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Asymptotic Stability of Discrete-Time
Systems with Saturation Nonlinearities
with Applications to Digital Filters
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Abstract—We establish new results for the global asymptotic
stability of the equilibrium x = 0 of nth-order discrete-time
systems with state saturations, x(k + 1) = sat[Ax(k)] (where
A € R"*" and sat (-) denotes the normalized, symmetric satu-
ration nonlinearity for each vector component). Associated with
such systems are linear systems of the form w(k + 1) = Aw(k).
In our approach, we utilize a class of positive definite and
radially unbounded Lyapunov functions v(:) with the proper-
ties that v(w(k + 1)) — v(w(k)) = v(Aw(k)) — v(w(k)) is
negative definite and v(sat (w)) < v(w) when w & D" £ {w €
R": -1<w; <1, i= 1,---,n}. For the case when v is a
quadratic form, we establish necessary and sufficient conditions
under which positive definite matrices H can be used to gener-
ate Lyapunov function v(w) = wTHw with the desired proper-
ties that v(Aw(k)) — v(w(k)) is negative semidefinite, and
that v(sat(w)) < v(w) when w & D". This Lyapunov function
v(+) is then used in the stability analysis of systems described
by the equation, x(k + 1) = sat [4x(k)).

For the nth-order fixed-point digital filters, we review some of
the existing results and utilize the above results to establish
conditions for the non-existence of limit cycles in such filters.
We demonstrate that the present results are easier to apply and
are less conservative than corresponding existing results.

I. INTRODUCTION

N THIS PAPER we will investigate stability properties
of systems described by

x(k + 1) = sat [ Ax(k)],

where x(k)e D" £{xeR": —-1<x,<1, i=1,
A ER"X",

k=0,1,2,- (D

-, n,

sat (x) = [sat (x,),sat (x,),--,sat (xn)]T

and
1, x; > 1
sat (x;) = { x;, -1<x; <1
-1, x, < -1

We will say that system (1) is stable if x, = 0 is the only
equilibrium of system (1) and x, = 0 is globally asymptoti-
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cally stable. (Recall that the equilibrium x, = 0 of system
(1) is globally asymptotically stable if (i) it is stable in the
sense of Lyapunov, i.e., for every € > 0 there is a 8§ = 8(e)
such that ||x(k)|| < e for all k=0, 1, 2,---, whenever
lx(@| < & (|||l denotes any vector norm), and (ii) it is
attractive, i.e., x(k) = 0 as k — =) Clearly, if for (1)
x, = 0 is globally asymptotically stable, then (1) will not
possess any limit cycles. Also, since we have saturation
nonlinearities in (1), it is clear that for any x(0) ¢ D",
x(k) € D", k > 1, will always be true. Thus without loss
of generality, we will assume that x(0) € D".

Equation (1) describes a class of discrete-time dynami-
cal systems with symmetrically saturating states after nor-
malization. Examples of such systems include control sys-
tems having saturation type nonlinearities on the state (cf.
[17], [41]); neural networks defined on hypercubes (cf. [13],
[14]); and digital filters using saturation overflow arith-
metic (see, e.g., [18]-26], [29]-[40]). We will not consider
non-symmetric state saturation in the present paper.

1) Control systems with saturation on the controllers are
still under investigation (see e.g., [4]-[12]. In these stud-
ies, it is generally assumed that there is no state satura-
tion in the system. In practice, this is not realistic. For
example, in describing the dynamics of a car, we may
choose speed and steering angle as two of the state
variables. Since both of these variables have upper and
lower limits, this system is endowed with state saturation
nonlinearities. In applications, state saturation in control
systems is very common.

System (1) may be used to represent control systems
with saturating states with no external inputs. In the
analysis and design of such systems, the first fundamental
question addresses stability: under what conditions is
x, = 0 an equilibrium and when is this equilibrium glob-
ally asymptotically stable?

The condition that A is a stable matrix, i.e., every
eigenvalue A, of A satisfies [A,] < 1, is not sufficient for
system (1) to be stable. (It is easy to give examples for
which A is a stable matrix, but system (1) is not stable.)
One way of guaranteeing the stability of system (1) is to
consider D" as a state constraint set which is positively
invariant and contractive [1}-[3] with respect to the linear
system

x(k + 1) = Ax(k) )

1057-7122/92803.00 © 1992 IEEE




LIU AND MICHEL: ASYMPTOTIC STABILITY OF DISCRETE-TIME SYSTEMS

(i.e., for (2), x € D" implies Ax € D", and if x(0) € D",
then x(k) — 0, as k — ). This is true if and only if

Al <1 (3)

where |- [l. represents the matrix norm induced by the [,
vector norm. Condition (3) will guarantee the global
asymptotic stability of the equilibrium x, = 0 of system
(1) since under this condition, system (1) and system (2)
are equivalent.

