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A Constructive Algorithm for Feedforward Neural
Networks With Incremental Training

Derong Liu, Tsu-Shuan Chang, and Yi Zhang

Abstract—We develop, in this brief, a new constructive learning
algorithm for feedforward neural networks. We employ an incremental
training procedure where training patterns are learned one by one. Our
algorithm starts with a single training pattern and a single hidden-layer
neuron. During the course of neural network training, when the algorithm
gets stuck in a local minimum, we will attempt to escape from the local
minimum by using the weight scaling technique. It is only after several
consecutive failed attempts in escaping from a local minimum that will
we allow the network to grow by adding a hidden-layer neuron. At this
stage, we employ an optimization procedure based on quadratic/linear
programming to select initial weights for the newly added neuron. Our
optimization procedure tends to make the network reach the error
tolerance with no or little training after adding a hidden-layer neuron.
Our simulation results indicate that the present constructive algorithm
can obtain neural networks very close to minimal structures (with the
least possible number of hidden-layer neurons) and that convergence (to
a solution) in neural network training can be guaranteed. We tested our
algorithm extensively using a widely used benchmark problem, i.e., the
parity problem.

Index Terms—Constructive algorithm, feedforward neural networks, in-
cremental training, linear programming, quadratic programming.

I. INTRODUCTION

Many researchers have studied the neural network training problem,
and many algorithms have been reported. Although there have been
many successful applications, there are still a number of issues that
have not been completely resolved. These include the determination
of the number of hidden-layer neurons, and the convergence as well
as the speed of convergence in training. We say that a training is con-
vergent if the training algorithm can eventually find a solution (i.e., a
trained neural network) to the problem at hand without human inter-
vention. This implies, in many cases, that the training algorithm can
escape from local minima which the algorithm may visit during the
course of a neural network training. Techniques reported in the liter-
ature to deal with the local minimum problem (i.e., the convergence
problem) include weight scaling [6], [13] and dynamic tunneling [14].

The number of hidden-layer neurons is one of the most important
considerations when solving problems using multilayered feedforward
neural networks. An insufficient number of hidden-layer neurons gen-
erally results in the network’s inability to solve a particular problem,
while too many hidden-layer neurons may result in a network with poor
generalization performance. The required number of hidden nodes de-
pends on the dimension of the input space and the number of sepa-
rable regions required to solve a particular classification (mapping)
problem [11], [16]. Choosing an insufficient number of hidden neu-
rons leads to an overdetermined problem since there are not enough
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parameters to accurately model the required decision boundaries [11].
One method for overcoming the hidden neuron problem is to allow the
neural network to grow during training [1]–[3], [5], [8], [10], [12], [15]
(for a survey, see [9]). Some of these methods start with a network that
contains a small number of hidden neurons (e.g., start with a single
hidden-layer neuron) and attempt to train the network using variants
of the backpropagation algorithm or other optimization methods. If the
training fails to converge, additional hidden-layer neurons are added
so that the network can learn in a higher dimensional space. This pro-
vides a means for accelerated learning and the possibility for guaran-
teed convergence. One of the problems which has not been addressed
much [1]–[3] is how to determine an optimal set of initial weights, so
that the expanded network converges to the desired error tolerance in
the least number of training steps possible.

In this brief, we will develop a new constructive training algorithm
for feedforward neural networks. In our approach, patterns are trained
incrementally by considering them one by one. A single pattern is
chosen to be trained in conjunction with previously trained patterns,
until all patterns are trained. Initially, weights are chosen to achieve a
specified error for a single pattern, which is always feasible. A deter-
mination is then made for an additional pattern from the training set.
Usually, the newly added pattern will introduce error larger than the
tolerance. A gradient-based algorithm or an optimization-based algo-
rithm will then be used to bring the system error back to the specified
error tolerance. If the error can be reduced to within the specified error
tolerance, a third pattern can be incorporated in the same way. If not,
the network is allowed to grow. In this case, optimization techniques
(e.g., quadratic programming, linear programming, etc.) will be used
to determine a set of weights which reduces the system error as close
to zero as possible. In particular, we develop a method for selecting the
initial weights associated with the newly added hidden-layer neuron,
while keeping all the previously obtained weights.

