}. We will establish an upper bound for the permissible
perturbations A4A, AT, and Al in terms of the expression || A '4AA(l.+
| A~'AT ||l = + || A7AI ||, where || - || denotes the matrix norm induced by the I
vector norm (see Theorem 1).

Utilizing the above results, we will solve in Section 3 the following problem:
Given a',---,a™ € B" as desired patterns and given a prespecified interconnect-
ing structure, find A4, T, and I such that a!, -+, @™ become memory vectors of
system (1), such that the system satisfies the prespecified interconnecting structure
(in terms of sparsity), and such that the connection matrix is symmetric.

In Section 4, we consider several examples to demonstrate the applicability and
versatility of the present results, and in Section 5, we conclude with several
pertinent remarks.
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2. Robustness analysis

In the sequel, we will make use of the notation
5(x)= lgxiign{lx,-l} for x€R"
and
C(a) ={x€R": x;a;> 1}

for a€B"={x€R"” x,=1o0r —1, i=1,---,n}. Recall that for x €R", the I,
vector norm is defined by

| xllo = max {lx;l}.
l<isn

Also recall that the matrix norm induced by the [, vector norm for a matrix
F=[f,J€ R™*" is defined by

n
| Fllo= max { If,-,-\l}-
1gi<m j=1
We will make use of the following result which has been proven in [7] (cf.
Corollary 4 in [7]).
Lemma 1. Let a € B”. If
B=A"YTa+I)eC(a)
then (a, B) is a pair of memory vector and asymptotically stable equilibrium point of
system (1).

We are now in a position to prove the next result.

Theorem 1. Suppose that a',- - -,a™ € B" are desired memory vectors of system
(1), and suppose that B, --,B™ are asymptotically stable equilibrium points of
system (1) corresponding to a',- -+, a™, respectively. Let

= min {8(B')}. 3
v= min (5(8")) 3)
Then a', - -,a™ are also memory vectors of system (2) provided that
A " UAl+ | A AT lo+ 1 A7 AT |la <v - 1. (4)

Proof. From Lemma 1, we see that, for [=1,---,m, B'=A"(Ta'+1), or
equivalently, a7 '(T;a'+1,)=p} for i=1,---,n, where a; is the ith diagonal
element of matrix A, T, represents the i row of matrix T, and /; and B! are the

ith element of I and B, respectively. In the rest of the proof, we assume that

| A7 AT lo+ 1 A7 'Alllo <7 (5)
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and oy
A" AAlle<v—75—1 (6)

i.e. (4) is satisfied. We will show that a!, -, a™ are also memory vectors of (2).
For I =1, -, m, compute ATa’+ Al and apply (5) to obtain

3 &

‘8

la;'AT,a’ +a’lAII<EIa“AT I+max|a AL |
j=1

<A AT+ 147 A1l.<n @)

where AT, =[AT,,---, AT,,] represents the ith row of AT and Al is the ith
component of Al.
We now compute

E{'A‘ (a; +Aa,-)_1[(T,-+AT,~)aI+Ii +AII]

a.
= a.~+lAa,- [a7'(Tia' + 1) +a; 'AT,a’ + a;'AL]

a +A (B,+a“ATa +a;'AL).

From (3) and (7), when B! > 1 (a!=1), we have

B>

v

(Bi = la; 'AT,a' + o] 'AL|) = (V -n)>1. (8)

a+Aa a+A

Also, when [3,. < —1(al=—1), we have

Bl < (B! + a7 'AT,a' +a; AL, |) < aAa_(-u+n)<—1. 9)

a+A a;+

Relations (8) and (9) are true since (6) implies that

a; Aa;
1+ —<1+|—

a;

<v—n

which is equivalent to

- >
a+Aa (v=m)>1.

(8) and (9) in turn imply that

=(A+4A4) '[(T+4T)a' + (1 +41)] eC(a')

for I=1,"-+,m. From Lemma 1, we now see that a!,---, a™ are also memory
vectors for system (2). O
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Fig. 1. A geometric interpretation of Theorem 1.

