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Cellular Neural Networks for Associative Memories

Derong Liu and Anthony N. Michel

I. INTRODUCTION AND PRELIMINARIES

In this letter, we announce a synthesis procedure for designing
nonsymmetric cellular neural networks (CNN) with a predetermined
local interconnection structure that will store a set of desired bipolar
vectors as memory points.

Cellular neural networks, introduced by Chua and Yang [2], are
among the easiest to implement via VLSI and have found applications
in image processing and pattern classification [3], [6]. However, the
lack of a (systematic) synthesis procedure for CNN has restricted their
applications in some cases, for example, in the area of associative
memories.

We consider neural networks described by equations of the form

{%:—A1+Tsat(:v)+1 W
y = sat(x)

where z € R*, y € D" & (¢ € R -1< 2: < 1,i =
1,---,n}, A = diag[\,---,A] with A\ > 0, T = [T};] € R**",
I= (L, I,)T € R", sat(z) = [sat(z1),-,sat(z,)]7, and
sat(z;) = 1 if z; > 1, sat(z;) = o if -1 < 2; < 1, and
sat(x;) = —1 if z; < —1. We assume that the initial states of
(1) satisfy |z;(0)| < 1fori =1,---,n.

For ease of presentation, we let A = 1. For each a € B" £ {z €
R*:z; = lor —1,i = 1,---,n}, we define C(a) = {z €
R": zia; > 1,1 =1,---,n}.

We give next a result which is preliminary to our synthesis
procedure.

Lemma 1: Suppose a € B". If 3 = Ta+ I € C(a), then 3 is
an asymptotically stable equilibrium point of (1).

Proof: Since a; = +1 for all ¢, we see that sat () = « for all
z € C(a). For z € C(a), the first equation of (1) can be written as

t=-z+Ta+]1. 2)

System (2) has a unique equilibrium at z. = Ta+ 1, and z. = 8 €
C(a) by assumption. Clearly, this equilibrium is also asymptotically
stable, since system (2) has all its n eigenvalues at —1. [ ]

If £ € R" is an asymptotically stable equilibrium point of (1), then
ye = sat(£) is said to be a memory vector of (1). A memory vector
ye of (1) is said to be reachable, if there exists a neighborhood V' of
¥e, such that for any z(0) € V N D™ # ¢, the output vector y(t) of
(1) tends to ye asymptotically as ¢ — oo.

II. SYNTHESIS PROCEDURE FOR CNN’s

We first introduce some notation which shows how to relate (1) to
the nonsymmetric CNN model {2]. The basic unit in CNN’s is called a
cell. In a two-dimensional CNN, there are M x N such cells arranged
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in an array of M rows and NV columns. The cell in the ¢th row and the

Jjth column is denoted by C(i, j), and the r-neighborhood N, (2, j)

of the cell C(i, j) for a positive integer r is defined by

N.(i,j) & {C(k, 1): max {Jk—1i|, I - j|} < r,
1<k<M,1<I<N}L

For eve iven positive integer T, W define a matrix Q = Qi j, kl €
RMN XMN

and
Q:j, ki =0 otherwise. (3)

Q':jv e = 1if C(k9 l) € ]Vr(iw ])7

We let S = Q = [Si;] € R* ", where n = MN. Let
W|S = [hij] € R"*™ denote the restriction of W = [W;;] € R**"
on S, ie., h;; = W,; if S;; = 1 and h;; = 0 otherwise. With
this notation, we see that in order for (1) to be equivalent to the
nonsymimetric cellular neural network model given in [1], {2], we
need T = T|S.

We now consider the following problem.

Synthesis Problem (S): Given positive integers r, n, M, and N
withn = M x N, and m vectors o', ---,a™ in B, choose {T, I}
in such a manner that T = T|S and al,-++,a™ are reachable
memory vectors of system (1), where S = @ and Q) is defined in
3). | ]

The solution for the above synthesis problem, given in the follow-
ing, is a generalization of the synthesis procedures developed in [4]
and [7].

CNN Design Procedure (D): Suppose that we are given positive
integers 7, n, M, and N withn = M x N, and m vectors o, - -, a™
in B™ which are to be stored as reachable memory vectors for cellular
neural network (1). We proceed as follows.

1. Compute the matrix Q as in (3) and denote S = Q = [S;;] €

R ",

2. Choose a real number k > 1 and m vectors 8!,---, 3™, such
that 3* = ko'.

3. Compute the » X (m — 1) matrices Y = [y*,---,y™7}] =
[@' =™ ;o™ —a™,and Z = [,z =
(8 = ™.+, 8™ = ™). We denote y* = (yi,-++,y3)T
and 2 = (zf,---,z5)  fori=1,---,m — 1.

