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Sparsely Interconnected Neural Networks
for Associative Memories With
Applications to Cellular Neural Networks

Derong Liu Member, IEEE, and Anthony N. Michel, Fellow, IEEE

Abstract—We first present results for the analysis and synthesis
of a class of neural networks without any restrictions on the
interconnecting structure. The class of neural networks which
we consider have the structure of amalog Hopfield nets and
utilize saturation functions to model the neurons. Our analysis
results make it possible to locate in a systematic manner all
equilibrium points of the neural network and to determine
the stability properties of the equilibrium points. The synthesis
procedure makes it possible to design in a systematic manner
neural networks (for associative memories) which store all desired
memory patterns as reachable memory vectors.

We generalize the above results to develop a design procedure
for neural networks with sparse coefficient matrices. Our results
guarantee that the synthesized neural networks have predeter-
mined sparse interconnection structures and store any set of
desired memory patterns as reachable memory vectors. We show
that a sufficient condition for the existence of a sparse neural
network design is self feedback for every neuron in the network.
We apply our synthesis procedure to the design of cellular neural
networks for associative memories.

Our design procedure for meural networks with sparse in-
terconnecting structure can take into account various problems
encountered in VLSI realizations of such networks. For example,
our procedure can be used to design neural networks with few or
without any line-crossings resulting from the network intercon-
nections. Several specific examples are included to demonstrate
the applicability of the methodology advanced herein.

I. INTRODUCTION

HE QUALITATIVE ANALYSIS OF single-layered, fully
connected neural networks has evoked a great deal of
interest in retent years (see, e.g., [1], [3], [11], [12], [15]-[18],
[21]-[22], [24]-{26], [28], [33], [35]-[38], [43], [45]). These
works are primarily concerned with the existence and the
locations (in the state space) of equilibrium points, with the
qualitative properties of the equilibria, and with the extent
of the basins of attraction of asymptotically stable equilibria
(memories). The stability analysis of a class of single lay-
ered, sparsely interconnected neural networks-Cellular Neural
Networks, has also been of recent interest [5], [8], [9], [42],
[48].
In [7], [13], [14], [19], [24]-[26]), [36]-[41], [46], [47],
several synthesis procedures are developed for different types
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of neural networks models (for an overview of some of these
procedures, see [34]). Among these synthesis techniques, the
eigenstructure method appears to the especially effective. This
method has successfully been applied to the synthesis of
neural networks defined on hypercubes [26], [38] and the
Hopfield model [24]-[26], [44], and it can also be implemented
iteratively [47].

In the present paper, we consider neural networks described
by equations of the form

{:i; =—Az + T sat(z) + I

y = sat(z) M

where € R™ is the state vector, £ denotes the derivative of
& with respect to time t,y € D" 2 {z e R* : -1 < z; <
1,2 = 1,...,n} is the output vector, A = diag[ay,...,an)
with a¢; > 0 for 2 = 1,...,n,T = [T;;] € R™™™ is the
coefficient (or connection) matrix, I = [I1,...,I,]T € R" is
a bias vector, and sat(z) = [sat(x;),...,sat(z,)]” represents
the activation function, where

>1
<1
<-1

11 Ty
sat(z;) =< x;, —-1<uz;
-1, T;

We asume that the initial states of (1) satisfy |z;(0)| < 1 for
t=1,...,n.

System (1) is a variant of the analog Hopfield model with
activation function sat(-). In the analog Hopfield model [20],
one requires that ' be symmetric.c. We do not make this
assumption for (1). If in (1), the n neurons are arranged in
an M x N array, where n = M x N, and if we consider only
local interconnections, then (1) reduces to a two-dimensional
cellular neural network (see (20) in Section V). In this paper,
we consider a more general case. Specifically, we consider
system (1) with arbitrary interconnections which includes fully
interconnected nets and cellular neural networks as special
cases.

In the present paper, we concern ourselves primarily with
the implementation of associative memories by means of
artificial neural networks (modeled by (1)). One of the major
difficulties encountered in VLSI implementations of artificial
neural networks is the realization of extremely large numbers
of interconnections in the networks. To reduce the number
of connections is of great interest from a practical point of
view. Most of the existing synthesis procedures for associative
memories [13], [14], [19], [24]-[26], [36]-[41], [46], and [47]
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were developed for fully interconnected neural networks and
none of them result in neural networks with prespecified partial
or sparse interconnection structure. Synthesis procedures for
neural networks with arbitrarily (prespecified) sparse inter-
connection structure, or equivalently, with sparse coefficient
matrices constitute a major addition to the development of
neural network theory, and such procedures will have poten-
tially many practical applications, especially in the areas of
associative memories and pattern recognition (we will define
the exact meaning of sparse coefficient matrix later).

Existing work dealing with sparsely interconnected neural
networks has been reported in [23]. In this work, a possible
solution of transforming a given neural network into a partially
connected or cellular network is presented for the discrete-time
Hopfield model. However, as pointed out by the author of [23],
“the application of the suggested transformation algorithm is
severely limited by its quickly growing complexity.”

In Section III of the present paper, we will employ the
techniques developed in [26] and [38] to establish results con-
cerning the qualitative properties of neural networks described
by (1) and to provide a synthesis procedure for such systems.
Using the results of Section III, we will develop in Section
IV a synthesis procedure for neural networks with sparse
coefficient matrices in which the interconnection structure is
predetermined. We will develop this synthesis procedure for
neural network (1); however, our method is also applicable
to other types of neural network models, such as neural
networks defined on hypercubes [26], [38] and the Hopfield
model [19], [20]. In Section V, we apply the sparse synthesis
technique developed in Section IV to the design of a class
of (nonsymmetric) cellular neural networks. We will show
that under certain restrictions on the interconnection structure,
system (1) is equivalent to a class of zero-input, nonsymmetric
cellular neural networks. In Section VI, we consider several
specific examples to demonstrate the applicability of our
analysis and synthesis procedures. Special emphasis is placed
on cellular neural networks and networks with different sparse
interconnection structures. We conclude with several pertinent
remarks in Section VIL

In our eiamples (Section VI) we will conduct extensive
simulations of system (1), using the difference equations

£i((k + DR) = [za(kR) + b 3" Toyu;(kh)
+ %(e“]';‘_—l— 1)]e"%"
yi(kh) = sat(z;(kh))
k=0,1,..., 2

1 =1,...,n, where h is the step size.