In the following, we give a geometric interpretation of Theorem 1 in RZ.
Suppose that a € R? is a (desired) memory of system (1) and its corresponding
asymptotically stable equilibrium point is 8. Then, B =AY Ta + 1) must be in
the region C(a) (cf. the crosshatched region in Fig. 1), since we have »>1 in
Theorem 1. ’

When we have perturbations 44, AT, and Al as in system (2), the vector B will
be displaced from its original location to, say, B. In order for a to remain as a
memory vector for system (1) after perturbation (i.e. for a to be a memory vector
for system (2)), we require that B also be in C(a). It is clear from Lemma 1 that as
long as B is in C(a), a will be a memory vector of the perturbed system (2).
Theorem 1 gives one of the possible upper bounds for the perturbations, specified
by |l A”'"AA |l + | A7'AT || + || A~ 'AT ||, which will ensure that the perturbed
vector B and the original vector B are within the same region given by C(a). This
upper bound is given by v — 1 (if v satisfies condition (3)).

Remark 1. In system (2), we have to require that a; + 4a, > 0 for each i. From
Lemma 1, we see that a perturbation A4 with Aa; <0 for i =1, --,n will not
change the desired memory vectors a!,- - -, a™ € B" of system (1).

Remark 2. When considering perturbations due to an implementation process,
the focus is usually on the interconnection matrix 7 and not on the parameters A4
and 7. Assuming AA =0 and Al =0, system (2) takes the form

Xx=—Ax+ (T +AT)sat(x) +1

y = sat( x) (10)

and condition (4) assumes the form

A AT ll.<v-1. (11)
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3. Synthesis procedure

In this section, we first present a summary of the synthesis procedure developed
in [6] and [7), and utilize Theorem 1 to analyze this synthesis procedure. We then
present a synthesis procedure for neural network (1) with sparsity and symmetry
constraints.

3.1. Summary of the synthesis procedure with sparsity constraints (non-symmetric
interconnection matrix) '

Suppose we are given a set of desired patterns al,---,a™ €B". We wish to
design a system of form (1) which stores a',- - -,a™ as memories. Without loss of
generality, we choose A as the n Xn identity matrix. We denote Y=[a'-
a™ -, @™ ' —am], choose u>1, and set B'=pa’ for I=1,---,m (hence,
B’ € C(a")). In view of Lemma 1, it can be verified that in order for system (1) to
store the desired patterns a',- -+, as memories and to store B!,---,B" as
corresponding asymptotically stable equilibrium points, matrix T must be a solu-
tion of the matrix equation,

TY = uY. (12)

In our implementations of associative memories via neural networks 1), we
have sparsity constraints on the interconnecting structure. Specifically, we will
consider constraints which require that predetermined elements of T be zero. For
example, when n = 4, the constraints on matrix T might be given by

T, 0 T5; 0
0 T 0 T
T= p7) 24 , (13)
T,, 0 T; O
6o 17, 0 T,

where the T;;’s are to be determined. The question to be answered is for a given
set of vectors al,---,a™€B" and Y=[a'—a™, - ,a™ ! —a™], whether it is
possible to find (non-trivial) solutions of T with structure (13) from the matrix Eq.
(12). We have shown in [7] that (non-trivial) solutions for such T' always exist as
long as all the diagonal elements of matrix T are assumed to be non-prespecified
elements (e.g. as given in (13)) and p <n(p =rank[Y]). One class of sparsely
interconnected neural networks which satisfies the above structural condition are
cellular neural networks, first introduced by Chua and Yang in 1988 [1,2]. Cellular
neural networks (which are also described by Eq. (1)), require that the matrix T
have a special sparse structure in which all the diagonal elements are required to
be non-zero (non-prespecified).

In Section 3.3, we develop a synthesis procedure for associative memories which
results in sparse and symmetric interconnection matrices T for system (1). To
accomplish this, we will make use of the synthesis procedure summarized in the
following, originally developed in [6] and [7].
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We call a matrix § =[S$;;] € R**" an index matrix if S;; =0 or 1. The restriction
of a matrix Q =[Q,;]€R™" to index S, denoted by Q1S, is defined by Q1§ =
[A;;], where

0, iS,=1
710  otherwise

3.1.1. Sparse design problem

Given an n Xn index matrix S=[S;] with S;#0 for i=1,---,n, and m
vectors al,---,a™ in B", choose {4, T, I} with T=T|S in such a manner that
al,- -+, a™ are memory vectors of system (1).

3.1.2. Summary of the sparse design procedure

(1) Choose A as the identity matrix.

(2) Choose p > 1 and compute g/ =pa’ fori=1,---,m.

(3) T is solved from TY = uY with the constraints of T=T|S, where Y =[a' -
am’, . _’am—l _am].

@) 1=[1,, -, L} is computed by I = pa™ — Ta™.