Condition (3) may also be viewed as a direct application
of the results in [1]-[3], where necessary and sufficient
conditions for a polyhedral state constraint set to be
positively invariant and contractive are given. We point
here the difference between a system with state saturation
nonlinearity and a system with state constraint set D".
The former is a system with a nonlinear property, while
the latter is a system whose states are not allowed to
violate a constraint set. It is expected that the condition
that system (1) is stable should be less conservative than
the condition that D" is a contractive and positively
invariant set for the system (2), i.e., the condition (3) is
too conservative for the stability of the system (1). We will
see in Section II that condition (3) is a special case of the
results of the present paper.

2) Systems described by (1) have also been used to
represent a class of neural networks (cf. [13], [14]). It is
shown in [13] that neural networks described by (1) have
certain advantages over the Hopfield model. When con-
sidering system (1) as a neural network with applications
to associative memories, the design objective is to gener-
ate a system which stores a set of desired patterns as
asymptotically stable equilibrium points. In the applica-
tion of neural networks to optimization problems (cf.
[15]), we wish to construct a network with a unique
equilibrium which is globally asymptotically stable, in or-
der to prevent convergence to local minima of an objec-
tive function (see, e.g., [16]). When the desired equilib-
rium x, is located in the interior of D", the conditions for
this equilibrium to be globally asymptotically stable will
be identical to the conditions for the equilibrium x, = 0
of (1) to be globally asymptotically stable, since we can
always consider x, = 0, without loss of generality (cf.
[27D.

3) In many important applications, (1) may be used to
represent digital processing systems, including digital filters
and digital control systems (cf. [17]-[26], [29]-[41]) with
finite wordlength arithmetic under zero external inputs. In
such systems, saturation arithmetic is used to cope with
the overflow. The absence of limit cycles in such systems
is of great interest and can be guaranteed by the global
asymptotic stability of the equilibrium x, = 0 for (1). The
Lyapunov theory has been found to be an appropriate
method for solving such problems (cf. [18]-[21]). We will
review further some of these results in Section IIL.

The remainder of this paper is organized as follows. In
Section II, we establish results for the global asymptotic
stability of system (1). In Section III, we address applica-
tions to digital filters. In Section IV, we consider several
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specific examples to demonstrate the applicability of the
present results. A few pertinent remarks are given in the
last section, Section V. Details concerning proofs of some
of the results (of Sections II and III) are included in the
Appendix.

11. MAIN RESULTS

In establishing our results, we will make use of Lya-
punov functions for the linear systems corresponding to
the system (1), given by

w(k + 1) = Aw(k), k=0,1,2, (4)
where 4 € R™™" is defined in (1).
We recall that for a general autonomous system
x(k +1) = f(x(k)), k=0,1,2,- )

with x(k) € R* and f:R" - R", x, is an equilibrium for
(5) if and only if

x, = f(x.).

We assume, without loss of generality that x, = 0 (see,
e.g., [27], [28]). Recall also that the equilibrium x, = 0 for
the system (5) is globally asymptotically stable, if there
exists a continuous function v:R" — R which is positive
definite, radially unbounded, and along solutions of )
satisfies the condition that

Dy, (x(k)) £ v(x(k + 1)) — v(x(k))
v(f(x (k) — v(x(k)) (6)

is negative definite for all x(k) € R". The function v is an
example of a Lyapunov function. (For the definitions of
positive definiteness, negative definiteness and radial un-
boundedness of a function, refer to, e.g., [27, chap. 5].)

In the stability analysis of the equilibrium x, = 0 of
system (1), we will find it useful to employ Lyapunov
functions v whose value for a given state vector w & D"
is greater than the value for the corresponding saturated
state vector sat (w). Specifically, we will make the follow-
ing assumption.

