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Stability Analysis of State-Space
Realizations for Two-Dimensional
Filters with Overflow Nonlinearities

Derong Liu, Member, IEEE, and Anthony N. Michel, Fellow, IEEE

Abstract— We utilize the second method of Lyapunov to es-
tablish sufficient conditions for the global asymptetic stability of
the trivial solution of percent nonlinear, shift-invariant 2-D (two-
dimensional) systems. We apply this result in the stability analysis
of 2-D quarter plane state-space digital filters, which are endowed
with a general class of overflow nonlinearities. Utilizing the /..
vector norm and the p*® power of the 1, vector norm for 1 < p
< o0 as Lyapunov functions, we show that || A ||, < 1, for some
p, 1 < p < >0, constitutes a sufficient condition for the global
asymptotic stability of the trivial solution of the 2-D nonlinear
digital filters where A denotes the coefficient matrix of the filter
operating in its linear range and || - ||, denotes the matrix norm
induced by the 1, vector norm. Using quadratic form Lyapunov
functions, we also establish sufficient conditions for the global
asymptotic stability of the null solution of the 2-D digital filters.
These results are very general, since they involve necessary and
sufficient conditions under which positive definite matrices can
be used to generate the quadratic Lyapunov functions for the 2-
D digital filters with overflow nonlinearities. We generalize the
above results to a class of m-D (multidimensional) digital filters
with overflow nonlinearities. To demonstrate the applicability of
our results, we consider a specific example.

I. INTRODUCTION

N THE IMPLEMENTATION of linear digital filters, signals

are usually represented and processed in a finite word-
length format. Therefore, such implementations frequently
give rise to several kinds of nonlinear effects, such as over-
flow and quantization. The stability analysis of 2-D (two-
dimensional) digital filters subject to such nonlinears has been
of increasing interest in recent years [1]-[4].

Since finite word-length realizations of digital filters result
in systems that are inherently nonlinear, the asymptotic sta-
bility of such filters (under zero input) is of great interest in
practice. The global asymptotic stability of the null solution
guarantees the nonexistence of limit cycles (overflow oscil-
lations) in the realized digital filters. In the present paper,
we establish new results for the global asymptotic stability
of zero-input 2-D state-space digital filters with overflow
nonlinearities. We do not consider quantization effects in the
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present paper. The stability properties of 1-D digital filters
subject to overflow nonlinears have been investigated exten-
sively during the last two decades {7]-[15]. However, a great
deal of work that addresses qualitative issues concerning 2-D
digital filters endowed with overflow nonlinearities remains to
be accomplished.

We consider the quarter plane model of 2-D digital filters
described by

2Pk +1,1) An Arn z(k,1)
............ :f
(k141 . Uk,
ek I+ 1) An 1 Ax = (k1)
k>0,1>0 (1

where 2" € R™ z¥ € R", A;; € R™*™ Ay, € R™x",
Ay € R™™, Ayy € R™ ™, and f(-) represents overflow
nonlinearities. We also assume for system (1) a finite set of
initial conditions, i.e., we assume that two positive integers
exist, K and L, such that

a"(k,0) =0 for k > K,
z(0,0) =0 for 1 > L,

z"(k,0) =0 for k > K,
z'(0,l)=0forl > L. (2)

For the asymptotic stability of the 2-D digital filter (1) with
initial conditions (2), a well-known result states that [4], [5] if
there exists a diagonal positive definite matrix G such that

Q=G-ATGA (3)

is positive definite, then the null solution of (1) is globally
asymptotically stable, where

A= . 4

Az

Condition (3) cannot be applied to the case where the absolute
values of some of the diagonal elements of matrix A are greater
than or equal to one.

In the present paper, we utilize Lyapunov’s Second Method
to establish new results for the global asymptotic stability of
the null solution of the 2-D system (1). One of our results
generalizes condition (3) and shows that the matrix G can
be relaxed to certain classes of positive definite matrices. We
also provide necessary and sufficient conditions under which
positive definite matrices can be used to construct quadratic
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form Lyapunov functions with desired properties for the 2-D
system (1).

For shift-invariant 2-D digital filters (which are considered
in the present paper), the results obtained in [1] require that

&)

where p(-) denotes the spectral radius and |A| = (|ai;]).
Condition (5), which is a special case of (3) (see [18]), is
especially useful for testing the 2-D system (1) with lower or
upper triangular coefficient matrices.

We call the class of overflow nonlinearities considered
herein generalized overflow characteristics. These nonlineari-
ties constitute a generalization of the usual types of overflow
arithmetic employed in practice. In our approach, we do not
characterize these nonlinearities by sector conditions; instead,
we characterize them by the range of the nonlinear function
representing the overflow arithmetic.

In the next section, we prove several results for the global
asymptotic stability of the null solution of 2-D digital fil-
ters described by (1) (Theorems 1 and 2, Corollary 1, and
Proposition 1). An algorithm for finding the positive definite
matrices, which can be used to construct the quadratic form
Lyapunov functions for the 2-D digital filters considered
herein, is proposed in Section 3. We generalize our results
to multidimensional cases in Section 4 (Theorem 3) and
Corollary 2. We demonstrate the applicability of the present
results by means of a specific example in Section 5. We
conclude the present paper in Section 6. Some of the details
concerning the proofs of the results of Section 2 are included
in the Appendix.

r(l4]) <1

II. TwO-DIMENSIONAL DIGITAL FILTERS
WITH OVERFLOW NONLINEARITIES

Throughout, we will use the notation

zh(k, 1)
.’E(k,l) = Jrecccaenn (6)
z¥(k,1)
and
ah(k+1,0)
.’L'll(k, l) = [rreeecciiann (7)
zV(k,l+ 1)

for z' € R™ and z¥ € R™. Also, we let D(d) denote the
set defined by
D(d) & {(k,l):k+1=d,k>0,l >0} ®)

for some positive integer d > 0. (In the context of two-
dimensional signal processing, the superscripts h and v suggest
the terms “horizontal” and “vertical,” respectively, while D(d)
suggests indices along a diagonal.)

Consider 2-D shift-invariant systems described by equations
of the form

SR ()

or compactly
xll(ka l) = g(l’(k, l))7

where g: R™t" — R™*" is continuous. For such systems,
we introduce the following concepts.

Definition 1: A point . € R™*" is called an equilibrium
point of the 2-D system (9) (or equivalently, (10) if and only if
z. = g(z.). Furthermore, if there exists an v > 0 such that
the open ball B(z.,v) & {z € R™+":||z — z.|| < 7} contains
no equilibrium points of (9) other than z. itself, x. is called
an isolated equilibrium point, where || - || denotes any of the
equivalent norms on R™*™,

We assume, without loss of generality, that z, = 0 and that
it is isolated. In the following definitions (Definitions 2 and
3), we assume a finite set of initial conditions as in (2) for
system (9).