II. NOTATION

Let V and W be arbitrary sets. Then VU W,V N W, and
V — W denote the union, intersection, and difference of V and
W, respectively. If V' is a subset of W, we write V C W and
if z is an element of V, we write x € V. Let ¢ denote the
empty set. Let R denote the set of real numbers and let R™
be real n-space. If z € R™, then z7 = [z4,...,z,] denotes
the transpose of z. If V C R", then V,V° and 6V represent

the closure, interior and boundary of V in R™, respectively.
Let B* = {z € R* : 2; = lor -1, = 1,...,n} and
D* = {.’lt eR": -1<z;<1,t = 1,...,71}. If A= [Aij]
is an arbitrary matrix, then AT denotes the transpose of A. If
A is a square matrix, we use A(A) to denote eigenvalues of
A. Let P(n) denote the set of all permutations on {1,...,n}.
If {z1,...,2m} C R™, then Span(zi,...,%,) denotes the
linear subspace of R™ generated by zi,...,z,, and Aspan
(z1,...,zm) dentoes the affine subspace of R™ generated by
Z1,...,ZTm. if g € R™ and L is a linear subspace of R™, then
L + zy dentoes the affine subspace of R™ produced by shifting
L by xo, thatis, L+ zo={y€ R*:y=z+z¢,z € L}. In
particular, Aspan(z1,...,Zm) = Span(z1 — Ty, ..., Tm—1 —
Tm) + Tm-

III. ANALYSIS AND SYNTHESIS OF NEURAL
NETWORKS WITH ARBITRARY INTERCONNECTIONS

In this section, we present results which characterize the
qualitative behavior of system (1) and present a synthesis
procedure for system (1) by utilizing techniques similar to
those developed in [26], [38]. We first introduce the following
notation.

For each integer m,0 < m < n, let

Am={£=[61,...,£n]TEA:Ea(i)zﬂ,lﬁz’Sm,

and £,y = £1,m < i < n, for some o € P(n)}

and A= {6 =1[¢,...,6])7 : & =210r0,1 <i<n}and
P(n) denotes the set of all permutations on {1,...,n}. (Recall
that there are n! elements in P(n)). For each £ € A, let

C¢) ={z=[z1,...,z,)T € R™: |z;| < 1if & =0,

;> 1 lfé', = 1, and z; < —1 lf& = —1}.

From the notation given above, we have

Lemmal: 1)A=U"_An.2)Ag=B"and C(§) ={z €
R : x| 2 1,386 > 0,4 =1,...,n} forany £ € A,. 3)
A, = {0} and C(0) = (D" = {z € R" : -1 < z;, <
1,5 = 1,...,n}. 4) R* = U%_{C(£),£ € A,}. 5) For any
EneNE#£nCENCH) = 4. 0

Suppose that £ € A,, and 0 € P(n) such that

boy =0,1<i<mand é,iy =tl,m<i<n. (3

We denote

Ap = diaglas(1), - - - @o(m)]s
Apr = diaglag(mi1), - - - Go(n)];
T1,1 = [To@o)h<ii<m,

T1.11 = [To(iyo(j)1<icmm<i<ns

Trr.1 = [To(yo (i)l m<i<n,1<i<ms
T11,11 = [To@)o()m<i,j<n,
Ir = Loy s Lol

It = [Totma1ys -1 Lom)) T

and

ér= [gcr(l)a EEE) fa(m)]Ta €rr = [fo(m-f-l)v cees &a’(n)]T-
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Remark 1: For a given £ € A,,, there may exist different
elements in P(n) for which (3) is true. For these different
permutations, the notation given above will be the same up
to different orders in the components. Thus, the subsequent
analysis and conclusions will be identical for any of the
permutations used.

Remark2: fm =mn,wehave A; =A,Trr=T,I1 =1,
&r=¢&and the Ar, Ty 1, Tr1,1, Trr 11, Irr, €11 do not exist.
ftm= 0, we have A[I = A,Tnyn = T,III = I,fn = f
and the A7, Tr.7,T1,11,Tr1,1,I1,&1 do not exist.

A. Analysis

Consider £ € Am,0 < m < n, with o € P(n) such that
o) = 0,1 < i <m, and &,(;) = £1,m < ¢ < n. We can
rewrite the first equation of system (1) as

{il = —Arz; + Ty rzr + Trér + I @)

Zrr = —Apzrr + Trprer + Torrréer + Inr

wherer {11 = [647(m+1)a e )fﬂ(n)]T) Ty =
[wa(l),...,x”(m)]T with —1 < To) < 1forl <i<m,
and z;; = {x,(mﬂ),...,x‘,(n)]T with f,,(,-):l:a(i) > 1 for
m < i < n. Equation (4) is said to be an equivalent linear
representation of (1) over the region C(£).

When m = n,A, = {0}. In this case, for z € C(0) =
(D™)°, system (1) becomes

t=(T-Az+1. &)

When m = 0, A9 = B™. In this case, for £ € Ag,z € C(§),
system (1) can be expressed as

t=—-Az+TE+T. ©)

We will have occasion to make use of the follwing hy-
potheses for system (1).

Assumption (A): For any m, 0 < m < n, and
for any € € A, the m x m matrix Ty; — A =

[T,(g)‘,(j) [155,55m—diag[a(,(,v), ceey a,,(m)] is non-singular,
where 0 € P(n) so that {,;y = 0,1 < i < m and
&a(i) :il,’m<i§n. O

For system (1) satisfying Assumption (A) we will employ
the following notation.
DIfE=0¢€ A(m = n), let

ze =(A-T)'I. Q)

2) For £ € Ay, 0 < m < n, with Ay, Ajpr, TI,I:--~7
T]]_”, Iy, Ir defined above, let

T¢ = [T¢1,. .., Tgn]” € R™ ®)
where -
zer = [Ty, Teo(m)]”
= (Ar = Tr,) (T, 1e€rr + In),
and

Zerr = [mfa(m+1)7 ree am£a(n)]T
= A7} (Trrrzver + Trrprkrr + Inx).
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3) For £ € Ag = B*(m = 0), let
ze = ATY(TE+T). )

4) For the z¢ defined above, let y¢ = sat(z¢).
Assumption (B): With the notation given above, assume
that for any £ € A,,0 < m < n,z¢e € (C(E)). O
The following result enables us to locate in a systematic
manner all equilibria for system (1) and to ascertain the
stability properties for these equilibria. Furthermore, this result
will serve as the theoretical basis of the synthesis procedures
which we will present in the sequel.
Theorem 1: Suppose that (1) satisfies Assumptions (A) and
(B). For any m,0 < m < n, and for any £ € A,,, we have:
Case I m = n,§ = 0 € A,. (Note that in this case C(§) =
(D)%)
1) Ifze & (D")° there is no equilibrium point of
system (1) in (D™)°.
2) Ifze € (D), z, is the unique equilibrium point of
system (1) in (D™)°. In particular,

(@) if T — A has one or more eigenvalues with
non-negative real parts, x. is unstable, and

(ii) if all eigenvalues of T — A have negative real
parts, x¢ is asymptotically stable.

Case 1 0 < m < n,§ € A,

1)  Ifze & C(8), there is no equilibrium point of system
(1) in C().

2) Ifze € C(£),x¢ is the unique equilibrium point of
system (1) in C(§). In particular,

(@) if Ti,1 — A; has one or more eigenvalues with
non-negative real parts, x; is unstable, and

(ii) if all eigenvalues of T; 1 — A; have negative
real parts, z¢ is asymptotically stable.