Assumption (4-1): Assume that for the system (4), there
exists a continuous function v:R" — R with the following
properties:

(i) v is positive definite, radially unbounded, and

Dy (w(k)) £ v(w(k + 1)) — v(w(k))
= v(Aw(k)) — v(w(k))

is negative definite for all w(k) € R" (and thus the eigen-
values of A4 are within the unit circle);
(ii) For all w € R" such that w & D", it is true that

I

v(sat (w)) < v(w) @)
where D" 2 {w € R":—~ 1 <w; <1, i=1,-,n} and sat
() is defined in (1). u

An example of a function v;:R* — R which satisfies (7)
is given by v,(w) = dw} + d,w3, d, d, > 0. On the other
hand, the function v,:R*> — R given by v,(w) = wi +



(2w, + w,)* does not satisfy (7). To see this, consider the
point w = (—0.99, 1.05)7 ¢ D? and note that v,(sat (w))
= 1.9405 and v,(w) = 1.845.
We are now in a position to prove the following result.
Theorem 2.1: If Assumption (A-1) holds, then the equi-
librium x, = 0 of the system (1) is globally asymptotically
stable.
Proof: Since Assumption (A-1) is true, there exists a
positive definite, radially unbounded function v for the
system (4) such that (7) is true, which in turn implies that

v(sat (Aw)) < v(Aw),
Also, by (A-1),

v(Aw(k)) — v(w(k)) <0, for all w(k) # 0.

Therefore, along the solutions of the system (1), we have
Dy, (x(k)) = v(x(k + 1)) — v(x(k))

v(sat [ Ax(K)D — v(x(k))
< v(Ax(k)) — v(x(k)) <0

for all x(k) # 0 and Dy, (x(k)) = 0 if and only if x(k) =
0. Therefore, v(x) is positive definite and radially un-
bounded, and Du,,(x) is negative definite for all x. Hence,
the equilibrium x, = 0 of the system (1) is globally asymp-
totically stable. [ ]

Remark 1: In particular, for fixed p, 1 <p < =, let us
choose

for all w € R".

It

1/p

n
(zw
i=1

for system (4) and assume that [|All, < 1, where [ 4],
denotes the norm induced by |wll,. Under these condi-
tions, (A-1) is true. To see this, note that v is positive
definite and radially unbounded, that v(4w) = || Awll, <
Al lwll, <lwl, = v(w), ard that |lsat(w)ll, <llwll,,
for all w € R" such that w & D".

Therefore, the equilibrium x, = 0 of the system (1) is
globally asymptotically stable if [|A4ll, <1 for some p,
l<p<ce

In the case of digital filters, the above argument holds
for any type of overflow nonlinearity ¢:R — [-1,1]. To
see this, let f(w) = [o(w,),-, o(w I and note that in
this case [|f(w)ll, <llwll, for all w € R" such that w &
D", ]

In order to generate quadratic form Lyapunov func-
tions which satisfy Assumption (A-1) for systems de-
scribed by (1), we will find it convenient to utilize the next
assumption. (Throughout, when using the term positive-
definite matrix, we will have in mind a symmetric matrix
with positive eigenvalues.)

Assumption (4-2): Let x, = sat (x) = [sat (x,),--,sat
(x,)I for x € R" and let H € R"*" denote a positive
definite matrix. Assume that

v(w) = lwll,

x'Hx, < x"Hx

whenever x & D", x € R".

(8
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An example of a matrix which satisfies (A-2) is any
diagonal matrix with positive diagonal elements. On the
other hand, the positive definite matrix H given by

_ (5 2)

21

does not satisfy Assumption (A-2). (To see this, refer to
the example following Assumption (A-1) by noting that
vy(x) = x"Hx)

The next result gives a necessary and sufficient condition
for matrices to satisfy Assumption (A-2). This result is
very useful in applications.

Lemma I: An n X n positive definite matrix H = (h,;)
satisfies Assumption (A-2) if and only if

H

n

X

j=lj#i

h; > |k “

i i j|’

Proof: See Appendix. [ ]

The following result is a direct consequence of Theo-
rem 2.1.

Corollary 2.1: The equilibrium x, = 0 of the system (1)
is globally asymptotically stable, if there exists a matrix H
which satisfies (A-2), such that Q £ H — ATHA is positive
definite.

By choosing v(x) = x”(k)Hx(k), the proof follows from
Theorem 2.1 ]

Remark 2: For linear system (4), the equilibrium w = 0
is globally asymptotically stable if and only if all eigenval-
ues of A are within the unit circle. Equivalently, the
equilibrium w = 0 of system (4) is globally asymptotically
stable if and only if for every positive definite matrix Q,
there exists a positive definite matrix P, such that (cf. [28,
theorems 8-17])

Q=P -ATPA. (10

Corollary 2.1 tells us that the equilibrium x, = 0 of the
nonlinear system (1) is globally asymptotically stable if in
addition to the conditions given above (for linear system
(4)), Assumption (A-2) is satisfied, i.e., there exists a
matrix H which satisfies (A-2) such that H — ATHA is
positive definite. ]

In the next results, Theorem 2.2, we show that Corol-
lary 2.1 is actually true when Q is only positive semidefi-
nite, still assuming that A is stable.