Then, a',- - -, a™ will be stored as memory vectors for system (1) with A, T, and
I determined above. The states B° corresponding to o', i=1,---,m, will be
asymptotically stable equilibrium points of the synthesized system.

3.2. Robustness analysis of the synthesis procedure with sparsity constraints (nonsym-
metric interconnection matrix)

In this subsection, we will utilize the robustness analysis result developed in
Section 2 to analyze the Sparse Design Procedure summarized above.
The following result can readily be proved.

Corollary 1. The Sparse Design Procedure (given above) guarantees that a'," - -, a™
are also memory vectors of system (2) provided that

I A AAllo+ | A7AT llo+ || A7'AT o
= 1 AANa+ IAT o+ AT llw <p = 1. (14)

The above enables us to specify an upper bound for the parameter inaccuracies
encountered in the implementation of a given design to store a desired set of
bipolar patterns in system (1). This bound is chosen by the designer during the
initial phase of our design procedure. This type of flexibility does not appear to
have been achieved in existing synthesis procedures (e.g. [3-5,8,9]. Specifically,
the synthesis procedure advocated above incorporates two features which are very
important in the VLSI implementation of artificial neural networks:
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(i) it allows the designer to choose a suitable interconnecting structure for the
neural network; and

(i) it takes into account inaccuracies which arise in the realization of the neural
network by hardware.

3.3. Synthesis procedure for neural network (1) with sparsity and symmetry con-
straints on the interconnection matrix

For the A, T, and I determined by the Sparse Design Procedure with px > 1, let
us choose

AT=(TT-T)/2. (15)

Then, T,2T+AT=(T+T")/2 is a symmetric matrix. From Theorem 1 (see
Remark 2), we note that if

AT'AT o= ITT=-THu/2<p -1, (16)

the neural network (10) will also store all the desired patterns as memories, with a
symmetric connection matrix T+ AT =T,

The above observation gives rise to the possibility of designing a neural network
(1) with prespecified interconnecting structure and with a symmetric interconnection
matrix. (Note that in this case, we require that S = S7.) Such capability is of great
interest since neural network (1) will be globally stable when T is symmetric [1].
(Global stability means that for every initial state, the network will converge to
some asymptotically stable equilibrium point and periodic and chaotic solutions do
not exist.) It appears that (16) might be satisfied by choosing p sufficiently large.
However, it can easily be shown that large u will usually result in large absolute
values of the components of T which in turn may result in a large |77 — T || ..
Therefore, it is not always possible for (16) to be satlsﬁed by choosing pu large.
From (16), we see that if our synthesized matrix T is sufficiently close to its
symmetric part (T+ T7T)/2, or equivalently, if |77 — T ||.. is sufficiently small,
then (16) is satisfied and we are able to design a neural network of form (1) with
the following properties: (i) the network stores !, -+, @™ as memory vectors; (ii)
the network has a predetermined (full or sparse) interconnecting structure; and
(iii) the connection matrix T of the network is symmetric.

The synthesis procedure summarized in the previous subsection will usually
result in a nonsymmetric coefficient matrix 7. In the following, we develop an
iterative algorithm (design procedure) which in most cases will resuit in a neural
network (1) with symmetric and sparse interconnection. In doing so, we apply
Lemma 1 and Theorem 1 (Remark 2) iteratively. Let AT be defined as in (15). For
the given p (from the Sparse Design Procedure), suppose that || AT ||« >p — 1.
We can finda A, 0 <A <1,suchthat Al AT ll. <p — 1, and we let T, = T+ AAT.
We use this 7, as the new connection matrix for our neural network (1). According
to Lemma 1 and Remark 2 (Theorem 1), we see that a!,- - -, a™ are still memory

A
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vectors of system (1) with coefficient matrix T, and we can compute the corre-
sponding asymptotically stable equilibrium points as B'=A4"YT,a'+1) for I =
1,- - -,m. Clearly B' € C(a'). Using Theorem 1 (Remark 2), we can determine the
upper bound v for the permissible perturbation AT as in (3), where we use B
instead of B'. We repeat the above procedure, until we determine a symmetric
coefficient matrix T or until we arrive at » <1+ n (where 7 is a small positive
number, e.g. n = 0.001).

Because of its importance and for the sake of completeness, we summarize in
the following our symmetric design procedure.