4. Denote the ith row of the index matrix S as S; =
(Si1,+++,Sin). For each i = 1,---,n, construct two sets M;
and N;, such that M; UN; = {i = -~,n}, M;NN; =

¢, and Si‘J =1if j € M, S,']' = 0if yj € N;. Let
M; = {ei(1),---,0i(mi)}, where m; = 377, Sij, and
gi(k) < oi(l) if 1 < k < I < m;. (Note that m; is the
number of nonzero elements in the ith row of matrix 5.)

5. For i+ = 1,---,n, and I = 1,---;m — 1, let y;; =
1 \T

"vyu(mi)) .

i = 1,---,n, compute the m; X (m — 1) matrices

Y: = [ylio .97, and the 1 x (m — 1) vectors Z; =

1

7. Fori =1,---,n, perform a singular value decompositions of
Y:, and obtain
D, | o][Vd
Yi = [Utl | Ui2] [
0 0

T
Vi
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where D; € RPi*Pi is a diagonal matrix with the nonzero
singular values of Y; on its diagonal, and p; = rank (;).

8. Compute for i = 1,---,n, Gi = [Gi1, +,Gim;,] =
Z.VaD7'UL +W,UE, where W, is an arbitrary 1 x (m; — p;)
real vector.

9. The matrix T" = [T};] is computed as follows:

le=()if5,'1=0 wdﬂ,:Gikif51j¢0

and if j = o;(k). (4)

10. The bias vector I = (I,---,1,)T is computed by I, =
8" — Tia™, for i = 1,---,n, where T; is the ith row of
the matrix T. Then a!,---,a™ will be stored as memory
vectors for the system of form (1) with T and I determined
above. The states 3',..-,3™ will become asymptotically
stable equilibrium points of the synthesized system.

]

The validity of the above procedure is based on the following
results.

Theorem 1: 1) The above design procedure guarantees that 7 =
T|S. 2) The CNN design procedure (D) can be applied to any desired
memory patterns o', -+, o™ € B"™. 3) The CNN design procedure
(D) guarantees that every o is stored as a reachable memory vector
of system (1).

Proof: Part 1) is clear form (4). A proof for part 2) is given in
[5]. Part 3) can be proved from Lemma 1 by taking k& > 1 small in
step 2). [ ]

Remark 1: 1If we wish that the above design procedure results in
a system of form (1) with I = 0, we can modify the CNN design
procedure (D) as follows. a) In step 3), take ¥ = [a!. -+, a™]
and Z = [B',---.3™]. b) In step 10), take I = 0. Then all
conclusions will remain unchanged. In particular, each —3* and —o?,
i =1,...,m, will also be an asymptotically stable equilibrium point
and a memory vector, respectively, of the synthesized system (1). m

Our next result concerns the modified design procedure. A proof
will be given in [5]).

Theorem 2: Suppose that o', - -, o™ are reachable memory vec-
tors obtained by the modified design procedure. Suppose that 7 is a
linear combination of o', ---,a™ and 5 € B™. Then, the modified
CNN design procedure (D) as discussed in Remark 1 will guarantee
that 7 is a reachable memory vector of the synthesized system. m

Note that the CNN design procedure (D) and its modified version
will generally result in a CNN with nonsymmetric (or nonreciprocal
[1]) interconnections.

III. AN EXAMPLE

We next present a specific case to demonstrate the applicability of
our results.

Example: We consider 25 desired memory patterns o', -+, a?°
as shown in Fig. 1. Each pattern represents a basic module which is
used in constructing Chinese characters and corresponds to a vector in
R®! with each vector component varying from —1 to 1 determined by
the gray level (cf., Fig. 2) in the corresponding box. If the gray level
in a box is white (black), the value of the corresponding component
is —1 (1).

We wish to synthesize a CNN (1) with n = 81 (M = N = 9)
and r = 3, which will “remember” certain Chinese characters.
Many Chinese characters can be separated into two modules. In
particular, the patterns given in Fig. 1 can be used to generate at
least 50 commonly used Chinese characters. To demonstrate this,
we add one more vector, o®®, with every entry equal to 1, to
the set of desired memory patterns. By adding o to the set of
desired memory patterns, we can generate desired combinations
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Fig. 1. The 25 desired memory patterns used in the example.
-1 -0.5 0 0.5 1

Fig. 2. Gray levels.