Theorem 2.2: The equilibrium x, = 0 of the system (1)
is globally asymptotically stable, if A is stable and if there
exists a matrix H which satisfies (A-2), such that Q £
H — ATHA is positive semidefinite.

Proof- Let us choose v(x(k)) = x"(k)Hx(k) for the
system (1). The function v is clearly positive definite and
radially unbounded. Also, since

Dy, (x(k)) = vix(k + 1) — v(x(k))
= [sat (Ax(k)]" H[sat (Ax(k))]

—xT(k)Hx(k)
<xT(k)(ATHA — H)x(k)
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and since H — ATHA is positive semidefinite, Dy ,(x(k))
is negative semidefinite for all x(k). Therefore, the equi-
librium x, = O is stable. To show that it is asymptotically
stable, we must show that x(k) — 0 as k — .

Let us consider an n consecutive-step iteration for the
system (1), from ny > 0 to n + n,. Without loss of gener-
ality, assume that the system (1) saturates at k = [,/ € [ny,
n + ny). In view of (A-2), it follows that

vx(+ 1)) =xTU+ DHx(U+ 1D
= [sat (Ax(1))]" H[sat (4x(1))]
< [Ax(D)" HAx(1) < xT (1) Hx (D) = v(x(])).

On the other hand, if no saturation occurs during this
period, then, using the fact that if H — ATHA is positive
semidefinite, then H — (AT)"HA" is positive definite
when A is stable (cf. [21]), we have

v(x(n+ny)) =x"(n + ny)Hx(n + ny)
= [A"x(n)] HA"x(n,)
=x"(ny)(AT)" HA"x(ny) <x™(ng) Hx(ny)
= v(x(ny)).

Therefore, we can conclude that for the sequence
{k:k = 1,2---}, there always exists an infinite subse-
quence {k;:j = 1,2,---}, such that Dy (x(k;)) is negative
for x(kj) # 0, and that v(x(k)) < v(x(k)) for all k = k;.
Since v is a positive definite quadratic form, it follows that
v(x(k;)) > 0 as j— =, and therefore v(x(k)) — 0 as
k — . This in turn implies that x(k) > 0 as k — .
Thus the equilibrium x, = 0 of (1) is globally asymptoti-
cally stable. [ ]

I11. APPLICATIONS TO DIGITAL FILTERS

Equation (1) may be employed to represent fixed-point
digital filters using saturation overflow arithmetic under
zero input. This model does not include quantization
effects. The existence and non-existence of limit cycles in
digital filters (under zero input) due to overflow nonlin-
earities have been investigated extensively (see, e.g,
[18]-[26), [29]-[40]). The types of characteristics consid-
ered in these studies include zeroing, two’s complement,
triangular, saturation, and other types of nonlinearities.
Since stable second-order direct from digital filters using
saturation arithmetic have been shown to be free of limit
cycles (cf. [29], [30)), filters of any order, endowed with
saturation nonlinearities have received special attention.
In addition, as pointed out in [26], [35], [36], conditions
obtained for the absence of nonlinear oscillations (under
zero input) in digital filters with saturation overflow non-
linearities are generally less conservative than correspond-
ing conditions obtained for digital filters with other types
of overflow characteristics.

A. Some Existing Results
An early result of Barnes and Fam [18] states that if

Al = YA (4'4) <1 11)
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where || - |l, denotes the norm of a matrix induced by the
I, vector norm, A" represents the transpose of A, and
A, (A"4) denotes the maximum eigenvalue of A4, then
the digital filter (1) is free of limit cycles. It turns out that
this result is true for many other types of overflow nonlin-
earities. An extension to this result is that the matrix Q in
(12) be positive semidefinite, assuming that A is stable,
ie., assuming that every eigenvalue A; of A satisfies
Al < 1,

Q=D-ATDA>0 (12)

where D is a diagonal matrix with positive diagonal ele-
ments [19]-[21]. This result can not be applied to the case
in which the absolute values of some diagonal elements in
matrix A are greater than or equal to 1. Another exten-
sion to condition (11) is given by

lall, <1 forsomep, l1<p<eo (13

where ||+1l, denotes the matrix norm induced by the I,
vector norm. (Condition (13) is stated in [24] without
proof.)

Another time domain result, which has no obvious
relations with any of the results cited above, states that if

p(lA) <1 (14

where p(-) denotes the spectral radius and j|A] = (Ia,.jl),
then the digital filter (1) is free of limit cycles (cf. [22]-{24).
This result is especially useful for testing a digital filter
with lower or upper triangular coefficient matrix.