3.3.1. Symmetric design problem

Suppose we are given an index matrix S=S7=[§;J€R"*" with §;#0 for
i=1,-,n, and m vectors a', - -,@m € B". Choose {4, T, I} with T=T|S and
T=TT in such a manner that a',---,a™ are memory vectors of neural network

(.

3.3.2. Symmetric design procedure

(1) According to the Sparse Design Procedure summarized in Section 3.1, we first
choose A as the identity matrix and we determine T and I for neural network
(1) witha u>1+7(e.g. u =10, n =0.001).

2) K T=TT or u <1+ 7, stop. Otherwise go to step 3.

(3) Compute AT=(TT—-T)/2. If |AT ll.<up —1, choose A =1. Otherwise,
choose

n—1
A= —— —¢
| AT ||

where ¢ is a small positive number (e.g. ¢ = 0.01). Compute T, =T + AAT.
(4) Compute B'=A" T\a'+1) for I=1,--,m, and compute v =
min, _, _ {8(B")} > 1.
(5) Replacing u by v and replacing T by T, go to step 2.

If we end up with T=T7, we have found a solution for our symmetric design
problem. If we end up with u <1+7 and T# T, our design procedure is not
successful in solving a symmetric T for the given problem.

The above design procedure yields a set of parameters {A4, T, I}. For VLSI
implementations, these parameters have to be appropriately scaled. The theoreti-
cal basis for doing this is provided by the following result which was proved in [7].

Corollary 2. Suppose that B is an asymptotically stable equilibrium point and
a = sat(P) is a memory vector of system (1) with parameters {A, T, I}. Then, a and

e W T
=T
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Fig. 2. The four desired memory patterns used in Example 1.

B will also be a pair of memory vector and asymptotically stable equilibrium point of
system (1) with parameters {kA, kT, kiI} for every real number k > 0.

4. Examples

To demonstrate the applicability and versatility of the analysis and synthesis
procedures presented in the preceding sections, we consider two specific examples.

Example 1. We consider a neural network with 12 neurons (n = 12) with the
objective of storing the four patterns shown in Fig. 2 as memories. As indicated in
this figure, twelve boxes are used to represent each pattern (in R'?), with each box
corresponding to a vector component which is allowed to assume values between
—1 and 1. For purpose of visualization, —1 will represent white, 1 will represent
black, and the intermediate values will correspond to appropriate grey levels, as

-1 -0.5 0 0.5 1
NSRS R e

Fig. 3. Grey levels.

O
>
©

)
“w
Y

10 11 12
© W 20

Fig. 4. Interconnecting structure of a cellular neural network.
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shown in Fig. 3. The four desired patterns given in Fig. 2 correspond to the

following four bipolar vectors:
a'=[1,1,1,1, -1, -1,1, -1, -1,1,1,11",
or=[1, -1,1,1,-1,1,1,1,1,1, =1, 1},
c=[-1,1, -1, -1,1, -1, -1]7,

-1,1, -1, -1,1,

and

a*=[1,1,1,1,-1,1,1,1,1,1, -1, -17".

In all cases, we seek to design a cellular neural network with the configuration
given in Fig. 4 (for details concerning cellular neural networks, see [1] and [2]). The
index matrix for this interconnecting structure is as follows, where ‘0’ represents

no connection and ‘1’ represents a connection.

1 1 0 1 1 0 0 0 0 0 0 O]
111111000000
011701100 0O0O0O
t 10110110000
111111111000
s=sT=°11°11°11°°°
00 01 10110110
000 111111111
000 0110110 11
00000 0110110
000 00 0 1 11111
0o o 00000110 1 1]

(17

Case I: Nonsymmetric design. We utilize the Sparse Design Procedure summa-
rized in Section 3.1 to design a non-symmetric cellular neural network with the
index matrix given in (17). We obtain A4 as the identity matrix, and we obtain

[ 0.333  —0.000 0 0333 -—14.333
-3.500 15000 -—3.500 —3.500 -—10.500
0 0 0.500 0 —14.500
0.250 0 0 0250 —14.250
~5941 —0.000 -5.941 -—-5941 -8.059
T= 0 0.000 —-5.125 0 —8.875
0 0 0 -2.111 -11.889
0 0 0 -7.158 —6.842
0 0 0 0 —3.143

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0
0.000

0
0.353
5.625

0.211
-0.714

[ e R ]
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.250 0 0 0 0 0
-5.941 -0.706 0.353 0 0 0
0 3.750 5.625 0 0 0
-2.111 -9.444 0 -2.111  -9.444 0
—7.158 0.368 0211 -7.158 -14.211 -0.000
0 3.143 -0.714 0 -13.286  0.000
1.800  —11.400 0 1.800  —11.400 0
-5375 -10.750 -9.125 -5375 —4.875 -0.000
0 0.000 —17.000 0 —7.000  15.000 |

and
I=[0, 0.000, —0.000, —0.000, 0.706, —3.750, 9.444, 14.632,

—3.143, 11.400, 10.750, 0.000]".