Case Ill m = 0,§ € Ap = B

1) Ifze & C(£), there is no equilibrium point of system
(1) in C(§).

2) Ifze € C(8), z¢ is an asymptotically stable equilib-
rium point of system (1).

Proof: For each £ € A,,,0 < m < n, consider (4)—(6).
Using similar arguments as in [26], the conclusions of this
theorem follow directly from the theory of linear differential
equations. 0

If z¢ is an asymptotically stable equilibrium point of system
(1), y¢ is said to be a memory vector of system (1). A memory
vector ¥ is said to be reachable if there exists a neighborhood
V of y, such that for any (0) € VND™ # ¢, the output vector
y(t) of system (1) tends to y asymptotically as ¢ — oo. Using
the results given in Theorem 1, it can easily be shown that a
memory vector ye € (D™)? or y¢ € B™ is always reachable.
When a memory vector ye € 3(D™) — B™, y; is reachable if
and only if for every neighborhood U of y¢, the set UND™ has
a non-empty intersection with the domain of attraction of the
corresponding asymptotically stable equilibrium point z,. In
our synthesis procedures, the objective is to store patterns in
B™_ If we can guarantee that a desired set of bipolar patterns
is stored as a set of memory vectors, then such vectors will
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always be reachable. Therefore, in the sequel, we will drop
the modifier “reachable” when the context is clear.

Remark 3: With T symmetric, the function £ : D™ — R
defined by

E(y) = —éyTTy + %yTAy -y’ (10)
can be shown to be monotonically decreasing in time ¢ along
the solutions of (1). To see this, we follow the same procedure
as in [26] by defining a local solution for system (1); or, we can
follow the procedure in [9], by defining the derivatives dy; /dx;
at the breaking points |z;| = 1 to be zero. This guarantees that
system (1) will neither oscillate nor become chaotic. When T is
nonsymmetric, the function E defined in (10) is not necessarily
monotonically decreasing, and oscillatory solutions for (1) may
exist. O
Remark 4: It is possible to generalize Theorem 1 to a
result which does not require Assumption (B). However, for
such a case, the conclusions of the theorem will be less
straightforward. O
Several important conclusions can be drawn from Theorem
1 which are given in the following.
Corollary 1: Suppose that in system (1) T is symmetric and
that the coefficients of system (1) satisfy the conditions that
T >a;fori=1,...,n. an
Then, every asymptotically stable equilibrium point z. =
[Ters-- -, Ten|T of system (1) satisfies the condition that
|Tei] > 1, fori=1,...,n. 12)
Proof: 1If (11) is satisfied, T7,; — Ay and T — A will have
one or more non-negative eigenvalues, since Ty ; — A; and
T — A are symmetric matrices with positive diagonal elements.
Thus, equilibrium conditions in cases I and II of Theorem 1
can never be satisfied. The only equilibrium conditions for
(1) which may be satisfied are those that apply to Case IIL
It is clear that every equilibrium of (1) which satisfies the
conditions in Case III of Theorem 1 has the property given in
(12).
We point out that the same result as Corollary 1 has
been proved for cellular neural networks (with symmetric
interconnections) in [9], using a different approach.

Corrolary 2  Every asymptotically stable equilibrium point
Te = [Tery-- -, Ten)? of (1) satisfies condition (12) if

T >a; + Z |Ty;), fori=1,...,n.

j=1,i#

(13)

Proof: If (13) is satisfied, Ty — A7 and T — A
become matrices with positive diagonal elements and satisfy a
diagonal dominance condition. By Ger§gorin’s Theorem [27],
all eigenvalues of T7,;r — Ay and T — A are contained in
the union of the n disks of the complex plane centered at
T:; — a; with radius E;___L ;2 |Tij]- This in turn implies that
ReA(Trr — Ar) and ReA(T' — A) are positive. From Theorem
1, we see that (12) is satisfied. O

Corollary 3: Suppose that [ is an asymptotically stable
equilibrium point and o = sat(3) is a memory vector of system
(1) with parameters { A, T, 1}. Then, a and (3 will also be a pair
of memory vector and asymptotically stable equilibrium point of
system (1) with parameters {kA, kT, kl} for every real number
k>0

Proof: The proof can easily be established by consider-
ing (7)~(9) and Theorem 1. O

Remark 5: The significance of Corollary 3 is that for
a given neural network (1), we can increase its speed of
evolution by multiplying A,T, and I by a constant £ > 1,
without changing any of its asymptotically stable equilibrium
points and any of its memory vectors. Since the speed of
evolution of (1) depends on the eigenvalues of 7 — A and
Ty1 — Ay, it is also clear that the larger the k is, the faster
the evolution will be.

B. Synthesis

As pointed out earlier, Theorem 1 will serve as the basis
for the synthesis procedures developed in the present paper.
In particular, we point to the following important fact, which
is a consequence of Case III in Theorem 1.

Corollary 4: Suppose o € B". If 8 = A" (Ta +1I) €
(C(@))°, then (3 is an asymptotically stable equilibrium point of

1). O

We are now in a position to address the follwing synthesis
problem.

Synthesis Problem: Given m vectors in B™ (desired mem-
ory patterns), say o!,...,a™, how can we properly choose
{A, T, I} so that the resulting synthesized system (1) has the
properties enumerated below?

1) at,...,a™ are memory vectors of system (1).

2) The system has no oscillatory solutions.

3) The total number of spurious memory vectors (i.e.,
memory vectors of (1) contained in D" —{al,...,a™})
is as small as possible.

a

Remark 6: In practice, it is usually required that memory
patterns be bipolar, i.e., the memory patterns are in B™. We
will not consider the case where desired memory patterns are
not in B™. 0

The preceding results allow us to approach the above
synthesis problem in the following manner.

Synthesis strategy: Given m vectors o, ...,o™ in B, find
A, T, and I such that

1) A = diaglas,...,a,] with a; > 0.

2) T is symmetric and has repeated eigenvalues equal to

pu>0and -7 < 0.
3) AB = Tol + I and AF* = pa?, where 3¢ € (C(e?))°
and p is the positive eigenvalue of T'. O

In the following, we give the rationale for the above
strategy.

1) From Remark 3, we see that when T is symmetric,

system (1) will have no oscillatory solutions.

2) By Corollary 4, A=} (Tl +1I) = B¢ € (C(e))°, implies

that 3¢ is an asymptotically stable equilibrium point of
the synthesized system, and thus o is a memory vector.
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3) For # € (C(a*))° and AB® = pai,i=1,...,m,T and
I are determined by the relations

Afi=pot =T +1, i=1,....m. (14
Solutions of (14) for T and I will always exist. To see
this, we let Y = [a! — a™,...,a™"! — o™]. We need
to solve T from TY = uY, and-set I = pa™ — Ta™.
Solutions of TY = pY for T will always exist. We will
solve for T" by using the singular value decomposition
method.