It is shown by Singh [25], [26], that the frequency-
domain condition

D + DAL — A)™ + [DA(zl — 4)~'1* = 0,
forall |z] =1 (15)

is equivalent to condition (12), where I denotes the n X n
identity matrix, z is a complex variable, and * represents
the conjugate transpose. An improvement to condition
(15), assuming saturation arithmetic in the digital filters,
given by

2D + DAzl — A) ' + [DA(zl — A)”'1* = 0,
forall|z| =1 (16)

is also due to Singh [26]. Note that in (15) and (16), D is
still assumed to be a diagonal matrix with positive diago-
nal elements and that A is assumed to be a stable matrix.

We note that conditions (11)-(16) constitute also condi-
tions for the global asymptotic stability of the null solu-
tions of the digital filters under investigation (with no
external inputs).

B. Digital Filters Using Generalized Querflow Characteristics

Since no limit cycles can exist in a digital filter if its
trivial solution is globally asymptotically stable, we can use
the results of Section I, to establish the following results
for nth order digital filters with saturation arithmetic.



Corollary 3.1:

i) A digital filter described by (1) is free of limit cycles,
if Assumption (A-1) is satisfied.

ii) A digital filter described by (1) is free of limit cycles,
if A is stable and if there exists a matrix H which satisfies
Assumption (A-2), such that Q £ H — A"HA is positive
semidefinite. ]

Remark 3: As pointed out in Remark 1, condition (13)
is a special case of Corollary 3.1()). We note that since in
(12), D is assumed to be a diagonal matrix with positive
diagonal elements, Corollary 3.1(ii) constitutes a general-
ization of condition (12). ]

Remark 4: The results given in Corollary 3.1 are in
general less conservative than conditions (12), (13), or (15)
and appear to have no direct relationships with conditions
(14) and (16). However, Corollary 3.1(ii) is considerably
easier to apply than condition (16), since the latter in-
volves matrix inversions. In Section IV, we include a
specific example which can be analyzed by Corollary 3.1(ii),
but not by any of the previous results given by (11)—~(16).

]

Remark 5: In [40], it is shown that second-order digital

filters given by (1) with
ap )
az

A= (““ (17)
are free of limit cycles if A is stable and if

as

lan - azz‘ < 2min(1012|, la_z]]) +1- det(A). (18)

This result can also be derived by Corollary 3.1(ii), since
under the above conditions, there always exists a matrix
H which satisfies Assumption (A-2) with H — A"HA posi-
tive semidefinite (cf. [40]).

We also note that when for a second-order digital filter
with

the parameters (a, b) are located within the well-known
stability triangle, then condition (18) is automatically sat-
isfied. Thus second-order direct form digital filters with
saturation nonlinearities and with matrix A stable, are
free of limit cycles. This result was originally established
in [29] and [30], using approaches which differ significantly
from the present method. ]

In the sequel, we will consider nth-order digital filters
described by equations of the form

x(k+ 1) =flAax(k)], k=0,1,2,~ (9
where x(k) € R", A € R"*",
F(x) = Lolx)), (x),, olx,)]" (20)

and ¢:R — [—1,1] is piecewise continuous. We call (19)

a fixed-point digital filter using overflow arithmetic. For such

filters, we will make the following assumption.
Assumption (A-3): Let f be defined as in (20). Assume
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b o(x)

-L

Fig. 1. The generalized overflow nonlinearity described by (23).

that H € R"*" is a positive definite matrix and that

FCO) Hf(x) < xTHx @1
forall x € R", x &€ D". |

In what follows, we will let the function ¢ in (20) be
defined as

L, x>1
o(x;) = {x;, -l<x<1 2)
—L, x; < —1
or (see Fig. 1)
L<oplx)<]l, x; > 1
o(x;) =x;, -l1<x;<1 (23)
-1 <elx) < —-L, x; < -1

where —1 < L < 1. We will call (22) or (23) a generalized
overflow characteristic. Note that when defined in this way,
¢ includes as special cases the usual types of overflow
arithmetic employed in practice, such as zeroing, two’s
complement, triangular, and saturation overflow charac-
teristics.

To establish our next result, Theorem 3.1, we require
the following preliminary result, Lemma 2.