In the above computations, we chose u =15 for the Sparse Design Procedure.
From Theorem 1 (Remark 2), we see that the upper bound for the admissible
perturbation || AT ||l is u — 1 =14. (For simplicity, in all of our examples, we
considered 44 = 0 and Al = 0. For the case when they are not zero, we can make
similar conclusions and give similar examples.)

The performance of this network is illustrated by means of a typical simulation
run of Eq. (1), shown in Fig. 5. In this figure, the desired memory pattern is
depicted in the lower right corner. The initial state, shown in the upper left corner,
is generated by adding to the desired pattern zero-mean Gaussian noise with a
standard deviation SD = 1. The iteration of the simulation evolves from left to

Fig. 5. A typical evolution of pattern No. 1 of Fig. 2.
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right in each row and from the top row to the bottom row. The desired pattern is
recovered in 13 steps with a step size h =0.06 in the simulation of Eq. (1). All
simulations for the present paper were performed on a Sun SPARC Station using
MATLAB.

Case II: Nonsymmetric T with perturbations. We generate randomly a matrix
AT =AT|S as
[-1.079 -1.175 0 0.875  0.303 0 0
-1.160 0.671 —-0.824 -1.649 -0.127 1.194 0
0 0.363 —-0.064 0 1.739 1.162 0
0.131 -1.671 0 1.839 -0.105 0 —1.223
1.673 -0983 -0.995 —-1454 00914 1.847 ~1.439
AT = 0 0.021 0.310 0 -1.890 1.601 0
0 0 0 1.668 1.098 0 —-0.844
0 0 0 1.031 -0.988 -0.007 -0.178
0 0 0 0 1.027 0.026 0
0 Q 0 0 0 0 —-1.320
0 0 0 0 0 0 -0911
| 0 0 0 0 0 0 0
0 0 0 0 0 ]
0 0 0 0 0
0 0 0 0 0
0.184 0 0 0 0
-0.502 -1.516 0 0 0
1.305 1.150 0 0 0
-1.299 0 -1.232 -0.947 0
—-1.643 1.635 -0.588 0.107 -1.951
-1.708 -0.825 0 1.179 -0.737
—1.264 0 1.124 -0.412 0
0.032 -0.720 -0.843 0.358 —1.862
—-1.253  0.599 0 1.602 0.821 |

which satisfies the condition that | AT || <u — 1. We use T, 2 T + AT in system
(10).

Since || AT |l» < # — 1, we see from Theorem 1 (Remark 2) that a',- - -, a* are
also memories for system (10). A typical simulation run of Eq. (10) with AT given
above is depicted in Fig. 6. In this figure, the noisy pattern is generated by adding
to the desired pattern uniformly distributed noise defined on [ -1, 1}. Convergence
occurs in 9 steps with A& = 0.06.

Case III: Symmetric design. Using the Symmetric Design Procedure outlined in
Section 3.3, we can easily determine a symmetric matrix 7" for the present design.
Starting with matrix T, =T+ AT (where T is obtained in Case I and AT is
obtained in Case II), we determine from Theorem 1 that v = 9.5512. Choosing
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Fig. 6. A typical evolution of pattern No. 2 of Fig. 2.

£ =0.01 and  =0.001 in our Symmetric Design Procedure, we find a symmetric
matrix T; in four iterations (step 2 to step 5 of the Symmetric Design Procedure)

as

[—0.746 —2.918 0 0.795 -9.150 0
-2918 15671 -1980 —3.410 -5.805 0.607
0 -1.980 0.436 0 -9.849 —1.827
0.795 —3.410 0 2089  —-10.875 0
-9.150 —5.805 —9.849 -10875 -—7.145 —4.282
T = 0 0.607 —1.827 0 -4282  7.226
3 0 0 0 -0.708 —9.086 0
0 0 0 -2971 —-4519  2.629
0 0 0 0 —1.640  3.043
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 |
0 0 0 0 0 0
0 0 0 0 0 0
-0.708 —2.971 0 0 0 0
-9.08 —4519 —1.640 0 0 0
0 2.629 3.043 0 0 0
-2955 —9.039 0 -1431 -8.339 0
-9.039 —1.274 1.641  -10.205 -12.411 -—-1.602
0 1.641 -1.539 0 -10976 —3.569
-1431 -10.205 0 2.924 -9.015 0
—-8339 —12411 -10976 -9.015 —4517 -—3.630
0 —-1.602 —3.569 0 -3.630 15.821 |
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Fig. 7. A typical evolution of pattern No. 3 of Fig. 2.

