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Transactions Briefs

Stability Analysis of Systems with
Partial State Saturation Nonlinearities

Derong Liu and Anthony N. Michel

Abstract— Sufficient conditions for the global asymptotic stability of
the equilibrium 2. —= 0 of discrete-time dynamical systems which have
saturation nonlinearities on part of the states are established. We utilize
a class of positive definite and radially unbounded Lyapunov functions in
establishing our results. When using quadratic form Lyapunov functions,
our results involve necessary and sufficient conditions under which
positive definite matrices can be used to generate Lyapunov functions
for the systems considered herein.

1. INTRODUCTION

In this brief, we will investigate stability properties of systems
described by

2(k+1) = glAe(k)]. k = 0,12, -- )

where A = [a;;] € R*™",
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Yyr
y ...
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n=ni+ny, D2 ={yeR": -1 <y; <1l.i=1,---,n2}

tyr € R’llgyfz c Dn;}

gla) =
sat(xrr) x

and xy7 € B™?

sat(zy) = [sat(;vl),---,sat(;vnQ)]T, and

1. x; > 1
sat{z;) = i, —1<2;<1.
-1, 2 < —1

We refer to such systems as dynamical systems with partial state
saturation. We will say that system (1) is stable if z. = 0 is the
only equilibrium of system (1) and 2. = 0 is globally asymptotically
stable. (Recall that the equilibrium . = 0 of system (1) is globally
asymptotically stable if i) it is stable in the sense of Lyapunov, i.e.,
for every ¢ > 0 there is a 6 = &(<) such that {|x(k)|| < = for all
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k = 0.1,2,---, whenever [|z(0)]] < & (|| - || denotes any vector
norm), and i) it is attractive, ie., (k) — 0 as k — ©o0.) Also,
since we have saturation nonlinearities in (1), it is clear that for ‘any
x(0) ¢ Xt a(k) € X4 k > 1, will always be ‘true. Thus; without
loss of generality, we will assume that z(0) € X,

Equation (1) represents a class of discrete-time dynamical systems
in which symmetric and normalized saturation nonlinear$ties occur
on partial states. Saturation nonlinearities arise. very often in the
modeling process of dynamical systems. Examples of such. systems
are common in engineering and include mechanical systems with
position and speed limits, electrical systems with limited ‘power
supply for the actuators (motors), digital filters implemented in finite
wordlength format, and so on. In such cases, there are physical
limits for all or part of the states and the system saturates when
it reaches these limits which are usually finite. Qualitative analysis,
especially stability analysis, is a fundamental issue in the study of
such dynamical systems. Systems with saturation nonlinearities have
been investigated by many researchers (see, e.g., [31-[6], [8]-[12]). In
these studies, saturation nonlinearities are assumed for every state in
the system which is not always a realistic hypothesis in applications.
For example, in the case of the dynamics of a car, variables such as
speed and steering angle have finite physical limits, and they saturate
when reaching these limits, whereas variables such as yaw velocity
and roll velocity are usually assumed to have no constraints. Similar
examples exist in many other engineering applications. Therefore, it is
natural to consider systems with partial state saturation nonlinearities.
To the authors’ best knowledge, a stability analysis of systems
with saturation nonlinearities on only part of the states does not
appear to have been addressed thus far. We intend to investigate
this problem in the present brief and we will establish a set of
sufficient conditions which ensure the global asymptotic stability of
the equilibrium z. = 0 of system (1). )

In the stability analysis of systems described by (1), some of
the first fundamental questions that arise concern the existence and
uniqueness of an equilibrium or operating point (which we assume
to be the origin, without loss of generality) and the qualitative
properties (specifically, stability properties) of such an equilibrium.
The condition that the matrix A be stable (i.c., that every eigenvalue
Ai of A satisfies [A;| < 1) does not ensure that z. = 0'is a
unique equilibrium, and hence, it does not ensure that z. = 0 is
asymptotically stable in the large. For example, for system (1) with

06 © 09 0.6 —0.4

A4=108 ' 07 04 02

—08 | -2.2 —0.3 =0.2
—0.3 : —02 =02 0.7
n; = 1, and ny = 3, matrix A hés eigenvalues A(A) =

—0.3523,0.7920,0.6302 £ 0.7601:, i.e., A is stable. It is easily
verified that in addition to the origin, system (1) with A specified
above, has also equilibria at 1 = [1.75, 1, —1, —l]T and x5 =
[~1.75, —1, 1. 1]¥. Thus, while z. = 0 is certainly asymptotically
stable, it is not asymptotically stable in the large.
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II. MAIN RESULTS

In establishing our results, we will make use of Lyapunov functions
for the linear system corresponding to system (1), given by

w(k + 1):A'w(k)7 k=0,1,2,--- )
where 4 € R™™" is defined in (1),
wr (k) v
wlk)= |-+ ,wi(k) € R™",wy(k) € R™?
wi (k)

and n = ny + na.