Lemma 2: Assume that f is defined in (20) and ¢ is
given in (22) or in (23). An n X n positive definite matrix
H = (h,)) satisfies Assumption (A-3) if and only if

n
A+ Lh; =2 Y |hyl, i=1,-
j=1.j#i

Proof: See Appendix. ]

The overflow arithmetic (23) has also been considered
in [31] where it is called generalized zeroing arithmetic. We
prefer to use the name generalized overflow arithmetic in
this paper.

Theorem 3.1: The nth-order digital filter described by
(19), in which ¢ is given in (22) or (23), is free of limit
cycles, if A is stable and if there exists a positive definite
matrix H which satisfies (24), such that Q £ H — A"HA
is positive semidefinite.

Proof- We can follow the same procedure as in the
proof of Theorem 2.2 to prove that under these condi-
tions, the equilibrium x, = 0 of system (19) is globally
asymptotically stable. Thus the digital filter described by
(19) is free of limit cycles. [ ]

(24)

N,



LIU AND MICHEL: ASYMPTOTIC STABILITY OF DISCRETE-TIME SYSTEMS

For the two’s complement and triangular overflow char-
acteristics, we have

Lemma 3: An n X n positive definite matrix H = (h;;)
satisfies Assumption (A-3) when f represents the two’s
complement or the triangular arithmetic, if and only if H
is a diagonal matrix with positive diagonal elements.

Proof: The proof is similar to the proof of Lemma 2.
]

Remark 6: A special case of the overflow characteristics
given in (22) is the zeroing characteristic in which L = 0.
We can also treat the two’s complement and the triangu-
lar characteristics as special cases of (23) by letting L —
—1. 1 this case, condition (24) will simply mean that
matrix H is a diagonal positive-definite matrix. u

Remark 7: For fixed-point digital filters employing two’s
complement or triangular overflow arithmetic, Theorem
3.1 yields the same result as condition (12), since for these
types of arithmetic, the matrix H which satisfies (A-3)
must be a diagonal matrix with positive diagonal elements.
For a digital filter (19) using overflow arithmetic given by
(22) or (23), our result in Theorem 3.1 relaxes the matrix
D in (12) from a diagonal matrix with positive diagonal
elements to a positive definite matrix H which satisfies
the condition (24). This should certainly cover a broader
class of stable matrices A. ]

For second-order digital filters, we have the following
Corollary.

Corollary 3.2: Suppose that in a second-order digital
filter described by (19), 4 = (a,j) is stable and the over-
flow arithmetic is given by (22) or (23). A sufficient condi-
tion for the nonexistence of limit cycles in this digital
filter is given by

la,, — ayl < (1 +L)m +1 - det(4) (25)
if 1 — det(A) < M — m, or by

1+L
2

VA = det (A + 4mM  (26)

lay —axl <

if 1 — det(A4) = M — m, where M = max{lay,l,la,} and
m = min{|a,l, la,}.

Proof: Tt is proved in [40] that when (18) is satisfied,
there exists a 2 X 2 positive definite matrix H satisfying
condition (9), such that H — ATHA is positive semidefi-
nite, assuming that A is stable. Following the same proce-
dure as in [40), it can be proved that when (25) or (26) is
satisfied, there exists a 2 X 2 positive definite matrix H
satisfying condition (24), such that H — ATHA is positive
semidefinite, still assuming that A is stable. n

Remark 8: Conditions (18), (25), and (26) are applicable
only when a,,a,, < 0, for if 4 in(17)is stable, aj,a, = 0
will guarantee the nonexistence of limit cycles in such
digital filters for any type of overflow nonlinearities satis-
fying (20) (cf. [19] for details). A generalization of condi-
tion (18) to different types of overflow arithmetic is ob-
tained in [40). The present result (Corollary 3.2) and the
corresponding result given in [40] constitute different con-
ditions which do not cover each other. |

IV. EXAMPLES

To demonstrate the applicability of the present results
and compare them with previous results, we now consider
several specific examples.

Example 1: For the digital filter (1) considered in [26]

with A4 given by
- 1 273
A ( -0.1 0.9)

we have |4ll, > 1, p=1, 2, or =, and p(|A4D > 1. Fur-
thermore, for this filter it can be verified that there is no
diagonal matrix D with positive diagonal elements such
that D — ATDA is positive semidefinite. Therefore, condi-
tions (12)—(15) fail as global asymptotic stability tests for
this example.

Hypothesis (A-2) is satisfied for this example by choos-

ing
_[1 05
H (0.5 0.8)'

@n

(28)

Since

Q=H— ATHA = (0,092 0.00325 )

0.00325 0.023875

is positive-definite, all conditions of Theorem 2.2 are
satisfied and the equilibrium x, = 0 of system (1) with A4
specified by (27) is globally asymptotically stable. There-
fore, this digital filter is free of limit cycles.