Definition 2: The equilibrium x = 0 of the 2-D system (9) is
said to be stable (in the sense of Lyapunov) if for every £ > 0,
there exists a § = 6(¢) > O, such that ||z(k,l)|| < e for all
k > 0,1 > 0, whenever ||z(k,0)|| < é§ for 0 < k < K and
[|2(0,)]| < 6 for 0 < I < L where K and L are specified in
). O

k>0,12>0 10)

Definition 3: The equilibrium x = 0 of the 2-D system (9) is
said to be globally asymptotically stable (or asymptotically stable
in the large) if:

(1) It is stable; and

(2) every solution of (9) tends to the origin as k + | — oo, i.e.

lim

z(k,))= lim z(k,1)=0
k—oo ANd/Or - (k1) k+i—oo (k,)

Jor system (9) with any initial conditions satisfying (2). (Note that
in the statement k + 1 — oo, we still require that k > 0 and
1 > 0). In this case, the equilibrium x. = 0 is said to be globally
attractive.. O
Remark 1: The global asymptotic stability of the equilib-
rium z. = 0 of (9) implies that system (9) has one and only
one equilibrium. O
Remark 2: 1In the present paper, we adapt the method-
ology of the Lyapunov stability theory of an equilibrium
for dynamical systems in the qualitative study of 2-D (and
multidimensional) filters. In conventional Lyapunov results, a
temporal variable (time) plays a central role. In the present
paper; which deals with a class of 2-D (and multidimensional)
shift-invariant systems, time does not have a role. Instead,
the independent variables of interest, are spatial variables.
Therefore, in the present context, asymptotic stability pro-
vides the following qualitative characterization of 2-D (and
multidimensional) systems: (1) Stability of the equilibrium
. = 0 provides a measure of continuity of the state variables
{zi(k,1),i = 1,....m+nk = 1,2,..51 = 1,2,...}
with respect to a finite set of initial states (see (2)); (2)
global attractivity of the origin ensures that the magnitudes of
the state variables become arbitrarily small when the spatial
variables become arbitrary large. 0
We will require the following concepts in the sequel.
Definition 4: A continuous function 1: [0,7] —» R* £ [0, c0)
(respectively, : Rt — R*), is said to belong to class K, i.e.,
v € K, if (0) = 0 and if ¢ is strictly increasing on [0,7]
(respectively, on RY). If y: Rt — R*Y, if ¢ € K, and if
lim, o, 9(7) = oo, then v is said to belong to class KR. a
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Definition 5: A continuous function v: R™t" — R (respec-
tively, v: B(h) — R, where B(h) £ {z € R™"*":||z| < h})is
said to be positive definite if
1) v(0) = 0, and
2) there exists a ¥ € K such that v(z) > ¥(||z||) for all

z € B(r) = {z € R™*" : ||z|| < r}, for some r > 0.

|
Definition 6: A continuous function v is said to be negative
definite if —v is positive definite. O

Definition 7: A continuous function v:R™™" — R is said to
be radially unbounded if
1) v(0) = 0, and
2) there exists a v € KR, such that v(z) > ¥(||z||) for all

z € R™.
a

We will employ nonlinearities f:RY — RY to represent
overflow effects in 2-D digital filters (1), where N denotes the
dimension of the underlying vector space,

f(@) = [p(z1). ...

and p: R — [—1,1] is piecewise continuous. We will make
use of the notation specified in (4) and we will let

f(z") Tk

so(an)]” an

Associated with the nonlinear digital filter (1), we will
consider linear digital filters given by

wh(k +1,1) An Arz wh(k,1)
wik i+ | | T wok,) |

(&, ) Ay Az (k1)
k>0,1>0 (12)

where Aj1, A1s, Agp, and Aoy are defined in (1). We will
assume a finite set of initial conditions for (12) as in (2),
and follow the convention established in (6) and (7) for the
vector w.

In analyzing the stability of the equilibrium z, = 0 of the
2-D system (1), we will make use of a class of Lyapunov
functions V for the linear system (12).

Assumption (A-1): Assume that for system (12) there exists
a continuous function V:R™*™™ — R with the following
properties:

1) V can be expressed as
Viw) = Viw") + V¥ (w®) (13)

where

and V*: R™ — R and V¥: R* — R are positive definite
and radially unbounded. (Thus, V' is also positive definite
and radially unbounded. See Lemma A.1 in the Appendix.)

Furthermore, along the solutions of (12), V satisfies the
condition that

DV (w(k, 1)) 2 V(wy (k. 1) — V(w(k, 1))
= V(Auw(k, 1)) - V(w(k,1))

is negative definite for all w(k,l) € R™™" (A is defined
in (4));
2) For all w € R™*™", it is true that

V(f(w)) < V(w) (14)

where f represents the overflow nonlinearity for (1).

a

We are now in a position to establish the following result.

Theorem 1: If Assumption (A-1) holds, the equilibrium x = 0
of the 2-D system (1) is globally asymptotically stable.

Proof: Since (A-1) is true, there exist positive definite
and radially unbounded functions V, V* and VV for sys-
tem (12), such that (14) is true, which in turn implies that
V(f(Aw)) < V(Aw) forallw € R™*™". Also, by (A-1),
V(Aw(k,1)) < V(w(k,l)) for all w(k,!) # 0. Thus, for the
2-D system (1), we have, using (13) and (14)

Viewn(k.1)) = V(f(Az(k,1)) < V(Az(k,1))

< V(z(k, 1)) for all z(k,l) #0 (15)
Le.
V(zu(k, ) = Vi "k +1,0) + V¥ (a" (k.1 + 1))
< V(z(k,1)) (16)

for all z(k,1) # 0.
For any integer d > max{K, L}, we compute

> VkD)> S Vien(k)
(k,hyeD(d) (k,1)eD(d)

= Y [VMa"k+1.0)+ V(v (k1+ 1))
(k,hHeD(d)

= > VMaMk+1.0)+V"(0,d+1))
(k,0)eD(d)

+ Y VU@U(k I+ 1)+ V(e (d +1,0))
(k,l)eD(d)

= 3 VAR + Y VD)
(k,1)ED(d+1) (k,1)eD(d+1)

- ¥

(k,l)eD(d+1)

V(z(k,1)). 17)