II. NEW CONSTRUCTIVELEARNING ALGORITHM

Without loss of generality, consider a two-layer feedforward neural
network. The network containsNi inputs,Nh hidden-layer neurons,
andNo output layer neurons. Letwjk be the weight for the connection
between thekth input node andjth hidden-layer neuron. Letvij denote
the connection weight between thejth hidden-layer neuron and theith
output layer neuron. The threshold (or bias) terms for the hidden-layer
neurons and the output layer neurons are included inW = [wjk] 2
RN �(N +1) andV = [vij ] 2 RN �(N +1).

Denote an input pattern byx = [x0; x1; . . . ; xN ]T , wherex0 = 1
is used to makewj0, j = 1; 2; . . . ; Nh, the threshold terms of the
hidden layer. Its corresponding desired output pattern is denoted by
d = [d1; d2; . . . ; dN ]T . The input–output relationship of the network
is given by

yj = f

N

k=0

wjkxk ; for j = 1; 2; . . . ; Nh (1)

and

zi = f

N

j=0

vijyj ; for i = 1; 2; . . . ; No (2)

whereyj is the output of thejth hidden neuron,zi is that of theith
output neuron, andf(�) is a chosen activation function such as the sig-
moidal function or the hyperbolic tangent function. In this brief, we
assume thatf�1(�) exists,f(0) = 0, andf(u) = �f(�u) for all
u 2 R. Note thaty0 = 1, and thus,vi0, i = 1; 2; . . . ; No, are the
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threshold terms of the output layer. The error functionEp for a given
pattern is defined as

Ep =
1

2

N

i=1

(zi � di)
2
:

In a neural network learning problem, there areNp patterns
given asxp = x

p
0; x

p
1; . . . ; x

p

N

T
and dp = d

p
1; . . . ; d

p

N

T
,

p = 1; 2; . . . ; Np. Note again thatxp0 = 1. The objective is to find a
neural network such that the overall errorE(Np) is within a specified
small error tolerance� > 0, where

E(Np) =
1

Np

N

p=1

Ep:

Given a trained neural network forL � 1 < Np patterns with its
system error strictly below a specified tolerance�, assume that there
comes a new pattern, called pattern numberL, to be incorporated
into our training problem. In other words, our goal now is to find
a neural network such that its errorE(L) < �. Starting from the
original weights, the neural network withNh hidden neurons either
can be continuously trained to achieve the same specified error for
theL patterns in the new problem (case 1) or ends up with a large
system error and gets stuck in a local minimum (case 2). In case 1,
by repeating the same process with other new patterns one by one,
the neural network can be eventually trained to achieve the objective
if case 2 never happens. In case 2, the neural network with onlyNh

hidden neurons cannot reduce the system error to within�. In other
words, the neural network needs to be expanded to have at least
(Nh + 1) hidden-layer neurons in order to further reduce the system
error. In such a case, the training problem has a neural network with
(Nh + 1) hidden neurons andL patterns.

If the original neural network forL � 1 patterns has a minimum
number of hidden neurons, the resulting neural network for theL pat-
terns should most likely have a minimum number of neurons as well.
For any given single pattern, it can be proven that there always exists
a set of weightsW 2 R1�(N +1) andV 2 RN �2 for a neural net-
work with one hidden node(Nh = 1) to achieve zero system error. We
can then consider training the second pattern with the first one together
to achieve the system error tolerance. Repeat the process of training
and expanding (adding a hidden-layer neuron when stuck in a local
minimum) until all the patterns are trained together. In summary, this
suggests the following learning algorithm which possibly gets a neural
network with a minimum number of hidden neurons and whose con-
vergence to a solution can be guaranteed.

Algorithm 2.1: New Framework for Constructive Learning:

Input: Desired output patterns associated withNp input patterns.
Output:A trained neural network within a specified system error
tolerance� and with the number of hidden neurons as small as
possible.

Step 1: Set . Choose one pattern from
the training set. Train a neural network
with one hidden node using the chosen pat-
tern to achieve the system error tolerance
.