We next present a solution to the Synthesis Problem based
on the above observations.

Synthesis Procedure 3.1 Suppose we are given m vectors
al,...,a™ in B, which are to be stored as memory vectors
for (1). We proceed as follows:

1) Choose vectors 3 € (C(a?))? fori =1,...,m, and a
diagonal matrix A with positive diagonal elements, such that
ABt = pdt, where u > 0, ie., choose 8 = [6,...,6: )T
with Biot > landi = 1,...,mand j = 1,...,n,A =
diagla,...,a,] with a; > 0 for j = 1,...,n, and g >
max<icn{a:} such that a;8; = pos.

2) Compute the n X (m — 1) matrix:

m—-1 _ am].

Y=[,...,4" ="' -a™,...,a (15)

3) Perform a singular value decomposition of Y = UXV7T,
where U and V are unitary matrices and ¥ is a diagonal
matrix with the singular values of Y on its diagonal. (This
can be accomplished by standard computer routines.) Let
U = [4},...,u"] and p = dimension of Span(y!,...,y™ ).
From the properties of singular value decomposition, we
know that p = rank(Y), {x},...,uP} is an orthonormal basis

of Span(yl,...,y™ 1), and {u!,...,u"} is an orthonormal
basis of R™
4) Compute
p . .
T* = [T5] = > w')",
- =1
and

=15 = 3 W

i=p+1

5) Choose a positive value for the parameter 7 and compute

T, =Tt —7T" and I, = pa™ — Tro™. (16)
Then, o!,...,a™ will be stored as memory vectors in the
following system
&= —Az + Tpsat(z) + I,

{ y = sat(x) . a7

The states 3* corresponding to a*,i = 1,...,m, will be
asymptotically stable equilibrium points of system (17).

O
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Remark 7: 1If we wish that in the synthesized system (17),
the constant vector I, = 0, we can modify Synthesis Procedure
3.1 as follows:

a) In step 2, take

y=[c,...,a™]. (18)

b) In step 5, take I, = 0.

Then all conclusions will remain unchanged. In particular,
each —3 and —a?,i = 1,...,m, will also be asymptotically
stable equilibrium points and memory vectors, respectively,
of the synthesized system (17).

O

Remark 8: The synthesis procedure presented above is an
adaptation of the eigenstructure method developed in [26],
[38] to the neural network model described by (1). Using
the eigenstructure method, one can guarantee that any set of
given memory patterns in B™ be stored as memory vectors.
However, it is usually required that p < n, where p =
rank(Y),Y is defined in (15) or (18), and n is the order
of the system. This follows, since if p = n, T, in (16) will
become a diagonal matrix with all diagonal elements equal
to u, and I, in (16) becomes a zero vector, in which case
all vectors in B™ (all corners of the hypercube D™) will be
stored as memory vectors. Simulation results show that when
p is very close to n — 1, there will be many spurious memory
locations in the synthesized system. Experimental studies
which compare the eigenstructure method (implemented on
various types of artificial neural networks) with other methods
have been conducted in several previous works (see, e.g.,
[241-[26], [34], [40], [41], [47]). These works indicate that
the capacity of neural network paradigms which make use
of the eigenstructure method compare rather well with other
paradigms (which make use, e.g., of the outer product method,
pseudo-inverse techniques, and the like).

O

Remark 9: Following the same procedure as in [26], [38],
we can prove that all vectors in L, N B™, where L, =
Aspan (al,..., o™), including &!,...,a™, will be stored as
memory vectors in system (17). O

IV. SYNTHESIS PROCEDURE FOR SPARSELY
INTERCONNECTED NEURAL NETWORKS

The synthesis techniques developed in the previous section
will result in neural networks with symmetric and nonsparse
coefficient matrix 7. Implementations of artificial neural net-
works with perfectly symmetric interconnections are not prac-
tical. Furthermore, it has been argued by some workers [2],
[4], [5], [14], [18], [33], [35], [36], [43], [46] that symmetric
interconnections in artificial neural networks are not necessar-
ily always desirable. Moreover, fully interconnected artifical
neural networks with even a moderate number of neurons will
give rise to large numbers of line-crossings resulting from the
network interconnections, and thus pose formidable obstacles
in VLSI implementations. For these reasons, it is desirable
to establish a synthesis procedure which will result in an
interconnecting structure which does not require symmetry and
which does not demand large numbers of connections.
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Using the results of the previous section, we develop in
the following a design procedure for artificial neural networks
which will result in few line-crossings or no line-crossings at
all in the interconnections, and which does not require that
the interconnection matrix be symmetric. Cellular neural net-
works, which we address in the next section (with applications
to associative memories), are special cases of such sparsely
interconnected artificial neural networks.

We begin by introducing some necessary terminology.

A matrix § = [S;;] € R™" is said to be an index
matrix if it satisfies S;; = 1 or 0. The restriction of matrix
W = [W;;] € R**" to an index matrix S, denoted by W|S
is defined by W|S = [h;;], where

hi; = W,'j, if S,'j =1
J 0, otherwise
We will say that (1) is a neural network with a sparse

coefficient matrix if T = T'|S for some given index matrix S.
Sparse Design Problem Given an n x n index matrix S =

[S:;] with S;; #0fori=1,...,n, and m vectors o, ...,a™
in B™, choose {A, T, I} with T = T|S in such a manner that
ol,..., o™ are memory vectors of system (1).

O

Remark 10: In the literature, an n X n matrix is said to be
sparse, if its number of nonzero elements < n2. The definition
of sparse coefficient matrix given in the present paper is more
general and includes the usual definition of sparse matrix as a
special case. The sparse design problem considered herein, is
in fact, more appropriately called an indexed design problem.
We will use the term sparse design in the present paper
since we wish to be able to make comparisons with the fully
connected case.

O

A solutions for the above sparse design problem is as
follows.

Spare Design Procedure 4.1: Suppose we are given an n X n
index matrix S = [S;;] with S;; #0fori=1,...,n and m
vectors al,...,a™ in B™ which are to be stored as memory
vectors for (1). We proceed as follows:

1) Choose matrix A as the identity matrix.

2) Choose a real number x> 1 and m vectors 31,..., 5™,
such that ¢ = pa’.

3) Compute the nx(m—1) matrices Y = [y1,...,y™ 1] =
[at—a™,...,a™ 1 —a™],and Z = [z},...,2™ 1] =
[ﬁl - ﬂm$ v ,ﬂm—l - ﬂm] We let yi = [y}J s 1:‘/:-1]’1‘
and 2* = [2f,...,2.]T fori=1,...,m - L

4) Denote the itP row of the index matrix S by §; =
[Si1, ..., Sin)- For each ¢ = 1,...,n construct two sets

M; and N;, such that M; UN; = {l, e ,n},MiﬂN,- =
¢,andS,',- =1ifj € M;,S8; =0if 3§ € N;. Let
M; = {O’i(l),. .. ,a,—(m,-)}, where m; = E;:l S,‘j and
ai(k) < a;(l) if 1 < k <! < m;. (Note that m; is the
number of nonzero elements in the i*" row of matrix S.)