In the above, we have used the fact that z"(0,d + 1) = 0,
z¥(d+1,0) = 0, and the positive definiteness of the functions
Vh and Vv,

Consider any fixed € > 0. Since V is radially unbounded,
positive definite, there exists a function ¢; € KR such
that V(0) = 0 and V(z) > ¢:1(|Jz]|) for all z satisfying
llz]] < &+ 1. Pick & > 0 so small that

Via(k0)} < va(e)

(k.1)eD(d)

max (18)
0<d<max{K,L}
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whenever ||z(k,0)|| < 6 for 0 < k < K and ||z(0,1)|| < 6
for 0 < 1 < L. This is always possible, since K and L are
finite (see Lemma A.2 in the Appendix). Then (17) and (18)
imply that

V(z(k,1)) < 9y(c) foralld >0.  (19)
(k,1)eD(d)

Hence, ||z(k,!)| can not reach the value ¢ for all £ > 0 and
[ > 0, since this would imply that

V(z(k, 1)) 2 da(llz(k, DII) = p1(e) (20)

which contradicts (19). Therefore, the equilibrium z. = 0 of
the 2-D system (1) is stable (see definition 2).
To complete the proof of the theorem, we must show that
for any initial conditions satisfying (2),
lim z(k,l) =

k—oo and/or l—oc

HI}TOO z(k,l) = 0.

Since we have overflow nonlinearities in (1), we may
assume that ||z(k,1)|| < C for all £ > 0 and ! > 0 for some
C > 0, without loss of generality. We now define

DV (z(k, 1) & V(zwu(k,1) = V(z(k,1)
= V(f(Az(k, 1)) — V(z(k,1))-

Equation (15) implies that DV{y)(z(k,1)) is negative definite
for all z(k,!) € R™*". Hence, there exists a function 1), € K
such that DV(1)(0) = 0 and DVy)(z) < —92(||=||) for all =
satisfying ||z|| < C. Following the same argument as in (17),
we now have, for any d > max{K, L},

> DVyy(a(k,)

(k,l)eD(d)
= Y ViakD)- Y, V(kD)
(k,1)ED(d) (k,)eD(d)
= Y V@ak)- >, Vk)
(k,J)ED(d+1) (k,1)eD(d)
<= Y wa(latk DI e2y

(k,l)eD(d)

Since V is positive definite and radially unbounded and
P9 € K, (21) implies that for (1) with any initial conditions
satisfying (2)

Jim Y

(k,l)eD(d+1)

Vi) - Y. V(zkb)| =0.

(k,l)eD(d)

This in turn implies that

lim > (e, D) = 0.

o0
(k,)eD(d)

It follows that vo(||z(k,!)||) — 0 as k +{ — oo. Therefore,
for (1) with any initial conditions satisfying (2), we have that
z(k,l) > 0 as k — oo and/or | — oc. O

We will refer to a V' function satisfying Theorem 1 as a
Lyapunov function for the 2-D system (1).

In particular, when we choose the function V' as the pth
power of the [, vector norm, 1 < p < oo

m+n

V(w) = flwlp = D fwil? 2)
=1

we have the following result.
Corollary 1: The equilibrium z. = 0 of the 2-D system (1)
is globally asymptotically stable if

|All, < 1, for some p,1 < p < o0, 23)

where || - ||, denotes the matrix norm induced by the 1, vector
norm.
Proof: 1t suffices to show that if (23) is true then
Assumption (A-1) is satisfied.

Clearly,

m+n m n
V(w) = llwlp = Y fwil? =Y [wflP + ) lwpf?
=1 i=1 =1
= [l |} + lw®|p = V(") + V¥ (w®)

where V* and V" are defined in the obvious way and are
positive definite and radially unbounded. Also, in view of
(23), we have

V(wn(k, 1) = [|Aw(k, DIF < [[AlPw(k, DIIE
< lw(k, Dl = V(w(k, 1),

for all w(k,!) # 0. Thus, Assumption (A-1) part (1) is
satisfied. Assumption (A-1) part (2) is also satisfied, since

”f(w)“p <lwllp (24)

holds for any p, 1 < p < oo, and any type of overflow
nonlineary given in (11).
Remark 1: For 1-D fixed-point digital filters given by

ok +1) = f(Az(k)), k>0 25)

condition ||Al[, < 1 for some p, 1 < p < oo, guarantees the
global asymptotic stability of the null solution of the digital
filter (25) [14], [15]. For 2-D digital filters described by (1),
we proved in the above corollary that condition (23) (where
1 < p < o0o) guarantees the global asymptotic stability of the
equilibrium = = 0 for such filters. A special case of (23)

Al < 1 (26)

has been proved in [4] using a slightly different method. (In
[4], (26) was considered as a special case of condition (3).) O
Next, we prove that

|4l < 1 2N

is also a sufficient condition for the global asymptotic stability
of the null solution of the 2-D system (1), using a different
approach from the one used above. Condition (27) does not
appear to be readily obtainable from Theorem 1.

Proposition 1: Condition (27) is a sufficient condition for
the global asymptotic stability of the equilibrium z. = 0 of
the 2-D systems (1).
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Proof: Choose a function V' for system (1) as

Vi) = llalloe & | max_ {lal}.

By the definition of the /., vector norm and in view of (24)
‘and (27), we have

V(z) = max{V*(z"), V¥ (z")} (28)

and

V(zu(k,0)) = V(f(Az(k, 1)) = | f(Az(k, D))l
< [ Az(k, Dlleo < [|Alloollz(k, Dlloc

<zl Dlloo = V(x(k,1))
for all z(k,1) # 0, where V*(z") = {|lz*||o and V?(z

29
v) =

|z ||co- Relation (29) can be rewritten as
V(zn(k, 1) = max{V"(@" (k + 1,1)), V" (z"(k,1 + 1))}
V(z(k, 1)) (30
for all z(k,l) # 0,k > 0,1 > 0.
For (k1) € D(d), d > max{K, L}, let
pmax AV D)} = Vipaaw) G

where py + g4 = d. From (30), we see that

V(" (pasis 4d+1)
< max {V" (2" (pat1. a4 1)), V(2" (pas1 — L. qag1 + 1))}

< V{x(pa+1 — Loga+1)) (32)

and

Va" (pas1. !]d+1])

<ma\:{‘ (2" (past + Logaser — 1)) V(2" (pas1s d-+-l))}

< V(x(pd+1,qa+1 — 1)). (33)

Clearly, from (28) and (31)—(33) and the fact that {(pg4+; —
1,qd+1), (Pa+1,ga+1 — 1)} € D(d), we now have

(*, l)eD(d+1 {V(T (k,1) } V(z(pat1,9qar1))

= max {V"(z"(pas1,qa+1)), V* (2" (Pa+1. qat1)) }

< max {V(z(pa+1 — 1,qa+1)), V(2(Pa+1,qa+1 — 1))}

< V{z(k,1)) V{z 4

< almax {V(z(k,1))} = V(2(pd, qa)), (34)
when z(k,{) # 0 for all (k,l) € D(d), d > max{K, L}.