It can be verified by Lemma 1 that a!, a?, o and a* are also memories for
system (1) with the symmetric matrix 7, given above. From Theorem 1 (Remark
2), we can verify that the allowable upper bound for the perturbation for system (1)
with the above symmetric matrix T} is given by || AT ||, < 6.2807 — 1 = 5.2807.

A typical simulation run for system (1) with T, given above is shown in Fig. 7. In
this case, the noisy pattern is generated by adding Gaussian noise N(0, 1) to the
desired pattern. Convergence occurs in 8 steps with 4 = 0.06.

Case IV: Rounded matrix T. We round every component of matrix T, obtained
in Case I to its closest integer and obtain a matrix T, given by

(-1 -3 0 1 -9 0 0 0 0 (] 0 0]
-3 16 -2 -3 -6 1 0 0 0 0 ] 0
0 -2 o0 0 -10 -2 0 0 0 0 0 0
1 -3 o0 2 -11 0 -1 =3 0 0 0 0
-9 -6 -10 -11 -7 -4 -9 -5 -2 ¢ 0 0
|0 1t -2 0 -4 7 0 3 3 0 0 0
4 o 0 0 -1 -9 0 -3 -9 0 -1 -8 0
0 o 0 -3 -5 3 -9 -1 2 -10 -12 -2
0 0 o 0 -2 3 o0 2 =2 0 -1 -4
0o 0 o 0 0 0 -1 -10 0 3 -9 0
0 0 o 0 (] 0 -8 -12 -11 -9 -5 -4
0 0 0 0 0 0 0 -2 -4 0 -4 16

(18)

Using Theorem 1 (Remark 2), we can see that with the matrix 7,, which consists
of integers and which is also symmetric, the desired patterns o/, [ =1, 2, 3, 4, are
also memories of system (1) with 7, computed above, since the perturbation which
we used to obtain the above T, =T, + AT satisfies || AT ||, < 5.2807. We can
determine the permissible upper bound for the perturbation AT to the matrix T,
as || AT |l < 5 (by Theorem 1).

A typical simulation run for the present case is depicted in Fig. 8. In this figure,
the noisy pattern is generated by adding Gaussian noise N(0.1, 1) to the desired
pattern. Convergence occurs in 14 steps with A = 0.06.
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Example 2. In order to test our Symmetric Design Procedure and to see how
typical the results of Case III in Example 1 are, we repeat these examples 200
times using different sets of desired patterns to be stored as memory vectors. Each
set contains m = 4 vectors in B'? which are generated randomly. For each given
set of vectors, we synthesize system (1) using the Symmetric Design Procedure.

In these 200 tests, we chose u = 10 in the Symmetric Design Procedure. There
were only eleven tests out of 200 in which we did not succeed in finding a
symmetric matrix 7 for the generated desired patterns and using the above
specification for x. Furthermore, for these eleven failed tests, when we increased
p from 10 to 15, we were able to determine symmetric matrices T again.

Results in Example 2 suggests that our Symmetric Design Procedure will
frequently succeed in determining a symmetric matrix 7. It also suggests that
choosing a larger u makes it easier to find a symmetric T. However, a large p will
usually result in a matrix T having components with large absolute values. In VLSI
implementations of neural networks, we usually want to avoid large values for the
parameters (since they correspond to amplifications).

5. Concluding remarks

The results of the present paper complement our earlier results on sparsely
interconnected neural networks [6,7]:

(i) We provide upper bounds for the perturbations of parameters under which

desired memories stored in a neural network (1) are preserved. This type of

Fig. 8. A typical evolution of pattern No. 4 of Fig. 2.
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information is of great practical interest during the implementation process of
such networks.

(ii) The Symmetric Design Procedure presented herein enables us to design
artificial neural networks with prespecified interconnecting structure and with
symmetric interconnection matrix which store a given set of desired bipolar
patterns as memories.
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