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a b s t r a c t

In this paper, an optimal tracking control scheme is proposed for a class of unknown discrete-time

nonlinear systems using iterative adaptive dynamic programming (ADP) algorithm. First, in order to

obtain the dynamics of the system, an identifier is constructed by a three-layer feedforward neural

network (NN). Second, a feedforward neuro-controller is designed to get the desired control input of the

system. Third, via system transformation, the original tracking problem is transformed into a regulation

problem with respect to the state tracking error. Then, the iterative ADP algorithm based on heuristic

dynamic programming is introduced to deal with the regulation problem with convergence analysis.

In this scheme, feedforward NNs are used as parametric structures for facilitating the implementation

of the iterative algorithm. Finally, simulation results are also presented to demonstrate the effective-

ness of the proposed scheme.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

As is well known, there are demands for optimal tracking
controller designs in many real world applications. For solving the
optimal tracking control problems, many approaches were pro-
posed in the last several decades [1–6]. However, these traditional
control approaches, such as feedback linearization [1] and plant
inversion [2], usually involve complex mathematical analysis and
yet have many difficulties in controlling highly nonlinear plants.
For feedback linearization, the obtained control is only effective in
the neighborhood of the equilibrium point. For plant inversion,
the exact inversion model of the plant is quite difficult to obtain,
if not impossible. Moreover, for unknown nonlinear systems, it is
more difficult to get the optimal tracking control by traditional
approaches. Therefore, it is necessary to design new approaches
and direct optimal control schemes for unknown nonlinear
systems. When dealing with the optimal tracking problems, the
difficulty is the requirement of solving the nonlinear Hamilton–
Jacobi–Bellman (HJB) equation which is usually too difficult to
solve analytically. Though it is well known that dynamic pro-
gramming (DP) is an useful approach for solving optimal control
problems, it is often computationally untenable to run DP due to
the backward numerical process required for its solutions, i.e.,
due to the ‘‘curse of dimensionality’’ [7,8].
ll rights reserved.
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In recent years, in order to obtain approximate solutions of the
HJB equation, adaptive dynamic programming (ADP) algorithms
have attracted much attention from researchers [9–39]. ADP
was proposed in [10–13] as a way for solving optimal control
problems forward-in-time. There are several synonyms used
for ADP including ‘‘adaptive dynamic programming’’ [14,15],
‘‘approximate dynamic programming’’ [11], ‘‘neuro-dynamic pro-
gramming’’ [16] and ‘‘adaptive critic designs’’ [17]. In [18], ADP
approaches were classified into several main schemes including
heuristic dynamic programming (HDP), action-dependent heur-
istic dynamic programming (ADHDP), dual heuristic dynamic pro-
gramming (DHP), ADDHP, globalized DHP (GDHP) and ADGDHP.
Al-Tamimi et al. [19] proposed a greedy iterative HDP to solve the
optimal control problem for nonlinear discrete-time systems.
Vrabie et al. [20] studied the continuous-time optimal control
problem using ADP. Wang et al. [21] developed an e-ADP algo-
rithm for studying finite-horizon optimal control of discrete-time
nonlinear systems. Dierks et al. [22] relaxed the requirement of
explicit knowing the dynamics of system via two processes:
online identification of the system and offline training of the
optimal controller. Park et al. [23] used multilayer neural net-
works (NNs) to design a finite-horizon optimal tracking neuro-
controller for discrete-time nonlinear systems with quadratic cost
function. Dierks et al. [24] used the ADP technique to solve the
optimal tracking control of affine nonlinear discrete-time systems
with partially unknown nonlinear dynamics. Zhang et al. [25]
gave a novel infinite-horizon optimal tracking control scheme
based on the greedy HDP algorithm for discrete-time nonlinear
systems with the requirement of fully known system dynamics.
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However, to the best of our knowledge, there is still no result
for solving the optimal tracking control problems for completely
unknown discrete-time nonlinear systems via ADP technique.
In this paper, it is the first time to use the iterative ADP algorithm
to design an infinite-time optimal tracking controller for a class
of discrete-time nonlinear systems with unknown nonlinear
dynamics. For designing the optimal tracking controller, it is
necessary to set up two parametric structures, namely, the NN
identifier and the feedforward neuro-controller. The NN identifier
is to learn the dynamics of the unknown system, and the
feedforward neuro-controller is designed to obtain the desired
control for keeping the system state to a given reference value.
Then, after transforming the tracking problem to a regulation
problem, the optimal feedback control is obtained by the iterative
ADP algorithm.