From (34), the proof of stability of the equilibrium z, = 0
of (1) follows along similar lines as the proof of stability in
Theorem 1.

We now prove that the equilibrium z. = 0 of (1) is globally
attractive, i.e., for system (1) with any initial conditions
satisfying (2), z(k,l) — 0 as k+ 1 — oo with & > 0 and
I > 0.

Relation (29) implies that

DViy(z(k, 1)) £ V(z11(k,1) = V(z(k, 1)
= V(f(Ax(k, 1)) = V(z(k, 1))

is negative definite for all z(k,1) € R™*™. Hence, there exists
a function ¢ € K such that DV(1)(0) = 0 and DVy)(z) <
—(||z]|) for all ||z]] < C, ie.

V(z11(k, 1)) — V(z(k, 1))

= max {V"(zh(k +1L,0), VP (z"(k, 1+ 1))} = V(z(k,1))
—p(llz(k, D). 35)
(C is specified in the proof of Theorem 1).
Denote
Vi(x s(pd+17qd+l))
£ max {V*"(@" (pas1,qa+1)). V(2" (Pas1, 9a+1)) }

= V(z(pa+1, 9d+1)) (36)
where

by, if VMz"(pag1,qa+1)) 2 VU (2" (pas1, qasr))
s=qwv, if VR@"(pas1,q441)) < V(@ (Pat1, qas1))

Relations (32) and (33) can be written as

V3 (@*(Pat1,9d+1)) < V(2(pds, qds)) 37
where
_Jpayi—1, ifs=h
Pds =1 pay1, ifs=uv’
and
—_ gd+1, ifs=h
s = Vqas1 -1, ifs=v"

Now using (35) and (36) and with pys and g4, defined above,
we have, when s = A
V(@(pa+1,9d+1)) — V(x(pa, qa))
< Vh(z (pds +1 st)) - V(x(pdu st))
S (“l‘ pdquds)”)

(38)
and when s = v
V(z(pa+1,9a+1)) = V(z(pa, 94))
VU (2"(pdss qas + 1)) — V(2(pas, 9ds))
< =¢(llz(pas, gas)Il)- (39)

Since V is positive definite and radially unbounded, (38) and
(39) imply that
lim V(z(p4,qa)) = (40)
d—oo

for system (1) with any initial conditions satisfying (2), where
r > 0. We next prove that r in (40) is in fact zero.
(38)-(40) =

dlim Y(l|lz(pas, qas)ll) = 0
—00
lim m(pds’ st) =0
d—oc

dhﬁrgo V(-T(pds, qu)) =0.
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ox)

-1 L 1 x

-1

Fig. 1. The generalized overflow nonlinearity described by (41).

o(x)

74

—_

Fig. 2. The generalized overflow nonlinearity described by (42).

Considering (36) and (37), this will, in turn, imply that
Jim, V(z(pat1,9a+1)) = lim V2(2*(pa+1,qa+1))
< dli'lilo V(2(pds) qds)) = 0

or equivalently

Jim V(2(pa, ga)) = 0.
Thus, V(z(k,1)) — 0 as d — oo for all (k,1) € D(d), since

V(z = Viz(k,1))}.
(z(pd, a)) (k,glea[))((d){ (z(k, 1))}
Therefore, x(k,1) — 0 as k + 1 — oo. It now follows that
the equilibrium z. = 0 of the 2-D system (1) is globally
asymptotically stable.

In the sequel, we define the function ¢ in (11) by (see Fig. 1)

L, ;> 1
plzi)=q =5, —-1<3:<1 41
—L, r; < —1
or (see Fig. 2)
L<o(@) <1, z; > 1
e(x:) = T4, -1<r; <1 42)
-1<p(@:)<-L, =z<-1

where —1 < L < 1. For given L, when |z;| > 1, ¢(z;)
in (42) may assume any value in the crosshatched region in
Fig. 2, including £ L (which is the case for the arithmetic given
by (41)). Note that when defined in this way, ¢ includes as
special cases the usual types of overflow arithmetic employed
in practice, such as zeroing, two’s complement, triangular, and
saturation overflow characteristics.

The overflow arithmetic (42) has also been considered in
[13] where it is called generalized zeroing arithmetic. We
prefer to use the term generalized overflow arithmetic in this
paper.

In the following, we will consider a quadratic form Lya-
punov function for system (1). In deriving our next result,
we make use of the following assumption. (Throughout, when
using the term positive definite matrix, we will have in mind
a symmetric matrix with positive eigenvalues.)

Assumption (A-2): Let f be defined as in (11). Assume that
there exists a positive definite matrix H € RN *¥ such that

f(z)THf(z) < 2" Hz

foralze RN, z¢ DN 2 {re RN :-1<z;<1}. O

Our next result provides a necessary and sufficient condition
for matrices to satisfy Assumption (A-2) when f represents the
generalized overflow arithmetic. This result is very useful in
applications.

Lemma 1: Assume that f is defined in (11) and ¢ is defined
in (41) or (42). An N x N positive definite matrix H = (hi;)
satisfies Assumption (A-2) if and only if

N
(1+Lhi 22 Y |hylii=1,...,N.

J=1,3#

43)

Proof: See [15]. O
We single out the following special cases of the above
lemma:
1. When in (41), L = 1, f represents the saturation
overflow nonlinearity and (43) assumes the form

N
hii > Z |hijl,i=1,...,N.

J=1.5#i

This case represents a diagonal dominance condition.
2. When in (41), L = 0, f represents the zeroing arithmetic
and (43) assumes the form

N
hii>2 > hili=1,...,N.
J=1,j#1

3. When in (42), L = -1, f represents overflow non-
linears, including the two’s complement arithmetic and
triangular arithmetic. For such cases, (43) assumes the
form

hij=01j36i7j=1"'",N7

i.e, H is a diagonal matrix with positive diagonal
elements.

We are now in a position to prove the following result.

Theorem 2: The equilibrium x = 0 of the 2-D digital filter
(1) is globally asymptotically stable, if there exist positive definite
matrices H* € R™*™ and H® € R™*" satisfying Assumption
(A-2) (with N = m and N = n, respectively), such that

Q=H-ATHA 44
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is positive definite, where

H=H"@9H" 2 |...... ... ... ..