We recall that for a general autonomous system
with (k)€ R™ and f: R® — R",z. is an equilibrium for (3) if and
only if z. = f(z.). We assume, without loss of generality that z. =0
(see, e.g., [7]). Recall also that the equilibrium z. = 0 for system (3)
is globally asymptotically stable, if there exists a continuous function

V: R" — R which is positive definite, radially unbounded, and along
solutions of (3) satisfies the condition that

DVisy(a(k)) £ V(a(k + 1)) = V(a(k))

=V(f(x(k))) = V(x(k))

is negative definite for all (k)€ R". The function V' is an example
of a Lyapunov function. (For the definitions of positive definiteness,
negative definiteness and radial unboundedness of a function, refer,
e.g., see ch. 5 of [7])

In the stability analysis of the equilibrium z. = 0 of system (1),
we will make use of a class of Lyapunov functions V' for the linear
system (2). Specifically, we will make the following assumption.

Assumption (A-1) Assume that for system (2) there exists a
continuous function V: R"'*"2 — R with the following properties:
(¢) V' can be expressed as

V(w) = Vi(wr) + Vir(wn) o)

where V;: R"1 — R and Vj;: R"? — R are positive definite and
radially unbounded. (Thus, V' is also positive definite and radially
unbounded.) Furthermore, along the solutions of (2), V' satisfies the
condition that

DVi (w(k)) = V{w(k +1)) = V(w(k))

= V(Aw(k)) — V(w(k))

is negative definite for all w(k) € R™¥"2; (44) It is true that
Vir(sat(wp)) < Vir(wir) (5)

for all wy € R™2. |
We are now in a position to establish the following result.
Theorem 1: If Assumption (A-1) holds, the equilibrium z. = 0
of system (1) is globally asymptotically stable.
Proof: Since (A-1) is true, there exist positive definite and
radially unbounded functions V', V7, and V7 for system (2), such
that (4) and (5) are true. We then have for all wy € R"2,

Vir(sat(wg)) < Vi(wir), and for all w € R™T"2, V(g(w)) =

Vi(wr) + Vi(sat(wy)) < Vi(wr) + Vg(wn) = V(w). Also, by

(A-1), V(Aw(k)) < V(w(k)) for all w(k) # 0. Therefore, along
the solutions of system (1), we have DV(yy(x(k)) = V(x(k+1)) - '
Vie(k)) = V(glAz(k)]) ~ V(x(k)) < V(Ax(k)) - V(x(k)) <0
for all x(k) # 0 and DV{;y(x(k)) = 0 if and only if x(k) = 0.
Therefore, V'(z) is positive definite and radially unbounded, and
DV{4)(z) is negative definite for all . Hence, the equilibrium x, = 0
of system (1) is globally asymptotically stable. u

We will refer to a V' function satisfying Theorem 1 as a Lyapunov
Jfunction for system (1). In particular, when we choose the function
V as the p'™ power of the I, vector norm, 1 < p < o,

ni+ng ny ng
Viw) = lelﬁ = Z |U’1T|P = Z lwh’|p + Z |’w[u'p
i=1 i=1 i=t
or as the /., vector norm
. A
V(w) = [lwfle = lgi??hm““””

we have the following result.
Corollary 1: The equilibrium z. = 0 of system (1) is globally
asymptotically stable if

[JAll, < 1,for somep, 1 < p < oo ©6)

where || - ||, denotes the matrix norm induced by the {,, vector norm.
Proof: It can be shown that if (6) is true for 1 < p < oc, then
Assumption (A-1) is satisfied.

By choosing a function V' for system (1) as V(2) = ||¢|jco, We
can prove that || 4| < 1 is also a sufficient condition for the global
asymptotic stability of the null solution of system (1), using a different
approach. We omit the details. [ |

In the following, we will consider quadratic form Lyapunov
functions for system (1). In deriving our next result, we make use of
the following assumption. (Throughout, when using the term positive
definite matrix, we will have in mind a symmetric matrix with positive
eigenvalues.)

Assumption (A-2) Let y, = sat(y) for y € R” and let H denote
a positive definite matrix. Assume that y! Hy, < y7 Hy for alt
yERY, yg DV ={yeRV: ~1<y; <1l,i=1,---,N}. [ ]

Our next result provides a necessary and sufficient condition for
matrices to satisfy Assumption (A-2) which is proved in [5]. This
result is very useful in applications.