Fig. 3. A typical evolution of the Chinese character composed of patterns

6 and 14 in Fig. 1.

for Chinese characters made up of the basic modules given in
Fig. 1. For instance, the Chinese character corresponding to a®
means “sun” and the Chinese character corresponding to o'* means
“moon.” A new Chinese character can be generated as o®” = o +
o' + a*®, which means “bright.” Using the modified CNN design
procedure (D) as discussed in Remark 1, we only need to synthesize
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a system (1) with interconnections restricted to local neighborhoods
of radius r by employing these basic patterns. The resulting system
will automatically “remember” all possible combinations of the
basic modules, including the 50 commonly used Chinese characters
mentioned above (by Theorem 2).

In the modified CNN design procedure, taking k¥ = 2 in step 2)
and W; = —10 X O, X U;z in step 8), where Om, =(1,---.1) €
R'™™: and m; = }]'_| Si;, we design a CNN of form (1) with
neighborhood radius r = 3 which stores a'.---.a*® as memory
vectors. This system has 2601 total interconnections, while using a
fully interconnected neural network with n = 81, we require a total
of 6561 interconnections. For the present example, by using a CNN,
we have reduced the total number of required interconnections to
less than 40%.

One of the typical evolution results for o?” = o + a'* + o*% is
depicted in Fig. 3. The noisy initial pattern shown in the upper left
corner of Fig. 3 is generated by adding to a®” zero-mean Gaussian
noise with a standard deviation SD = 1. The evolution continues
from left to right in each row and from the top row to the bottom
row. The key pattern o" is recovered in 24 steps with step size
h = 0.227 in a digital simulation of (1), using MATLAB on a Sun
SPARC Station.

Simulation results also show that all the vectors corresponding
to the aforementioned 50 commonly used Chinese characters are
reachable memory vectors of the synthesized CNN. ]
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Reply to “Comments on ‘Linearization Techniques for
Nth-Order Sensor Models in MOS VLSI Technology’ *!

Mohammed Ismail

Contrary to common practice, the above comments' were not made
available to us for reply prior to publication. We would like to think
that this was an oversight. In the following, we provide our reply.

The four-transistor MOS transconductor presented in [1] provides
the most general description of the circuit concept in question. A
nonlinearity cancellation condition relating the gate voltages of the
four transistors was developed together with general conditions on
transistors drain-source voltages for proper triode region operation.
We then show that the independent works of Song [2], Rubin [3],
Ryan-Haigh [4], and the author of the comments are special cases
of the general description provided in [1]. Our general approach
was adopted in the text by Unbehauen and Cichocki [5] to describe
the curcuit and its special cases. This approach shows that while
MOS circuits may look topologically identical, they could exhibit
extremely different behaviors under different operating conditions.
More recently [6], we show that complete nonlinearity cancellation
in the circuit occurs when all four transistors operate in saturation
or when the cross-coupled pair operates in triode (saturation) while
the other pair operates in saturation (triode). In all these cases,
the circuit topology is the same, which leads us to argue that the
origin of the circuit really goes back to the four-transistor chopper
multiplier [7] which is topologically identical (see [7, figs. 6 and 9])
to the circuit in question, and in which the four transistors, when
on, operate in both triode and saturation. Our understanding and
recognition of the circuit concept as such and of the extent to which
it can be used has led to our development of the first single op-
amp all-MOS multiplier/divider (Elec. Lett., pp. 1550-1551, 1989)
which is very widely acknowledged by many researchers and is now
documented in several texts (e.g., [5], [8]). Furthermore, a United
States patent was recently issued to us [9] for a multiplier/divider
circuit that is even simpler (uses a single op-amp and half the number
of transistors). A third multiplier/divider circuit which also uses a
lower number of transistors was reported recently (Ismail et al.,
ISCAS ’93). The latter circuit is based on a two-transistor MOS
transconductor (first reported by Ismail and Prigeon, Proc. ISCAS, pp.
1655-1668, 1988) which achieves complete nonlinearity cancellation
and has the same transconductance of the four-transistor circuit. All
of these multiplier/dividers were extended to the multi-input case for
system level applications, and operating signal conditions (which are
different from those in the four-transistor circuit) were established
(see, e.g., reference [14] in the comments).

The Double-MOSFET method (first developed in print by Ismail
et al., IEEE JSSC, Feb. 1988) that was raised in the above comment'
is a design methodology relating the four-transistor circuit to a pair of
voltage-controlled floating resistors and as such provides a systematic
way to convert active-RC prototypes to MOSFET-C counterparts.
Furthermore, it establishes necessary topological conditions that must
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