Proof: For (1) we choose the positive definite and radi-
ally unbounded Lyapunov function V() = 27 Hz. Since H"
and H" satisfy Assumption (A-2), we have

V(f(2)) = f(x)THf(x)
= J("TH f(a*) + f(z) T HY f(a*)
< @MTHMYh 4 (2T H Y = V(x)
for all z € R™*". Thus

Vizu(k.0) = f(Ax(k,0))" H f(Az(k,1))

<ax(k, )T ATHAx(k, 1) (45)
for all z € R™*", We now have
Vizn(k, 1) < x(k, )T ATH Ax(k,1)
<z(k.)THao(k 1) = V(z(k,1) (46)

for all z(k,1) # 0, since H — ATH A is positive definite.

The rest of the proof follows along similar lines as the proof
of Theorem 1. ]

Remark 3:  Theorem 2 constitutes a generalization of con-
dition (3). Specifically, we relax the matrix G in (3) from a
diagonal positive definite matrix to a positive definite matrix,
which is generated from two positive definite matrices satisfy-
ing condition (43). This should certainly cover a broader class
of coefficient matrices A for 2-D digital filters described by
(1) using the generalized overflow nonlinearity with L > —1
than condition (3). We also note that we did not use any sector
conditions [1], [2] to characterize the overflow nonlinearities.
From our present development, it appears that usage of the
parameter L given in (41) or (42) to characterize overflow
nonlinearities may in some cases be more desirable than usage
of sector conditions.

Remark 4: In Section 5, we consider a specific example,
which suggests that results provided in Theorem 2 are less
conservative than the conditions (5), (23), and (27). Indeed,
this example can be analyzed by Theorem 2, but not by
conditions (5), (23), and (27). O

Remark 5: In a result that corresponds to Theorem 2 for
1-D digital filters described by (25), we only require that in
Q = H—ATH A, matrix H satisfy Assumption (A-2) and that
matrix () be positive semi-definite (under the assumption that
A is stable) [15]. A further similar relaxation for the matrix Q
in condition (44) has not been achieved, thus far. O

Remark 6:  The results developed in the present section
can be used directly as criteria for nonexistence of limit
cycles (under zero input conditions) of 2-D digital filters
described by (1). Very recently, Tzafestas et al. reported new
conditions for nonexistence of overflow oscillations of 2-D
digital filters subject to overflow nonlinearities [3]. Our resulis
in the present section are more general than the results obtained
in [3], since we consider the global asymptotic stability of the
equilibrium z, = 0 of 2-D digital filters subject to overflow

nonlinearities and since the results in [3] require that either
A11 (or Azz) be a scalar or the overflow nonlinearity f satisfy
J(@)TE[z — f(z)] > 0 for all z € R™*™ where E is some
positive definite diagonal matrix. g

III. AN ALGORITHM FOR
DETERMINING MATRICES H" AND H*

Theorem 2 does not specify how to determine positive
definite matrices H" and HY, which satisfy Assumption
(A-2). The existence of such positive definite matrices is
sufficient for the global asymptotic stability of the null solution
of system (I). To apply Theorem 2 and to ascertain the
global asymptotic stability of the equilibrium z = 0 (or the
nonexistence of overflow oscillations) for a given 2-D digital
filter with generalized overflow characteristics, it is necessary
to determine the positive definite matrices H” and H?. For
low-order systems, we can usually find H" and Hv (if they
exist) by conducting a search. For high-order systems, such an
approach is usually impractical. We suggest in the following an
algorithm for determining matrices H* and H" for a given 2-
D coefficient matrix A and the overflow characteristic (which
is characterized by the parameter I, —1 < [, < 1).

An Algorithm for Determining Matrices HP and HY : Sup-
pose A and L are given. Consider an objective function given
by

J=J(H" H") = min \;(Q) = min \(H — ATHA) (47)

where A;(Q) represents the eigenvalues of the matrix Q

H" 0
H=H'asH"=
0 HY

and H* = [pl] € R™*™ and H* = [h;] € R™X" satisfy
the constraints

A+ LDkl >2 > |phli=1,....m

J=1j#
and
n
(L+L)hE>2 3 |hYli=1,...,n
J=Lj#i
respectively.

If the maximization of the above objective function results
in .JJ > 0 for a specified 2-D coefficient matrix A and the pa-
rameter L, all conditions of Theorem 2 will be satisfied. Thus,
the null solution of the digital filter (1) with such a coefficient
matrix and with the generalized overflow nonlineary given by
(41) or (42) is globally asymptotically stable. a

The algorithm proposed above is a nonlinear programming
problem. To determine a solution for this problem may be
quite involved. It turns out that we can modify the above
algorithm so that its solution will reduce to a standard linear
programming problem. The disadvantage introduced by this
modification is that a solution to the algorithm is not always
guaranteed by the maximization of the modified objective
function J, given below.
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It is well known that a measure of a matrix (), defined by

I +6Q -1
= Jjm BTN -
Q) Pt 0
where || - || denotes a matrix norm and [ is the identity matrix,

serves as an upper bound for the real parts of the eigenvalues
of the matrix Q [16]. When we consider a symmetric matrix
@, u(Q) becomes an upper bound for the eigenvalues of Q.
In particular, the relationships between p(Q) and A;(Q) is
that Re);(Q) < u(Q), and for a symmetric matrix @, it is
(@) < p(Q). We can transform the nonlinear programming
problem stated above into a linear programming problem by
choosing the objective function to be a measure of the matrix
Q, since some of these measures have linear relationships with
the entries of the matrix. For example, the measures of matrix
Q = [g;;] € R¥*Y induced by the matrix norms || - ||; and
| - lloo are given by

N
m(Q) = max {g5+ D laisl}
SIsN i=1,i#j
and
N
Heo(Q) = IYSY;%XN {gui + ‘ z |¢Iu|}
j=Llj#i
respectively.

In the present case, since the matrix ) is symmetric, we
have u1(Q) = too(Q). Choosing the objective function as

N
J = 11(Q) = poo(Q) = 121%);1 {Chi + ’ ;#. Iqijl} 48)
J=1,5#i

we arrive at a linear programming problem. The maximization
of J will sometimes result in a set of large eigenvalues for
matrix (). As mentioned earlier, by choosing an objective
function J as in (48) and by using the linear programming
method to maximize .J, we may sometimes not generate a
positive definite matrix @, even if we end up with J > 0.