Step 2: If , then, choose the next
pattern according to certain criteria, set

, and go to Step 3 for training;
otherwise, stop.
Step 3: If the training algorithm can re-
duce to within , go back to Step 2;
otherwise, go to Step 4 for growing.

Step 4: Restore the weights of the last
successfully trained neural network. In-
crease the number of hidden neurons by
one, and assign its initial weights using
a chosen strategy. Go to Step 3.

In neural network learning for real-time applications, training data
may be generated and collected one by one in real-time. In this case,
the whole set of training data will not be available before the end of an
experiment/trial. If learning is desired in parallel to the data collection
process, the criteria for choosing the next pattern in Step 2 of the present
constructive learning algorithm is simply the next available pattern.

One way to determine initial weights for the newly added hidden
neuron in Step 4 is to use the quadratic programming/linear program-
ming formulation below. Denote the weight matrices of the last suc-
cessful training in Step 3 of Algorithm 2.1 asW andV . For notational
convenience, (1) and (2) are rewritten for a given input patternxp in a
matrix format, where we use the subscripta to indicate thatzpa is the
activation signal for the outputzp. We have

y
p =

1

. . .

f(Wxp)

= [1; f(W1x
p); . . . ; f(WN x

p)]T

z
p
a f

�1(zp) = V y
p (3)

whereW1; W2; . . . ;WN are the rows of matrixW . After a hidden
neuron is added, the new weight matrices become

W =

W

. . .

Wr

andV = V
... Vc

whereWr is a row vector, andVc is a column vector. For the expanded
neural network, one can write the system equations for an input pattern
xp as

y
p =

yp

. . .

f(Wrx
p)

= [1; f(W1x
p); . . . ; f(WN x

p); f(Wrx
p)]

T (4)

and

z
p
a =V yp = V

... Vc y
p

=V yp + Vcf(Wrx
p) = z

p
a + Vcf(Wrx

p) (5)

whereyp is given in (3). The goal now is to havezpa � dpa for all
applicablep, wheredpa f�1(dp), anddp is the target output corre-
sponding toxp.

From (4) and (5), we can state the following two observations.

1) If the patternxp is the new pattern which caused the training
to be trapped in a local minimum, we denote the pattern byxL

(thus, the previously trained patterns are denoted byxp, p =
1; 2; . . . ; L� 1). In this case, when determiningWr andVc, we
would like to havezLa = dLa , or equivalently

Vcf Wrx
L = d

L
a � V y

L
: (6)

Note that (6) is only required for one pattern denoted byxL and
dLa � V yL 6= 0.

2) If the patternxp is a previously trained pattern, we havezpa � dpa,
and we now require in this case

Vcf(Wrx
p) = z

p
a � z

p
a � 0; p = 1; 2; . . . ; L� 1 (7)

when determiningWr andVc.
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Clearly, after adding a hidden-layer neuron, if we can determine the
weights associated with the new neuron, i.e.,Wr andVc, such that
(6) and (7) are satisfied, the expanded neural network with weights
given byW andV will be a solution for the problem with a total ofL
patterns. We note that (6) and (7) are the basis for our quadratic/linear
programming described next.

Assume first thatVc is a scaler, i.e., the network has only one output
neuron. The approach described here can easily be extended to net-
works with more than one output neurons. From (6), we see thatVc
can be chosen as

Vc = � dLa � V yL (8)

where� is a scalar such thatj�j > 1 for the case whenjf(�)j < 1
(e.g., the sigmoidal function or the hyperbolic tangent). We note that
in practice, most activation functions used for feedforward neural net-
works satisfy the property thatjf(�)j < 1. With this choice forVc, (6)
can now be written asf Wrx

L = 1=�, or equivalently

Wrx
L = f�1

1

�
: (9)