Lemma 1: An N x N positive definite matrix H = [h;;] satisfies
Assumption (A-2) if and only if

N
hie2z 3 Jhili=1,---.N. n

J=1,5#i
It is clear that system (1) is unstable when A is not a stable matrix.
Assuming that 4 is stable, we can establish the next result.

Theorem 2: The equilibrium z. = 0 of system (1) is globally

asymptotically stable, if A is stable and if there exist positive definite

matrices H; € R"*"1 and Hy € R">*"? with Hy satisfying

Assumption (A-2) (with N = ny), such that Q = H — ATHA is
positive semidefinite, where

A Hiy . 0

H=H; 3¢ Hnp= See e

0 : Hy

Proof: For (1) we choose the positive definite and radially
unbounded Lyapunov function V' (x) = +7 H.r. Since Hy satisfies
Assumption (A-2), we have

T T
(Sat(l’n)) Hypsat(en) <axpHpren (@)
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for all x;; € R™2, a7 ¢ D™?, which in tum implies that

V(g(x)) = g(x)" Hg()
= (xtI)THIwI + (sat(xﬂ))THH sat(xg)

< (anTHrer + (xn) Hyxyg = Viz)
for all z € R™*T"2. Thus,

DVigy(x(k)) = V(z(k+ 1)) — V(a(k))
=V (g[Aw<k')]) — V(z(k)
<V(Az(k)) = V(xz(k))

=a(k)TAT HAz(k) - V(x(k)) <0

for all (k) # 0, since H — ATHA is positive semidefinite.
Therefore, the equilibrium x. = 0 is stable. To show that it is
asymptotically stable, we must show that (k) — 0 as k — oc.
Let us consider an 7 consecutive step iteration for the system (1),
from no > 0 to n+no. Without loss of generality, assume that system
(1) saturates at k& = [,1 € [ng, n+nq). In view of (7), it follows that

Viz(l+ 1) =270+ DHa(l+ 1) = g(x) Hglx)
T O\ L
= (x7)" Hre; + (sat(wy)) Hiyr sat(xr)

<A(en)THrer + (2n) Hyzg = V(z),

since zr  D™2. On the other hand, if no saturation occurs during
this period, then, using the fact that if H — ATHA is positive
semidefinite, then H — (AT)"H A" is positive definite when A is
stable (¢f. [13]), we have

Viz(n+no)) = ;UT(n + 11,U)H;x(n + np)
= [4"2(no)]T HA z(no) = 7 (no)(AT)" HA™ x(no)

< JfT(n.o)H;lf(no) = Vi(z(no)).

Therefore, we can conclude that for the sequence {k : k =
1.2,---}, there always exists an infinite subsequence {k; : j =
1,2,---}, such that DV{y,(x(k;)) is negative for x(k;) # 0, and
that V' (2(k)) < V(x(k;)) for all B > k;. Since V' is a positive
definite quadratic form, it follows that V (z(k;)) — 0 as j — oo,
and therefore V' (2(k)) — 0 as ¥ — oo. This in turn implies that
z(k) — 0 as k& — oo. Thus, the equilibrium z. = 0 of (1) is
globally asymptotically stable. =

Remark 1: 1If ny = 0 and ny = n, system (1) reduces to

2(k+1) =sat[de(k)]). k=0,1.2.---. 8)

In this case, all of our results established above reduce to the results
in [4]. If n; = n and ny = 0, system (1) reduces to (2). In this
case, results (Theorem 1 and Corollary 1) established herein reduce
to well-known sufficient conditions for the stability of linear systems

@) (cf.s eg., 17D L]

[11]

III. AN EXAMPLE

To demonsirate the applicability of the present results, we now
consider a specific example. Specifically, we consider a fifth-order
system described by (1) in which A is stable and is given by

04 —02 0 —02 05 |
—0.5 ~0.5 02 0 0
PR RS o
0 —03 | —02 03 04
01 0 01 08 0.1
Lo - 01 0.05 03 —0.8

where n; = 2 and ny = 3. It can be verified that |Al|, > 1. for
p = 1.2.5c. Hence, condition (6) (for p = 1.2, 00) fails as a global
asymptotic stability test for the present example.

We try to apply Theorem 2. We can choose

_[o5 06
Hr= [0.6 1.3}’

and according to Lemma 1, we can choose

1.6 -0.9 0.6
Hp=|-09 1.6 -06
0.6 -06 2.1

We compute H = H; @ Hy, and Q = H — ATHA. Since Q is
positive definite, all conditions of Theorem 2 are satisfied, and the
equilibrium x. = O of the system described by (1) with coefficient
matrix given in (9) is globally asymptotically stable. : .
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