Other alternatives for objective functions, inspired by (48),
are

N
7= min {ai= Y lal) 49)
Jj=1,77#1i
or
N
J= min {owga— 3 olel} 0
j=1,j#¢
where o; > 0 for ¢ = 1,...,N. The maximization of

J in (49) or in (50) will always guarantee a set of large
eigenvalues, since in our case @) is symmetric. In particular,
if the maximization of the objective function J in (49)
or (50) results in J > 0, all conditions of Theorem 2
are satisfied. (Under these conditions, @ = Q7 becomes a
diagonal dominance matrix with positive diagonal elements.
Thus, Q is positive definite. See Lemma A.3 in the Appendix.)
However, the objective function J > 0 in (49) and (50)
may yield conservative results, since these are only sufficient
conditions for the matrix ) to be positive definite.

The determination of other objective functions which in-
volve more efficient linear programming problems and whose
maximization guarantee the existence of solutions to the
problem on hand is under further investigation.

IV. MULTIDIMENSIONAL DIGITAL FILTERS
WITH OVERFLOW NONLINEARITIES

In this section, we consider m-D (multidimensional or m-
dimensional) digital filters described by equations of the form

zr(ky, ... km) = f(Ax(ky, ... km)) (63))
where k; > 0 fori =1,...,m,
.’El(kl,...,km)
z(ki, .. km) = : ,zt € R™
.’Em(kl,...,km)
fori =1,...,m,

:l,'l(kl +1,k2, ..y k)
k

z2(ky, ko +1,...,
e1(kt Koy k) = (k2 + )

Zm(kl,kg,..‘,km +1)

A has compatible dimension and structure, and f represents
the overflow nonlinearities defined in (11). We assume
a finite set of initial conditions, i.e., we assume that
for ¢ = 1,...,m,z%(k1,0,...,0) = 0 for &y > Kj,
mi(O,kz,...,O) = 0 for kz > Kz, ...,ﬂii(0,0,...,km) =
0 for ky,, > K, where K; , i = 1,...,m, are finite positive
integers.

The definitions for the stability of 2-D system given in
Section 2, can be generalized to m-D systems in the obvious
way. Furthermore, Theorems 1 and 2 and Corollary 1 and
Proposition 1 (applicable to 2-D systems) can also be gen-
eralized to m-D systems in the obvious way. The following
results constitute generalizations of Theorem 2, Corollary 1,
and Proposition 1 to m-D systems described by (51). Their
proofs follow along similar lines as in the proofs of the
corresponding results for the 2-D case.

Theorem 3: The equilibrium x = O of the m-D digital filter
(51) is globally asymptotically stable if there exist positive definite
matrices H* € R"*"™ for ¢ = 1,...,m, satisfying Assumption
(A-2) (with N = n,;, i = 1,...,m, respectively), such that

Q=H-ATHA (52)

is positive definite, where

H 0 ... 0
Helome. egrt|® H 0
0 0 Hr

Corollary 2: The equilibrium x. = 0 of the m-D system (51)
is globally asymptotically stable if
[lAll, <1, for some p,1 < p < oo. (53)

Remark 7: Theorem 1 can also be generalized to m-D
systems in a straightforward manner. In generalizing Theorem
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1, we define (analogous to D(d) given in (8)) the hyperplane
denoted by D(M)

DM) 2 {(ky,....km) ki + ...+ km =DMk >0,

(54)

for some integer M > 0. The generalization of Theorem 1

(Assumption (A-1)) to m-D systems involves the existence of

a Lyapunov function V : R? — R, where P = nj+ -+,

with the following properties:

1) V can be expressed as a sum of functions V¢ : R™ — R,
i = 1,...,m,

Viz)=Vih)+... +V™(=™),

2) Each V? is a function of the partial state z* only,

3) Every V' is positive definite and radially unbounded (in
the state z%),

4) The function V satisfies that

DV(L)(LL'(kl, ey km))
S2v(Aztky,. .. km)) = V(z(k, . km))
is negative definite for all z(k1,...,kn) € RF, and

5) for all z € RY, it is true that V(f(z)) < V(z), where f
represents the overflow nonlinearities for system (51).
It should be noted that for system (51), if (53) is satisfied
for some p,1 < p < oc, conditions (1) — (5) above will be
satisfied by choosing V' as in (22).

V. AN EXAMPLE

To demonstrate the applicability of the present results and
compare them with previous results, we now consider a spe-
cific example. Specifically, we consider a 3-D (2-2-3) digital
filter described by (51) with saturation overflow arithmetic
and with A given by

08 -02 0

It can be verified that ||A||, > 1, forp = 1,2, o0, and p(|A|) >
1 (p(JA]) is defined in (5), and there is no diagonal matrix
G with positive diagonal elements such that G — ATGA is
positive definite. Hence, conditions (3), (5), (23) (forp = 1, 2),
and (27) fail as global asymptotic stability tests for the present
example.

According to (43) in Lemma 1 for L = 1, we can choose

1 [o7 02 s [ 04 -015
H _[0.2 1.2 H = —-0.15 0.3
and
1.6 —-09 0.6
H®=|-09 16 =06
06 —-06 21

We compute
H=H'@&H* e H®

and Since ) (shown at bottom of page) is positive definite,
all conditions of Theorem 3 are satisfied, and the equilibrium
z. = 0 of the 3-D system described by (51) using saturation
arithmetic with the coefficient matrix given in (55) is globally
asymptotically stable.

VI. CONCLUDING REMARKS

In the present paper we first established sufficient conditions
for the global asymptotic stability of the equilibrium z = 0
of 2-D digital filters subject to overflow nonlinears described
by (1) (Theorem 1, Corollary 1, Proposition 1, and Theorem
2). The class of overflow nonlinears that we considered herein
include as special cases the usual types of overflow arithmetic
employed in practice, including zeroing, two’s complement,
triangular, and saturation overflow characteristics. The sta-
bility results developed herein make use of a general class

: 02 i 0 020 of Lyapunov functions (Theorem 1, i.e., Assumption (A-
—04 05 0 -0z :t 02 O 0 1)). Two special cases of these Lyapunov functions include
quadratic Lyapunov functions (Theorem 2) and [, vector
01 025 : 05 —05 : 04 =02 —0.1 norms (Corollary 1 and Proposition 1). For quadratic forms,
A=y 0 : 01 —05 ° 005 0.1 0 we pfesented results that enable us to construct the Lyapunov
functions (Lemma 1). One of the results presented herein
. : (Theorem 2,) constitutes generalizations to existing stability
0 03 0 0-1 —02 054 04 results (condition (3)) for 2-D digital filters.
015 0 0 0 -01 1 0.1 Generalizations of the above results to m-D digital filters
0 008 ~005 0  © 005 03 —08 (m > 2) were also presented (Theorem 3, Corollary 2, and
(55) Remark 7).
Q=H-ATHA