5 Fori =1,...,n,and I = 1,...,m — 1 let gf; =
[yl“(l)"“’ycl?(m,-)]T'

6) For: = 1,...,n, compute the m; x (m — 1) matrices
Y: = [yk..,y5 '), and the 1 x (m — 1) vectors
Zi = [,..., 2",

7) For i = 1,...,n, perform singular values decomposi-
tions of Y;, and obtain
. D; i o[Vl
K:[UﬂlUizl T ,
o : o]lve

where D; € RP:XPi  is a diagonal matrix with the
nonzero singular values of Y; on its diagonal and p; =
rank(¥;).

8) Compute for ¢ = 1,...,n, G; = [Gi1, -+, Gim,] =
Z;VaD7UE + WU where W; is an arbitrary 1 x
{m; — p;) real vector.

9) The matrix T = [T};] is computed as follows:

1.2 0 if8;=0
K Gik: if Sij ;éOand isza,-(k)'

10) The bias vector I = [Iy,...,I,]T is computed by
I, = g — T;,a™ for i = 1,...,n, where T; is the

it row of T.

Then al,...,a™ will be stored as memory vectors for
system (1) with A, T, and I determined as above. The states
B¢ corresponding to ot,i = 1,...,m, will be asymptotically
stable equilibrium points of the synthesized system.

19

O

Remark 11: 1If in the above synthesis procedure, we choose

A = diag[ay,...,a,] with ¢; > 0, we need to change Z;
in step 6 to Z; = [a;z},...,a;2""!] and I; in step 10 to
I,' = aiﬂ{" - T,'am. (]
Remark 12: If in the index matrix S there are ¢ > 1
identical rows, we can design the corresponding ¢ rows of
matrix 7" simultaneously. For such cases, we need to alter
slightly steps 5-9 above. We will demonstrate this idea by
means of an example in Section VI. We will also demonstrate
in Section VI that by special choices of the index matrix S,
the Sparse Design Procedure 4.1 can result in a network with

few line-crossings, or with no line-crossings at all.
0

Our next result addresses the existence of a solution for the

sparse design problem and the validity of the above design
procedure.

Theorem 2

1) Solutions for the sparse design problem always exist if
S,‘,' = lfori = l,...,n.

2) The Sparse Design Procedure A.1 guarantees that T =
T|S.

3) 77|ze Sparse Design Procedure 4.1 guarantees that all vec-
tors in L, N B, including o, ..., a™, are stored as mem-
ory vectors of system (1), where L, = Aspan(ca',...,a™).

4) The Sparse Design Procedure 4.1 can be applied to any set
of desired memory patterns o*,...,a™ € B".

Proof: In order for the synthesized system to be a
solution of the sparse design problem, we need G.;Y; = Z;
in steps 7 and 8 of the sparse design procedure. Thus, G; in
step 8 is a solution for the sparse design procedure if and only if

Y;
rank[Y;] = rank |- - -
Z;
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This condition is satisfied if S;; = 1,7 = 1,...,n, since under
these conditons, Z; becomes a row vector which is one of the
rows in Y; multiplied by p. (This argument is also true if we
choose A = diag[ay,...,a,] with a; > 0.) This proves part
1 of the theorem.

Part 2 is clear from (19).

To prove part 3, we first check the equilibrium conditions
for a',...,a™, in which case we require that Tol + 1 =
ABt = B! forl = 1,...,m, where 8' = pca! and p > 1
(therefore B! € (C(a'))?). Using the notation given in the
design procedure, we write for | = 1,...,m — 1,3}, = Yie,,
where ¢; € R™~! is a column vector with all elements zero
except the I*" element which is 1 (cf. step 6 of the sparse
design procedure). Also, we have fori =1,...,n,

ULyt =0forl=1,...,m—1,
and
Z:Va D7YULY; = Z;.
The former is clear from the properties of the singular value
decomposition. To see the latter, we recall that Y; = U;; D; Vg
and we assume that Z; is the j** row of Y; multiplied by
(without loss of generality). Then, Z; = u - R;V;1, where R;
is the j*" row of U;; x D;, and from the properties of the
singular value decomposition, we have
ZVaDURY: = p- RV - Va DU - Un DiViy
=4 Rng =Z;
since ULU;y = ViVyy = D;7'D; = p; x p; identity matrix
(where p; is defined in step 7 of the design procedure).
According to the design procedure, we compute for ¢ =
1,...,n,
Tiy' = Gyl
and
Tia' + I =Ty + Tia™ 4+ I, = Gyl + Tia™ + 87" — Tia™
= ZVa D7 'ULYier + WiUyl, + 8" = Zier + 7"
=zl + 3" =8 - 7 + 87 =81

Hence, To! + I = B for | = 1,...,m — 1. For | =
m,Ta™ + I = ™ is clear from step 10. Next, we note that
the above results imply that

T -a™ =g -pmforl=1,...,m—1,
and that for vector a« € L, N B", there is a A =
[A1,.++s Am-1] € R™ 1 such that

a=AMar —a™) 4+ A1 (@™ —a™) +a™.

Thus, for every vectory a € L, N B™, we have
Ta+1= T[)\l(‘al —a™) 4 +/\m_1(a’"_1 —a™)}+Ta™+1

=MB' =)+ A (BT - 8T + 8™

=pAi(a' —a™) + -+ An_1(e™T = a™) + ™)

&
= pa=pg.

Clearly, 8 € (C(a))? since p > 1. By Theorem 1 (Corollary
4), we see that the states ¢ corresponding to o*,i = 1,...,m,
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as well as the states which correspond to the output vectors
in L, N B™ other than of, will be asymptotically stable
equilibrium points of system (1). Therefore, all vectors in
L, N B", including o!,...,a™, will be stored as memory
vectors for system (1).
Part 4 follows from similar arguments as Remark 8.
a
Remark 13: 1t is emphasized that part 1 of Theorem 2 does
not imply or require that S;;,7 # j, be zero.
O
Remark 14: 1f we wish that the above procedure result in
a system of form (1) with I = 0, we can modify the Sparse
Design Procedure 4.1 as follows:
a) Instep3,letY = [al,...,™] and Z = [8,..., 8™
b) In step 10, let I = 0.
Then all conclusions will remain unchanged. In particular,
all vectors in Span(c,...,a™) N B™ including +al,... &
a™ are stored as memory vectors of system (1). g

V. APPLICATIONS TO CELLULAR NEURAL NETWORK DESIGN

Cellular neural networks, introduced in [9], have found
several successful applications in image processing and pat-
tern recognition (see, for example, [10], [29]-[32], [49]). On
the other hand, applications of (discrete-time) cellular neural
networks to associative memories, utilizing the outer product
method (the Hebbian rule), seem to have been somewhat less
successful [49]. As is well known, the outer product method
does not guarantee that every desired memory pattern be stored
as an equilibrium point (memory point) of the synthesized
system when the desired patterns are not mutually orthogonal.
Moreover, the storage capacity of networks designed by the
outer product method is known to be exceptionally low.