The rest of this paper is organized as follows. In Section 2,
we present the problem statement, and transform the tracking
control problem into a regulation problem. In Section 3, we
demonstrate the establishments of the NN identifier and feedfor-
ward neuro-controller with convergence analysis. In Section 4,
we present the derivation of the iterative ADP algorithm with con-
vergence analysis, and then we illustrate the NN implementation
of the iterative ADP algorithm for solving the optimal tracking
problem. In Section 5, we present simulation results to demon-
strate the effectiveness of the proposed optimal tracking control
scheme. In Section 6, we conclude the paper with a few remarks.
2. Problem statement

Consider the nonlinear discrete-time system given by

xðkþ1Þ ¼ FðxðkÞ,uðxðkÞÞÞ

¼ f ðxðkÞÞþgðxðkÞÞuðxðkÞÞ, ð1Þ

where xðkÞARn represents the state vector of the system,
uðxðkÞÞARm represents the control vector, f ð�Þ and gð�Þ are differ-
entiable in their argument with f ð0Þ ¼ 0. Assume that f þgu is
Lipschitz continuous on a set O in Rn containing the origin,
and gðxðkÞÞ satisfies JgðxðkÞÞJF rgM [9]. Besides, it is assumed
that there exists a matrix function g�1ðxðkÞÞARm�n such that
g�1ðxðkÞÞgðxðkÞÞ ¼ IARm�m where I is the identity matrix. Without
loss of generality, assume that the system is controllable in the
sense that there exists a continuous control on O that asympto-
tically stabilizes the system.

For the optimal tracking control problem, the control objective
is to find the optimal control unðxðkÞÞ, so as to make the nonlinear
system (1) to track a reference (desired) trajectory r(k) in an
optimal manner. We assumed that the reference trajectory r(k)
satisfies

rðkþ1Þ ¼jðrðkÞÞ, ð2Þ

where rðkÞARn and jðrðkÞÞARn, and it is assumed that the
mapping between the state x(k) and the desired trajectory r(k)
is one-to-one. For convenience, in the sequel, uðxðkÞÞ is denoted
as u(k).

The tracking error can be defined as follows:

eðkÞ ¼ xðkÞ�rðkÞ: ð3Þ

Assume that the desired trajectory r(k) satisfies the following
form:

rðkþ1Þ ¼ f ðrðkÞÞþgðrðkÞÞudðkÞ, ð4Þ

where rðkþ1Þ is the reference output and ud(k) denotes the
desired control input.

If the dynamics of the system is known and the inverse of the
control coefficient matrix function g�1ðrðkÞÞ exists, the desired
control ud(k) can be obtained by

udðkÞ ¼ g�1ðrðkÞÞðjðrðkÞÞ�f ðrðkÞÞÞ, ð5Þ

where g�1ðrðkÞÞgðrðkÞÞ ¼ I and IARm�m is the identity matrix.
Then, the feedback control ue(k) is defined by