0.1480  0.0927 —0.0230 0.0580  0.0502 —0.0346 —0.0380

0.0927 0.6784 —0.0468 —-0.1015 0.0263 —0.0094 0.1510

—0.0230 -0.0469 0.3068 —0.0770 —0.0695 0.0592 —0.0565

= 0.0580 —-0.1016 -0.0770 0.0920 0.1298 -0.0679 —0.0195

0.0503  0.0263 —0.0695 0.1298 1.4500 —0.7525 0.7323

—0.0346 -0.0094 0.0592 —0.0679 —0.7525 0.4290 -0.4773

—0.0380 0.1510 -—-0.0565 —0.0195 0.7323 —-0.4773 0.8400
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The results developed herein yield conditions for nonexis-
tence of limit cycles (under zero input conditions) of 2-D and
m-D digital filters (m > 2) subject to overflow nonlinearities.

To demonstrate the applicability of the present results, we
considered a specific example.

APPENDIX

Lemma A.l: Assume that V® : R™ — Rand V¥ : R" — R
are positive definite functions. Define V (w) = V*(w" )+ V" (w")

for
wh
w B [...]
wU

where w" € R™ and w* € R". Then, the function V : R™*"
— R is also a positive definite function.

Proof: Since V* and V* are positive definite, there
exist functions ¢; € K and %, € K such that V*(wh) >
Pr(Jlw”|) for all lw*]| < 71 and V¥(w®) > (||w’]) for
all ||wY|] < rq, for some positive numbers r; and rp. Let
llwll = max{|jw"|, [lw*||}, 7 = min{ry, 72}, and

~ fmin{ga (ot ) gD} ] > [l
vlllwl) = {min{wl(nw“n),¢z<nwvn)} if flu*| < [l

It can easily be shown that 7 is continuous, that ¢(0) = 0,
and that 1 is strictly increasing on [0,7] Then, ¢ € K, and
for any |lw| < r

V(w) = VHw") + V°(w®) 2 ga(lw]]) + ga(llwl)
Z Y(|lwl)-

Hence, V : R™*" — R is also a positive definite function. O3
Lemma A.2: Assume that system (1) has a finite set of initial
conditions (2). For any € > 0, we can find a 6 > O such that

V(m(k,l))} <e

max
0<d<max{K,L}
{(kJ)eD(d)

whenever ||z(k,0)|| < 6 for 0 < k < K and ||2(0,1)|| < 6 for
0 < 1 < L, where the function V is specified in Assumption (A-1).
Proof: For system (12), we define

_ A Ay, o 0
E_[O O}dndF—[A21 Azz]

and we let a = max{L, |E||m, ||F||lm}. where || - || denotes
the matrix norm induced by the vector norm used herein. Thus,
(12) can be written as

w(k + 1,14+ 1) = Fw(k,l+ 1)+ Fw(k+1,1),k > 0,1 > 0.

(A.1)
Let us consider for (12) (or equivalently, (A.1)) a finite set
of initial conditions (2) with ||z(k,0)|| < é; for 0 < k < K
and ||z(0,1)|| < é; for 0 < I < L. We now claim that for
any d > 0

max |lw(k, D] < (2a)d"161.

A2
(k.l)eD(d) “.2)

To prove (A.2), we need only consider £ > 0 and [ > 0, since
when k =0 orl =0, ||w(k,l)|| < 61. (A2) is true for d = 1,

since we need k = 0 or | = 0, in (k,!) € D(1). Suppose
(A.2) is true for d = t, ie.,

max

< (2a)7 161,
wmax ik, Dl < (20)776

Consider now d = t + 1, i.e,(k,l) € D(t + 1) and {(k —
1,1),(k,l — 1)} € D(t) Since w(k,l) = Ew(k — 1,I) +
Fuw(k,l — 1), we have for any (k,l) € Dt +1), k > 0
and [ > 0.

lw(k,D|| = ||[Ew(k — 1,1) + Fw(k,l —1}||
< allw(k = L] + lwk, L= D)
< 2a-(20)'716; = (20)'6;.

Therefore, when we confine d to 0 < d < max{K,L}, we
can find a §; = 6; small enough such that each component of
w(k,l) will never reach the magnitude of 1 for all (k,!) €
D(d), 0 < d < max{K,L}. Thus for system (1) with a
finite set of initial conditions (2) and ||z(k,0)|| < &; for
0 < k < K and ||z(0,1)]] < & for 0 < I < L, we
have ||z(k,1)|| € (2a)%18; and each component of z(k,?)
will never reach the magnitude of one for all (k,l) € D(d),
0 < d < max{K, L}, since (1) is now operating in the linear
range. This in turn implies that for the given initial conditions,

max |lz(k, )] < (2a)T_231,

(k,l)eD(d)

for all d € [0, max{K, L}], where T' = max{K,L} + 1.
For the given ¢ > 0, we can find a §; > 0 such that
V(z) < e/T whenever ||z|| < 8. Choose

I £ ds
4 = min {51, (2a)T—2}'

Then, ||z(k,0)|| < & for 0 < k < K and ||z(0,1)|| < § for
0 <! < L imply that

< T-2§ < 6.
oz w01} < o7 <

This, in turn, implies that

N o

max { max V(m(k,l))}<
o<d<max{k,L} | (k,})eéD(d)

Therefore,

> V(k,D)

max
0<d<max{K,L}
(k,1)ED(d)

<
< oo {@ry ma Vi)

< g AT mes ViateD)}
0<d<max{K,L} (d)

(k,0)eD
<T- —;— =€.
This proves the lemma. O
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Lemma A.3: Assume that Q@ = QT = [q,;] € RN*N. If there
existo; > 0,4 =1,---, N, such that

N

z a;lq;lp >0

=14

(A.3)

then Q is positive definite.

Proof: First, we note that if (A.3) is satisfied, ¢;; > 0
for i = 1,...,N. (A3) then implies that Q@ = [g;;] is an
M-matrix [17], where

= _ Giis
% {—\Qiﬂ,

Since Q = QT, from the properties of M-matrices [17], Q is
also positive definite. For any vector € R™, we have

i=j
i#FJ

N N N N N
Qe =3 Y wige; = ) _gawl Y > @i
i=1 j=1 i=1 i=1j=1,j#i
N N N
> qurl =Y > |zl
i=1 i=1j=1,j#i
= |z |Qlz| > 0,
since @ is positive definite, where |2| = (Jz1],...,|zn])T.
Therefore, () is also positive definite. O
REFERENCES

[1] P. H. Bauer and E. L. Jury, “A stability analysis of two-dimensional
nonlinear digital state-space filters,” JEEE Trans. Acoustics, Speech, and
Signal Proceessing, vol. 38, pp. 1578-1586, Sept. 1990.