Condition (16) can also be used to ascertain that x, = 0
of the present digital filter is globally asymptotically sta-
ble. However, application of condition (16) is extremely

involved and cumbersome. n
Example 2: For the digital filter (1) with
_ (06 —02
4= (0.3 1.1) (29)

it can be verified that conditions (12)-(16) are not satis-
fied.

Choosing H as in (28), it is easily verified that all
conditions of Theorem 2.2 are satisfied. Therefore, the
equilibrium x, = 0 of system (1) with A specified by (29)
is globally asymptotically stable. Hence, this digital filter is
free of limit cycles. ]

It is extremely difficult to apply condition (16) when the
order of the system (1) is greater than 2, as in the next
example, where n = 4, In particular, the inversion of
high-order matrices of variables poses formidable obsta-
cles. On the other hand, the application of Theorem 2.2 to
high-order systems is not particularly difficult.

Example 3: For the system (1) with A given by

-1 0 01 0
02 -06 0 08
- 30
A= 01 o1 08 0 (30)
0.1 0 01 -—05

it can easily be verified that A4ll, > 1, p=120rx, that
p(lA) > 1, and that there is no diagonal matrix D with
positive diagonal elements such that D — ATDA is posi-
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tive semidefinite. Hence, conditions (12)—(15) fail as global
asymptotic stability tests for the present example.

Hypothesis (A-2) is satisfied for this example by choos-
ing

1.4 0 -02 0.4
0 1.6 02 —-04
H= 31
-0.2 0.2 34 0.5 G
04 -04 0.5 3
Since

0026 0161 —0.003 0.077
Q=H—-ATHA = 0.161 1.014 —-0.003 0.497
—0.003 -0.003 1.124 0.774
0.077 0.497 0.774 0.906

is positive-definite, all conditions of Theorem 2.2 are
satisfied, and the equilibrium x, = 0 of the system (1)
with such a coefficient matrix is globally asymptotically
stable.

From Theorem 3.1, we see that a fourth-order digital
filter described by (19) with A given in (30), when f
represents the zeroing arithmetic, is free of limit cycles
since H in (31) satisfies

n
hy>2 Y. |k

J=1,j#*i

B s

Indeed, it is also free of limit cycles when generalized
overflow arithmetic specified in (22) or (23) is used with
-01333<L < 1. [ |

V. CONCLUDING REMARKS

We emphasize that (1) describes a large class of dis-
crete-time dynamical systems with saturation nonlineari-
ties (which include important classes of digital filters as
special cases). Theorem 2.1 which requires the existence
of a function v for system (4), satisfying Assumption
(A-1), guarantees the global asymptotic stability of the
equilibrium x, = 0 of system (1). The two special forms of

0 0
0 0

H ~ EHE = | h,,(1 — ¢,) Byl =€)
0 0
0 0

and

n
xT(H—-EHE)x = (1 —e ) h,(A +edx}+2 Y hyxx|.

the function v considered in this paper are the /, vector
norm and the quadratic form. These are two important
forms of Lyapunov functions. There may be other forms
of Lyapunov functions for system (4), which satisfy As-
sumption (A-1) under some other conditions.

The result for global asymptotic stability of the null
solution of system (1) established in the present paper
(Theorem 2.2) is very general, since it involves necessary
and sufficient conditions under which a positive definite
matrix can be used to generate quadratic form Lyapunov
functions for system (1) (Lemma 1). Our results of Section
II can be used directly as criteria for testing the nonexis-
tence of overflow limit cycles in nth-order digital filters
using saturation arithmetic.

The generalized overflow characteristics considered in
Section III cover the usual types of overflow arithmetic
used in practice. Our conditions for testing whether a
digital filter, using the generalized overflow characteris-
tics, is free of limit cycles, constitute a generalization of
condition (12), originally given in [19]-[21]. We generalize
the matrix D in (12) from a diagonal matrix with positive
diagonal elements to a positive-definite matrix satisfying
condition (24).

APPENDIX

Since Lemma 1 is a special case of Lemma 2 when
L =1, we need to prove only Lemma 2.
Proof of Lemma 2: We first prove this lemma for the
overflow arithmetic given in (22). We introduce the fol-
lowing notation. For ¢ defined in (22), let us denote

£ = Lelx),, o(x )] = Ex

where E = diag(ep 62,'“73,,), e, = 1 when x;l < 1, and
e; = L/lx;l when |x;| > 1.
Then, we have

xTHx - f(x) Hf(x) = x"(H — EHE)x.