In the present section, we employ the sparse synthesis
techniques developed in the previous section in the design
of cellular neural networks with applications to associative
memories.

A special class of two-dimensional cellular neural networks
is described by ordinary differential equations of the form (see

9

>

C(k,)EN (i)

Tij = —04Ti;+ Tij e sat(zw) + Lj
Yij = sat(xij)

(20)
where 1 < i < M,1 <j < N,a;; >0, and z;; and y;; are
the states and the outputs of the network, respectively.

The basic unit in a cellular neural network is called a cell.
In (20), there are M x N such cells arranged in an M x N
array. The cell in the ith row and the j** column is denoted
by C(%, ), and an r-neighborhood N, (i, j) of the cell C(z, j)
for a positive integer 7 is defined by N,.(3,5) = {C(k,1) :
max{lk —i|,l-jl} <, 1<k< M, 1<I<N}

Remark 15: System (20) characterizes a special class of
continuous-time cellular neural networks with square grids,
piecewise linear processors, and memoryless interactions (see,
e.g., [6D). O
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Remark 16: In the original cellular neural network model
introduced by Chua and Yang [9],
1
T R.C
(R, and C are constants), [;; = I. (I is a constant),
and T = Tre;. We will not make this assumption in
(20). In the applications of cellular neural networks to image
processing and pattern recognition, in addition to the bias terms
I;; = I, one frequently requires nonzero input terms

(427}

Bij riun
C(k,1)EN,(4,5)

in the first equation of (20), where u;; represents the inputs
of the network. In the present application, we consider zero
inputs (u;; = 0 for all < and j) and a constant bias vector
I = [I1,51a,. .., Inn]T. This renders (20) equivalent to a
nonsymmetric cellular neural network model by setting the
inputs in the original model equal to constants (cf. [5] and
[9]). Under these circumstances, we will refer to (20) as a
(zero-input) nonsymmetric cellular neural network.

Od
Using the above nomenclature, we choose a matrix =
[Qij,kl] € RMNXMN as
L if C(k,l) € N.(3,7)
Qujkt = {0, otherwise ’ @b

We let S = @ = [S;;] € R**"™, where n = M x N. With
this notation, we see that in order for (1) to be equivalent
to the nonsymmetric cellular neural network model (20), we
require in (1) T = T|S, where S = @ and Q is defined in
(21). Thus, the cellular neural network model (20) is a special
case of the neural network model (1) where the n neurons
are arranged in an M x N array (if n = M x N) and the
interconnection structure is confined to local neighborhoods
of radius r. Hence, Theorem 1 can be applied to analyze the
cellular neural network (20). Clearly S;; = 1 (Qij,i; = 1),
since C(z,7) € N,(i,j) for any positive integer r. Thus,
the Sparse Design Procedure 4.1 and its modified version (cf.
Remark 14) can be applied to the design of the cellular neural
network (20) based on the index matrix S = @, where Q) is
determined in (21). By Theorem 2, for any given integer r > 0
and any set of m vectors o}, ..., o™ in BMY we can always
design a cellular neural network (20) so that (20) will store

al,...,a™ as memory vectors.

VI. EXAMPLES

To demonstrate the applicability of the analysis and synthe-
sis procedures presented in the preceding sections, we consider
several specific examples.

Example 1: We use the Sparse Design Procedure 4.1 to
synthesize a cellular neural networ (20) with n = 12 (M =
4, N = 3), and r = 1 (neighborhood radius). Given are m = 4
vectors specified by :

ol =[1,-1,1,1,-1,1,1,1,1,~1,-1,1]7,
o?=1,1,1,1,-1,-1,1,-1,-1,1,1,1]7,
o®=11,-1,1,1,-1,1,1,-1,1,1,1,1]T,

and
ot =[1,-1,-1,1,-1,-1,1,-1,-1,1,1,1] .

It is desired that these vectors be stored as memory vectors
of system (20).

We determine the index matrix § = Q = [S;;] € R'?*12
where Q = [Qijx,] € R4*3*(4x3) ig defined in (21). Using
the Sparse Design Procedure 4.1, we determined A as the
12 x 12 identity matrix,

r—1.0000e + 01  0.0000e + 00 0 —1.0000e + 01
—1.0000e + 01 —2.0000e + 00 4.0000e + 00 —1.0000e + 01
0 —2.6667e + 00 4.6667¢ + 00 0
—1.0000e + 01 0.0000¢ + 00 0 —1.0000e + 01
~1.0000e + 01 —4.0000e + 00 4.0000e + 00 —1.0000e + 01
I ] —4.4000e + 00 4.4000e + 00 0
0 0 0 —1.0000e + 01
0 0 0 ~1.0000e + 01
0 0 0 0
0 0 0 0
0 0 0 0
L 0 0 0 0
~1.0000e +01 0 0 ]
—1.0000e + 01 —4.0000e + 00 0 0
—1.0000e + 01 —2.6667e + 00 0 0
—1.0000e + 01 0 —1.0000e + 01  —0.0000e + 00
—1.0000e + 01 —2.0000e + 00 —1.0000e + 01 —1.0888¢ — 14
~1.0000e + 01 —1.2000e + 00 0 ~2.1826e — 15
—1.0000e + 01 0 —1.0000e + 01 —1.3333e + 01
—1.0000¢ + 01 —4.4409¢ — 16 —1.0000e + 01 —1.2667¢ + 01
—1.0000e + 01 —1.0000e + 00 0 —1.0000e + 01
0 0 —~1.0000e + 01 —1.4000e + 01
0 0 —1.0000e + 01 —1.4000e + 01
0 0 0 —1.0000e + 14
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
—2.0000e + 00 0 0 0
—1.2000e + 00 0 0 0
0 —6.6667¢ + 00 —6.6667e + 00 0 ’
—1.3323¢ — 15 —7.3333¢ + 00 —7.3333¢ +00 —1.0000e + 01
1.0000e + 00 0 —1.0000e + 01 —1.0000e + 01
0 —6.0000e + 00 —6.0000e + 00 0
—2.2538¢ — 15 —6.0000e + 00 —6.0000¢ + 00 —1.0000e + 01
—7.8505¢ — 16 0 —1.0000e + 01 —1.0000e + 01 .J
and

I = [1.2¢ + 01,6.0¢ + 00, —1.2667¢ + 01, 2.2¢ + 01,
1.4e + 01, —1.44e + 01,1.2¢ + 01,2.0¢ + 01,
— 8.8818¢ — 15,1.0e + 01,2.0e + 01,1.2¢ + 01)7.