In order to determineWr through optimization techniques, we rewrite
(7) as

�� � Vcf(Wrx
p) � �; p = 1; 2; . . . ; L� 1 (10)

where� > 0 should be small. We can write (10) as

�f�1
�

jVcj
�Wrx

p � f�1
�

jVcj

or equivalently

�� �Wrx
p � �; p = 1; 2; . . . ; L� 1 (11)

where� > 0 is small.
We can now use quadratic programming to minimize

WrW
T
r + k�2 (12)

subject to (9) and (11), wherek is a parameter used to emphasize (11)
in the optimization. For example, we choosek = 2 in our simulation
studies. The larger the value ofk, the more we emphasize (11) in the
minimization of the expression in (12). We apply Matlab’s implemen-
tation of quadratic programmingqp in our simulation studies. Note that
linear programming can also be used to solveWr if we express (9) as
an inequality, i.e., as

��+ f�1
1

�
�Wrx

L � f�1
1

�
+ � (13)

and if we minimize� > 0 subject to (11) and (13). The linear pro-
gramming problem in standard inequality form is given as [17]

maximizecT � subject toA� � b

whereA is anm� n coefficient matrix,b is anm� 1 column vector,
c is ann � 1 vector, and the decision variables�j , j = 1; . . . ; n; are
contained in then�1 column vector�. Using Matlab’s implementation
of linear programminglp, we choosecT � = ��, and we chooseA and
b accordingly.� in this case is formed ofWr and�.

We choose to use the objective function as in (12) in our quadratic
programming to prevent exceedingly large values for the components
of Wr . It has been observed in our simulation that the linear program-
ming as described above will sometimes result in large magnitude (e.g.,
exceeds 300 in magnitude) for the components ofWr . Our simulation
results show that quadratic programming performs better than linear
programming in some cases.

During the course of neural network training, the algorithm may
get stuck in a local minimum. Techniques reported in the literature to
deal with the local minimum problem (i.e., the convergence problem)
include weight scaling [6], [13] and dynamic tunneling [14]. In [6]
and [13], weight scaling is employed when the training process gets
stuck in local minima. Assume that the weight vector obtained is given
by W and the training algorithm is stuck at a local minimum. Using
the weight scaling process, we will choose an initial weight vector as
W=kWk for the network training, wherek � k is a vector norm. As
pointed out in [6] and [13], weight scaling after the training gets to
a local minimum will effectively reduce the degree of saturation of
the activation function and thus keep a relatively large derivative of
the activation function. After getting stuck in a local minimum, using
weight scaling will resume a relative large weight updates which may
eventually lead the training algorithm out of the local minimum. It is
noted that weight scaling [6], [13] can also increase the speed of con-
vergence in neural network training due to similar reasoning. In the
present training algorithm, when the algorithm gets stuck in a local
minimum, we will attempt to escape from the local minimum by using
the weight scaling technique described here. Only after several consec-
utive failed attempts in escaping from a local minimum, will we allow
the network to grow by adding a hidden-layer neuron. We note that the
weight scaling process employed here may be substituted by any other
techniques for attempting to escape from a local minimum, e.g., the dy-
namic tunneling technique [14]. However, the weight scaling process
is much simpler to implement and works very well in our simulation.

Remark 1: Our constructive algorithm developed here can be com-
bined with a neural network pruning algorithm as described in the
framework of [3] so that tighter network structure can be obtained.
We will show in Section III, however, that even without the pruning
process, our constructive algorithm can usually obtain neural networks
with minimal structure (least possible number of hidden-layer neurons)
or obtain neural networks very close to its minimal structure.

III. SIMULATION STUDIES

In this section, we present our simulation results. A widely used
benchmark problem is considered, i.e., the parity problem. The goal
of our simulation is to show, using two-layer feedforward neural
networks, how many hidden-layer neurons our algorithm can obtain
for various parity problems. We will compare our algorithm using
quadratic programming and using linear programming in selecting
initial weights for newly added hidden-layer neurons. In our simula-
tion studies, we choose to use hyperbolic tangent activation function
in our simulation.