Sufficiency: Suppose x = (x,, X, x,)7, |x;,| > 1 and
x| <ifori#k(x&D"). Wehave —1<e, <1l,¢ =1
for i # k, and therefore,

hy (1 —e) 0 0
he (1 —¢) 0 0
Pl =€) Ry —€) hin(1 =€)
his1(l =€) 0 0

h (1 —e) 0 0

(32)

i=1i#k

Note that in the above equation we have used the fact
that h;; = hy,. From |x} < 1for i # k, lx,[> 1, elx,| =
L,and L > —1, we have

(1+L)xx, | < (1+Dlx, | < (x| + Dix )= (1 +e)x;.
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Hence, from (32), we have

x"(H - EHE)x

n
=(1- ek)(hkk(l tedxp—2 Y Ihikx,-x,(l)
i=li%k
n

[T "’fk')zo

> (1 - e,f)x,f(hkk -
i=1,i+k
ie., x"Hx > xTEHEx = f(x)THf(x).

Denote M = {1, 2,--,m} for any m, 0 <m < n and
N ={k;:0 <k, <n, k;#k;, when i +j, i € M}. Now
suppose that x = (x,, x,,-*, x,)7, |x,| > 1 for k € N and
lx; <1 for i ¢ N (x &€ D"). Following the same proce-
dure as above, we have

xT(H — EHE)x
n
=2 - ek)(hkk(l tedxp+2 Y hzkxixk)
KeN i=1ieN

+ Z Z huxex (1 —epe))

keNIleNI+k

n
> ) (- ek)(hkk(l +tedxi-2 L |hikxixk|)
keN i=1,igN
+ X X huxx(l-ee)
keNIeN =k
> Y (1-¢?) 7(h 2 i lh I)
=X\ e — T ik
keN L+ L, _Ten
+ X X huxx(l-ee)
keNlIleN,l+k
Y 24,2 2 i
= a1 - ek)xk(hkk e |hik|)
keN T+ L
2 YA —eDxt Y lhyl
+— —el)x ;
I+L /Sy g kieN,i#k g
+ Y Y hyxx(l—ee). (33)
keNlIleN,i+k

The first summation of the right-hand side in (33) is
nonnegative, by assumption. Considering the last two
terms in (33), by noting that —1 < e, < 1 and e,lx,| =L
for k e N,and —1 < L <1, we have

Ya-e)xd ¥

L+ L2y iEN itk
+ Y X huxx(l—ee)

keN leN,l+k

Y Y (-edxih,l

keNleNil+k

-r X

kEN IEN I+k

XX

keN IleN,l+#k

=X X

keNIeN,I+k

1Al

%

1hgxx (1 — epep)

|7 x x| — e, L — 1x)0 + e, L)

|hk1|x2 - Z Z

keNIleN,I+k

1y x,x)|
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Il

r X

keNIleN,I>k

-2y ¥

keNIeN,I>k

Z Z |hk1|(|xk| - IXIDZZO.

keNleN,I>k

|hk1|(xl% + x12)

[y x|

Therefore,

xTHx — f(x)"Hf(x) = x"(H — EHE)x > 0

for any x € R” such that x ¢ D",
This proves the sufficiency.
Necessity: Tt suffices to show that if (24) does not
hold, there always exist some points x & D", such that

xTHx < f(x)" Hf (x).
Suppose that (24) does not hold for i = k&, i.e.,

n
522 Y hyl— (1 + L)y > 0.

j=1,j%k
Let us choose |x,/=1+ ¢, ¢€>0, and x; = —sign
(h; x,), i # k, where
1, y>0
sign (y) = 0, y=0
-1, y <0.

Then, x = (x;,"+, x,)7 & D" and (32) becomes
xT(H — EHE)x

= (1 - ek)(hkk(l + ek)xl% -2 Z ]hikxkl)

i=1i+k

= (1 ot ek)]xkl(hkk§+ (1 + L)hkk - 2 Z Ihkll)

i=1i%k
=1 - eIlx l(hy, &~ 8).

Clearly, when we choose

we have

xTHx — f(x)"Hf(x) = x"(H — EHE)x < 0.

Note here that #,, > 0 since H is positive definite.

This proves the necessity.

For the overflow nonlinearity given in (23), the proof of
sufficiency is similar to the proof given above. To prove
necessity, we note that for a given L, when |x;| > 1, ¢(x;)
in (23) may assume any value in the crosshatched regions
in Fig. 1 including +L (which is the case for the arith-
metic given by (22)). [
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