(In the above computations, we chose x = 2 in step 2 and

W, = =10 x Oy, x Uz in step 8 of the Sparse Design
Procedure 4.1, where Oy, = [1,...,1] € RY*™ and m; =
=1 Si)-

Using Theorem 1, we verified that o?,...,a* are mem-

ory vectors of the synthesized system (20) with {A,7, 1}
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TABLE I
The cellular The fully
neural network  connected neural

with r =1 network
average of total number of memory
vectors in B™ 12.2 45
average of total number of undesired 82 0.5
memory vectors in B : i
average of total number of memory 31 0.4
vectors in D™ — B" . :
average of tota_] nu{nber"of unstable 64.65 14.25
equilibrium points in R
total number of desired patterns 0 0

which were not stored as memory
vectors

given above. Simulation results, using (2), also verified that
al,...,a* are reachable memory vectors of (20).

By Theorem 1, we determined that system (20) has 2
additional memory vectors in B™ given by

®=1t,-1,-1,1,-1,-1,1,1,-1,-1,-1,1]7,

and

=[1,1,1,1,-1,-1,1,1,-1,-1,-1, 17

Their corresponding asymptotically stable states are given by
(3° = 2a® and % = 205, respectively. System (20) has 1
additional memory vector in D" — B™, given by

7 =[-0.7273,-1,-1,1,1, -1, —0.7273,
-1,-1,1,1,1].
Its corresponding asymptotically stable state is given by

87 = [~0.7273, —4.7273, —22,16.5455, 12.5455, —22,
— 0.7273, —4.7273, —22, 19.2727,19.2727,2] 7.

System (20) also has five unstable equilibrium points.

Example 2: In order to ascertain how typical the results
of Example 1 are, we repeated the example twenty times
using different sets of desired vectors to be stored as memory
vectors. Each set contained m = 4 vectors in B™ which
were generated randomly. For each given set of vectors, we
synthesized system (20) using the Sparse Design Procedure
4.1. Table T summarizes our findings. Also shown in Table
1 are the results for system (1) synthesized by Synthesis
Procedure 3.1 for the same sets of desired vectors to be stored
as memories.

From Table I we see that in the present example, the cellular
neural network implementations for associative memories have
more spurious states than the fully connected networks. Also,
there are more unstable equilibrium points in the synthesized
cellular neural networks than in the fully connected networks
in the present example.

Example 3: We now present several problems which to the
best of our knowledge cannot be addressed by other synthesis
procedures for associative memories. In all cases, we consider
a neural network with 16 neurons (n = 16) and in all cases
our objective is to store the four patterns shown in Figure 1 as
memories. As indicated in this figure, sixteen boxes are used to
represent each pattern (in R!%), with each box corresponding
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Fig. 1. The four desired memory patterns used in Example 3.

0 0.5 1

Fig. 3. A typical evolution of pattern number 1 of Figure 1.

to a vector component which is allowed to assume values
between —1 and 1. For purpose of visualization, —1 will
represent white, 1 will represent black, and the intermediate
values will correspond to appropriate grey levels, as shown
in Figure 2.

The four cases which we consider below, were synthesized
by the Sparse Design Procedure 4.1. These cases involve dif-
ferent prespecified constraints on the interconnecting structure
of each network.

Case I Cellular Neural Network. We designed a cellular
neural network with r = 1, M = 4, and N = 4. (Due to space
limitations, we will not display the interconnecting matrix 7'
for the present case, as well as for the three subsequent cases.)
The performance of this network is illustrated by means of a
typical simulation run of (1) (or (20)), shown in Figure 3. In
this figure, the desired memory pattern is depicted in the lower
right corner. The initial state, shown in the upper left corner, is
generated by adding to the desired pattern zero-mean Gaussian
noise with a standard deviation SD = 1. The iteration of the
simulation evolves from left to right in each row and from the
top row to the bottom row. The desired pattern is recovered in
14 steps with a step size A = 0.2 in the simulation of (1). We
do not identify a unit for the step size k. In view of Remark 5,
the unit could be seconds, milliseconds, or any other small time
intervals. All simulations for the present paper were performed
on a Sun SPARC Station using MATLAB.

Case I Reduction of Line-Crossings. We arranged the 16
neurons in a 4 x 4 array and we considered only horizontal
and vertical interconnections. For this case, the index matrix

S = Q — [Sij] c R16x16’ and Q — [Qij,kl] € R(4x4)><(4x4)
assumes the form
1, 1fz_kor]_l
Q”’“{O, otherwise @2
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Fig. 4. A typical evolution of pattern number 2 of Figure 1.

A typical simulation run for the present case is depicted in
Figure 4. In this figure, the noisy pattern is generated by adding
to the desired pattern uniformly distributed noise defined on
[—0.7,0.7]. Convergence occurred in 9 steps with h = 0.2,

We emphasize that by choosing the index matrix as in
(22), we were able to reduce significantly the number of line-
crossings, which is of great concern in VLSI implementations
of artificial neural networks.

Case III Two Rows of S Identical (see Remark 12). In this
case, we chose an index matrix § = [S;;] € R®*16 of the
form
1, ifi=1lori=16o0rj=1or

j=16or|i—j] <1
0, otherwise

Si]' =

This requires that the 7" matrix has zero elements everywhere
except in its first and last rows, its first and last columns, and
in its tridiagonal elements.

Rows 2 to 15 are designed by using the Sparse Design
Procedure 4.1, step by step. Since the first row S; and the
last row Si¢ of S are identical, we can design the rows T}
and Tig of T simultaneously. To see this, we take in step

5 of the design procedure yf, = [ylo(l),...,yf,(ml)]T and
yhe = [yf,(l),...,yfy(mm)]T forl = 1,...,m — 1. Clearly,
m;y =mg=n=16and g}, =yl sfori=1,...,m—1,

since S; = S16 = [1,...,1] € R'*16, In step 6, we take

Yi = [y},---, 7Y and the 2 x (m — 1) vector
21 2!
- 7y =
1 -1
*16 Gt

In step 7, we perform a singular value decomposition of Y3
and obtain Uy;,U;2, Dy, and Vi;. In step 8, we compute
Gy = ZVuD7YUL + W UL, where W, is an arbitrary
2 x (my — p1) real matrix and p; = rank(Y;). In step 9,
we determine 7 from the first row of G; and Ty from the
second row of G, using (19).

A typical simulation run for this network is shown in Figure
5. In this case, the noisy pattern was generated by -adding
Gaussian noise N(0,0.5) to the desired pattern. Convergence
occured in 24 steps with h = 0.2.

We can generalize the above case to design problems
for which the index matrix S has several identical rows.
In particular, if S = [5;;],S;; = 1 for all ¢ and j, the
Sparse Design Procedure 4.1 reduces to a procedure for a
fully connected neural network (1), and the reduced design
procedure (where all rows of T' are determined simultaneously)
will be more general than Synthesis Procedure 3.1. To see this,

Fig. 5. A typical evolution of pattern number 3 of Figure 1.