We have run our algorithm extensively for the parity problems.
The results are displayed in Table I for 3–8-bit parity problems (see
the numbers in the first row for each problem). In each case, the
total number of patterns is given by2N , whereN indicatesN -parity
problem. Table I shows the results when quadratic programming is
used for determining the initial weights of the added hidden-layer neu-
rons. All the results shown are for 50 test runs starting from different
random initial conditions. In our simulation studies, our algorithm was
successful in finding a solution for each problem in all of the 50 runs,
i.e., all 50 runs for each problem tested were convergent in training.
We also conducted the same experiments using linear programming
(not shown in the Table); it normally results in more hidden-layer
neurons than using quadratic programming. For example, in the 50
runs for the 7-bit parity problem, there are 19 runs where we obtained
four hidden-layer nodes using quadratic programming while there are
only ten runs where we obtained four hidden-layer nodes using linear
programming. It has been shown in [16] that theN -bit parity problems
can be solved using two-layer feedforward neural networks with
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TABLE I
NUMBER OF HIDDEN-LAYER NEURONSOBTAINED VERSUSNUMBER OF RUNS

OUT OF 50 RUNS FORSEVERAL PARITY PROBLEMS WHEN QUADRATIC

PROGRAMMING IS USED

d(N + 1)=2e hidden sigmoidal units, whered�e denotes rounding
toward+1. This implies that, for example, the 5- and 8-bit parity
problems can be solved using two-layer feedforward neural networks
with three and five hidden nodes, respectively. Our simulation results
confirmed this finding in [16]. In Step 3 of our algorithm, we used
the Levenberg–Marquardt algorithm [7] implemented in Matlab (the
functiontrainlm) [4], where batch learning was used.

Finally, we repeated the experiments shown in Table I using two
thirds of the data as training data and using the other one third of data
as test data. To test our algorithm in a more realistic environment, we
add noise uniformly distributed in[�0:5; 0:5] to our training data. The
results of experiments with noisy training data are shown in the second
row for each problem in Table I. Our experiments show that adding
noise to training data tend to increase the number of hidden-layer neu-
rons required for solving the same parity problem. On the other hand, in
experiments with only two thirds of the whole data set as training data,
we would usually obtain neural networks with less number of hidden
neurons if we do not add noise to the training set. As a result, in our
experiments with noisy data using two thirds of the whole data set as
training data, we obtain slightly higher number of hidden-layer neurons
in each case than the ones with no noise and with the whole training
data set for training. For example, for 7-bit parity problem, we obtained
13, 28, and nine runs with four, five, and six hidden neurons, respec-
tively, in a total of 50 runs. The validation results of the test data are
also shown in Table I (the last two columns). The numbers shown in the
column under A are the total number of patterns in the test set and the
numbers under B are the average numbers of test data patterns that are
successful during validation among 50 experiments. Our results show
an accuracy of 75%–80% in all the parity problems tested.

IV. CONCLUSION

We have developed in this brief a constructive learning algorithm
for feedforward neural networks. In our approach, patterns are trained
incrementally by considering them one by one. Our algorithm starts
with a single training pattern and with a single hidden-layer neuron.
The initial network training is guaranteed to converge to a solution. We
then incorporate another pattern into the training process which may
lead to one of the two possibilities, i.e., a successful training or getting
stuck in a local minimum. For the former case, we continue the training
process by incorporating more training patterns one by one until the
training process gets stuck in a local minimum. For the latter case, we
will allow the network to grow by adding a hidden-layer neuron. We
have developed an optimization procedure based on quadratic/linear

programming to determine initial values for the weights associated with
the newly added hidden neuron. By using this optimization procedure,
our algorithm can most likely bring the system error to either within
the error tolerance (requiring no further training) or very close to it
(requiring a few steps of further training).

Our algorithm is especially useful for real-time learning problems
where training patterns are generated one by one in real-time, while
neural network learning is required in parallel. Examples of this type of
problems include stock market prediction and real-time learning con-
trol systems, among others. In real-time learning problems, we may
from time to time encounter a new training pattern. Using our algo-
rithm, if timely learning is desired, a neural network can learn the
new pattern with no training or little training through the addition of a
hidden node. This is achieved through the use of quadratic/linear pro-
gramming for determining the initial weights associated with the new
hidden neuron. If time permits, we can first try to see if our algorithm
can learn the new pattern and then decide whether to add a hidden-layer
neuron.
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