ueðkÞ ¼ uðkÞ�udðkÞ: ð6Þ

Considering (1)–(6), the tracking error eðkþ1Þ can be expressed as

eðkþ1Þ ¼ xðkþ1Þ�rðkþ1Þ

¼ f ðeðkÞþrðkÞÞþgðeðkÞþrðkÞÞueðkÞ

þgðeðkÞþrðkÞÞg�1ðrðkÞÞðjðrðkÞÞ
�f ðrðkÞÞÞ�jðrðkÞÞ: ð7Þ

From (7), we can see that if the reference trajectory r(k) is given,
we can use e(k) and ue(k) to obtain the tracking error eðkþ1Þ. For
convenience of analysis, let (7) be rewritten as

eðkþ1Þ ¼ f eðkÞþgeðkÞueðkÞ, ð8Þ

where
f eðkÞ ¼ gðeðkÞþrðkÞÞg�1ðrðkÞÞðjðrðkÞÞ�f ðrðkÞÞÞþ f ðeðkÞþrðkÞÞ�jðrðkÞÞ
and geðkÞ ¼ gðeðkÞþrðkÞÞ. For infinite horizon optimal tracking
control problem, it is desired to find the optimal control law
v(e) so that the control sequence ueð�Þ ¼ ðueðkÞ,ueðkþ1Þ, . . .Þ with
each ueðiÞ ¼ vðeðiÞÞARm, i¼ k, kþ1, . . ., minimizes the following
cost function:

JðeðkÞ,ueð�ÞÞ ¼
X1
i ¼ k

UðeðiÞ, ueðiÞÞ, ð9Þ

where U is the utility function, Uð0,0Þ ¼ 0, UðeðiÞ, ueðiÞÞZ0 for
8eðiÞ, ueðiÞ, i¼ k, kþ1, . . .. In this paper, the utility function U is
chosen as the quadratic form

UðeðiÞ, ueðiÞÞ ¼ eT ðiÞQeðiÞþuT
e ðiÞRueðiÞ, ð10Þ

where Q ARn�n and RARm�m are symmetric and positive definite.
This quadratic cost function will not only force the system state to
follow the reference trajectory, but also force the system input to
be close to the desired control in maintaining the state to its
reference value. Thus, for the optimal control problem, the state
feedback control law v(e) must not only stabilize the system (8)
on O but also guarantee that (9) is finite, i.e., the control law must
be admissible.

Definition 1. A control law v(e) is said to be admissible with
respect to (9) on O, if v(e) is continuous on a compact set OuARm

for 8eðkÞAO, and stabilizes (8) on O, vð0Þ ¼ 0, and for eð0ÞAO,
Jðeð0Þ, ueð�ÞÞ is finite, where ueð�Þ ¼ ðueð0Þ,ueð1Þ, . . .Þ and ueðkÞ ¼

vðeðkÞÞ, k¼ 0,1, . . ..

For infinite horizon optimal control problem, based on the
above definition, a control law sequence Zi ¼ ðZ1, . . . ,Z1,Z0Þ is
called admissible if the resulting control sequence ðueð0Þ,ueð1Þ, . . . ,
ueð1ÞÞ stabilizes (8) with any initial state eð0Þ and guarantees that
Jðeð0Þ,ueð�ÞÞ is finite. The corresponding final state is denoted as
ef ðeðkÞ,uk-1

e Þ ¼ limk-1eðkÞ, where
uk-1

e ¼ ðueðkÞ,ueðkþ1Þ, . . . ,ueð1ÞÞ.
Let

Y¼ fuk-1
e : ef ðeðkÞ,uk-1

e Þ ¼ 0g ð11Þ

be the set of all infinite horizon admissible control sequence of
e(k). Define the optimal cost function JnðeðkÞÞ as

JnðeðkÞÞ ¼ inf
uk-1

e

fJðeðkÞ,uk-1
e Þ : uk-1

e AYg, ð12Þ

and the corresponding optimal feedback control is un
e ðkÞ which

minimizes (9).
In addition, considering (5) and (6), we have

uðkÞ ¼ ueðkÞþudðkÞ: ð13Þ
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It is observed that the tracking control u(k) consists of a feedback
control ue(k) and a predetermined desired control ud(k) corre-
sponding to the reference trajectory r(k). Moreover, we should
note that as long as the proble m is limited to the case where ud(k)
exists for any r(k), it is reasonable to assume that the optimal
tracking control has the above form.