Fig. 6. A possible structure for a neural network without line-crossings in
the interconnecting structure.

note that the reduced design procedure will generally result
in a nonsymmetric 7 and by special choice of matrix W in
step 8, the reduced design procedure will become Synthesis
Procedure 3.1.

Case IV Quinquediagonal Matrix S Resulting in an Inter-
connecting Structure Without Line-Crossings. We chose S =
[Si‘] c R16x16 as

1,

This will result in a quinquediagonal matrix S, enabling us
to arrange the n = 16 neurons in the configuration shown in
Figure 6. Note that in this figure there are no line-crossings.
Furthermore, note that this configuration can be generalized
to arbitrary n.

A typical simulation run for the present case is depicted
in Figure 7. In this figure, the noisy pattern was generated
by adding Gaussian noise N(0.1,0.7) to the desired pattern.
Convergence occurred in 13 steps with A = 0.2.

We note that for the above example, many other interesting
design cases can be addressed in a systematic manner, includ-
ing a neural network (1) with lower or upper triangular matrix
T, combinations of Cases I, II, III, and IV given above, and
so forth.

Example 4: We consider the 25 desired memory patterns
al,...,a® shown in Figure 8. (The upper left pattern is
denoted by o! and the lower right pattern is denoted by a2%).

if i —j| <2

otherwise (23)
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Fig. 7. A typical evolution of pattern number 4 of Figure 1.

I

HH H

IRWI
TTETT
IR

T

|ENEnE
T

T
1
1

|

i
jEEEEEEN
T 1

11l
1T
TIT
1T
1T

I

Fig. 8. The twenty-five desired memory patterns for Example 4.

These patterns constitute modules which represent individually
or in combination, Chinese characters. They are coded in R?!
in a similar manner as was done in Example 3 (including usage
of grey levels, as described in Example 3).

We wish to synthesize a cellular neural network (20) with
n = 81{M = N = 9) and r = 3, which will “remember”
these modules. As mentioned above, some of the Chinese
characters can be represented by two modules. In particular,
the patterns given in Figure 8 can be used to generate at least
50 commonly used Chinese characters. To demonstrate this,
we add one more vector, o2®, with every entry equal to 1
(black), to the set of desired memory patterns. In doing so,
we can generate desired combinations for Chinese characters
which are made up of some of the basic modules given in
Figure 8. For instance, the character corresponding to ab
means “sun” and the character corresponding to a'* means
“moon”. A new Chinese character can be generated as o’ =
a® + o + o?® € Span(al,...,a?%) N B, which means
“bright” (see Figure 9). Using the modified Sparse Design
Procedure 4.1 as discussed in Remark 14, we only need to
synthesize a system (1), in which the 81 neurons are arranged
in a 9 x 9 array and the interconnections are restricted to
local neighborhoods of radius = 3 by employing these basic
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+ +
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Fig. 9. The Chinese character composed of patterns number 6 and number
14 in Figure 8.

Fig. 10. A typical evolution of the Chinese character composed of patterns
number 6 and number 14 in Figure 8.

patterns. The resulting system will automatically “remember”
all possible combinations of these basic components, which
include the 50 commonly used Chinese characters mentioned
above (by Theorem 2 and Remark 14).

In the modified Sparse Design Procedure 4.1, by taking
p = 2 in step 2 and W; = —10 x Oy, X Uso in step 8,
where O,,,; = [1,...,1] € R*™ and m; = }}_, Sij, we
designed a neural network of the form (1) with the above
specifications (i.c., a cellular neural network of the form (20)
with M = N = 9 and r = 3) which stores a!,...,a?® as
memory vectors. This system has 2601 total interconnections,
while a fully connected neural network with n = 81 will have
total of 6561 interconnections. By using the cellular neural
network of the present example, we were able to reduce the
total number of required interconnections to less than 40%.

A typical simulation run, involving the pattern o®" =
ab+a!*+a?8 is depicted in Figure 10. The noisy initial pattern
in Figure 10 (upper left hand corner) is generated by adding to
a?7 zero-mean Gaussian noise with a standard deviation SD
= 1. The desired pattern o7 is recovered in 24 steps with a
step size h = 0.227 (lower right hand corner in Figure 10).

Simulation results showed that all the other vectors corre-
sponding to the aforementioned 50 commonly used Chinese
characters are (reachable) memory vectors of the synthesized
cellular neural network.

For the same initial noisy pattern shown in Figure 10, the
desired pattern is recovered in 8 steps, with the same step size,
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when using a fully connected neural network (1) designed by
the modified Synthesis Procedure 3.1 (as discussed in Remark
7) for the same desired set of memory patterns o, ..., a%6.
One of the reasons for the lower convergence speed of cellular
neural networks is that we only use local interconnections in
such systems.

The most commonly used Chinese characters are roughly
6700 in number. More than half of these consist of approx-
imately 500 basic characters (modules) or combinations of
these characters, as described in Example 4. This example can
be expanded by designing a cellular neural network which will
store these 500 basic Chinese characters as well as combina-
tions of these characters. In doing so, we will have stored over
one half of the 6700 commonly used Chinese characters. The
remaining commonly used characters (numbering about 3000),
will have to be stored separately, using the design procedure
described above.

VII. CONCLUSION

In the present paper we considered a class of artificial neural
networks which have the basic structure of analog Hopfield
neural networks [20] and which use the (piecewise linear)
saturation funciton to model the neurons (see Section I and
system (1)). This model is closely related to the cellular neural
networks considered in [9] and to the neural networks defined
on hypercubes in [26].

For system (1), we first conducted a qualitative analysis
which enables us to locate all of the equilibria and determine
their stability properties (see Section III-A and Theorem 1).
Next, we developed for system (1) a synthesis procedure
for associative memories which guarantees to store desired
patterns in B™ as memories (see Section III-B). The rationale
for this procedure is based on Theorem 1. It yields neural net-
works with symmetric interconnecting structure with no other
constraints on the structure (such as sparsity). This procedure
constitutes an adaptation of the eigenstructure method [26] to
system (1).

By utilizifig the result described above, we developed in
Section IV a synthesis procedure (for associative memories)
for sparsely interconnected neural networks (Sparse Design
Procedure 4.1). This procedure results in neural networks
which satisfy a prespecified interconnecting structure. In Sec-
tion V, we applied this design procedure in the synthesis of
a class of cellular neural networks for associative memories.
Finally, in Section VI, we demonstrated the applicability and
the versatility of the results established herein by means of
four specific examples.

The significance of the results presented in this paper is that
we can synthesize by the present methods neural networks
which have a prespecified interconnecting structure and which
will guarantee to store any desired set of memory patterns in
B™ as memories provided that the interconnecting structure
includes self feedback for all neurons. Design procedures
which result in neural networks with prespecified intercon-
necting structure without self feedback are currently under
investigation.
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