[2] P. H. Bauer and E. L. Jury, “Stability analysis of multidimensional (-
D) direct realization digital filters under the influence of nonlinearities,”
{EEE Trans. Acoustics, Speech, and Signal Processing, vol. 36, pp.
1770-1780, Nov. 1988.

[3] S. G. Tzafestas, A. Kanellakis, and N. J. Theodorou, “Two-dimensional
digital filters without overflow oscillations and instability due to finite
word length,” [EEE Trans. Signal Processing, vol. 40, pp. 2311-2317,
Sept. 1992.

[4] T. T. Aboulnasr and M. M. Fahmy, “Finite-word-length effects in two-

dimensional digital systems,” in Multidimensional Systems: Technigues

and Applications, Edited by S. G. Tzafestas, New York: Marcel Dekker,

1986.

N. G. El-Agizi and M. M. Fahmy, “Two-dimensional digital filters with

no overflow oscillations,” /EEE Trans. Acoustics, Speech, and Signal

Processing, vol. ASSP-27, pp. 465-469, Oct. 1979.

[6] R. K. Miller and A. N. Michel, Ordinary Differential Equations. San
Diego, CA: Academic, 1982.

[71 W. L. Mills, C. T. Mullis and R. A. Roberts, “Digital filter realizations
without overflow oscillations,” IEEE Trans. on Acoustics, Speech, and
Signal Processing, vol. ASSP-26, pp. 334-338, Aug. 1978.

[8] P. P. Vaidyanathan and V. Liu, “An improved sufficeint condition for
absence of limit cycles in digital filters,” IEEE Trans. Circ. Syst., vol.
34, pp. 319-322, March 1987.

[9] V. Singh, “Elimination of overflow oscillations in fixed point state-space

digital filters using saturation arithmetic,” /[EEE Trans. Circ. Syst. vol.

37, pp. 814-818, June 1990.

1. W. Sandberg, “A theorem concerning limit cycles in digital filter,”

Proc. 7th Ann. Allerton Conf. on Circ. and Syst. Theory, Univ. of lllinois,

Urbana, pp. 6368, Oct. 1969.

P. M. Ebert, J. E. Mazo, and M. G. Taylor, “Overflow oscillations in

digital filters,” The Bell Syst. Tech. J., vol. 48, pp. 2999-3020, Nov.

1969.

K. T. Erickson and A. N. Michel, “Stability analysis of fixed-point

digital filters using computer generated Lyapunov functions—Part [:

[S

[10]

(1]

(12]

Direct form and coupled form filters,” IEEE Trans. Circ. Syst., vol.
CAS-32, pp. 113-132, Feb. 1985.

[13] A.N. Willson Jr., “Limit cycles due to adder overflow in digital filters,”
1EEE Trans. Circ. Theory, vol. CT-19, pp. 342-346, July 1972.

[14] C. W. Bamnes and A. T. Fam, “Minimum norm recursive digital filters
that are free of overflow limit cycles,” IEEE Trans. Circ. Syst., vol.
CAS-24, pp. 569-574, Oct. 1977.

[15] D. Liu and A. N. Michel, “Asymptotic stability of discrete-time systems

with saturation nonlinearities with applications to digital filters,” IEEE

Trans. Circ. Syst 1, vol. 39, pp. 798-807, Oct. 1992.

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equa-

tions,. Boston, MA: D. C. Heath and Company, 1965.

[17] A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale

Dynamical Systems. San Diego, CA: Academic, 1977,

E. Kaszkurewicz and A. Bhaya, “Comments on ‘Overflow oscillations

in state-space digital filters’,” IEEE Trans. Circ. Sys.il, vol. 39, pp.

675-676, Sept. 1992.

L16]

(18]

Derong Liu (S’91-M°94) received the B.S. degree
in mechanical engineering from the East China
Institute of Technology in 1982, the M.S. degree
in electrical engineering from the Institute of
Automation, Chinese Academy of Sciences in 1987,
and the Ph.D. degree in electrical engineering from
the University of Notre Dame in 1993.

From 1982 to 1984, he worked as an electro-
mechanical engineer at China North Industries
Corp., Jilin, China. From 1987 to 1990, he was
a faculty member in the Department of Electrical
Engineering at the Graduate School of Chinese Academy of Sciences, Beijing,
China. Since October 1993, he is with the Electrical and Electronics Research
Department, General Motors NAO R & D Center. His research interests
include systems and control theory, signal processing, and neural networks.

During his first year of graduate study at Notre Dame (1990-1991), he
received the Michael J. Birck Fellowship. Dr. Liu is a member of Eta Kappa
Nu.

Anthony N. Michel (5°55-M’59-SM’79-F'82) re-
ceived the Ph.D. degree in electrical engineering
from Marquette University and the D.Sc. degree in
applied mathematics from the Technical University
of Graz, Austria,

He has seven years of industrial experience. From
1968 to 1984, he was at Iowa State University,
Ames, IA. From 1984 to 1988, he was Frank M.
Freimann Professor and Chairman of the Depart-
ment of Electrical Engineering, University of Notre
Dame, Notre Dame, IN. Currently, he is Frank M.
Freimann Professor and Matthew H. McCloskey Dean of the College of
Engineering at the University of Notre Dame. He is author and coauthor
of three texts and several other publications.

Dr. Michel received the 1978 Best Transactions Paper Award of the IEEE
Control Systems Society, the 1984 Guillemin-Cauer Award from the IEEE Cir-
cuits and Systems Society, and an IEEE Centennial Medal. He is a former As-
sociate Editor and a former Editor of the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS, a former Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC
ConTtrOL, and a former Associate Editor of the IEEE TRANSACTIONS ON
NEURAL NETWORKS. He was the Program Chairman of the 1985 [EEE
Conference on Decision and Control. He was President of the IEEE Circuits
and Systems Society in 1989. He was Co-Chairman of the 1990 [EEE
International Symposium on Circuits and Systems. He was a Fulbright Scholar
in 1992 (at the Technical University of Vienna, Austria). He is an Associate
Editor at Large for the IEEE TRANSACTIONS ON AUTOMATIC CONTROL. and he
is an elected member of the Board of Governors of the IEEE Control Systems
Society. He is a Foreign Member of the Academy of Engineering of the
Russian Federation.