Before proceeding, the following technical lemma is needed.

Lemma 1. Let ue(k) be an admissible control such that the tracking

error system (8) is asymptotically stable. Then, the internal dynamics

fe(k) is bounded satisfying

Jf eðkÞJ
2r UlminðQ ÞJeðkÞJ2=2þðUlminðRÞ�2g2

MÞJueðkÞJ
2=2, ð14Þ

where lminðRÞ is the minimum eigenvalue of R, lminðQ Þ is the

minimum eigenvalue of Q, and U42g2
M=lminðRÞ is a known positive

constant.

Proof. Considering the following positive definite Lyapunov
function candidate:

VðkÞ ¼ eT ðkÞeðkÞþU JeðkÞ, ð15Þ

where JeðkÞ ¼ JðeðkÞ, ueðkÞÞ is defined in (9). The first difference of
the Lyapunov function candidate is given by

DVðkÞ ¼ eT ðkþ1Þeðkþ1Þ�eT ðkÞeðkÞþUDJeðkÞ: ð16Þ

Using (8) and (9), we have

DVðkÞ ¼ ðf eðkÞþgeðkÞueðkÞÞ
T
ðf eðkÞþgeðkÞueðkÞÞ

�eT ðkÞeðkÞ�UðeT ðkÞQeðkÞþuT
e ðkÞRueðkÞÞ: ð17Þ

After applying the Cauchy–Schwarz inequality, we can obtain

DVðkÞr 2Jf eðkÞJ
2
�ðUlminðRÞ�2g2

MÞJueðkÞJ
2

�UlminðQ ÞJeðkÞJ2
�JeðkÞJ2: ð18Þ

Considering the goal of the tracking error system (8) being
asymptotically stable, i.e., DVðkÞo0, we require

Jf eðkÞJ
2r UlminðQ ÞJeðkÞJ2=2þðUlminðRÞ�2g2

MÞJueðkÞJ
2=2: ð19Þ

Therefore, if the bound in (19) is true, we can get DVðkÞo0,
implying the asymptotic stability of (8). &

Remark 1. Lemma 1 shows that if the internal dynamics fe(k) is
bounded satisfying (14), then, for the nonlinear system (8), there
exists an admissible control ue(k) not only stabilizes the system
(8) on O but also guarantees that (9) is finite.

Assume that the system dynamics are known, we can design
the controller by the aforementioned method. However, for most
cases, obtaining the complete, even partial knowledge of the
nonlinear system dynamics is a challenging task. For unknown
nonlinear systems, an NN identifier is constructed to learn the
system dynamics, and a feedforward neuro-controller is designed
using NNs with the aid of the NN identifier to obtain the desired
control ud(k). Furthermore, according to (13), for obtaining the
optimal tracking control, it is necessary to find the optimal
feedback control un

e ðkÞ for the system (8) with respect to (9).
In this sense it can be said that the optimal tracking problem of
(1) is transformed into an optimal regulation problem of (8).
In the following, we will focus on how to get the optimal feedback
control.
3. Establishments of NN identifier and feedforward neuro-
controller

In this section, a three-layer feedforward NN identifier is
established to reconstruct the unknown system dynamics using
available input–output data. Let the number of hidden layer
neurons be denoted as d, the ideal weights between the input
layer and the hidden layer be denoted as nnm, the ideal weights
between the hidden layer and the output layer be denotes as on

m.
According to the universal approximation property of NNs, the
system dynamics (1) has an NN representation on a compact set S,
which can be written as

xðkþ1Þ ¼onT
m sðnnT

m zðkÞÞþemðkÞ, ð20Þ

where on
mARd�n and nnmARðnþmÞ�d are the constant ideal weight

matrices, zðkÞ ¼ ½xT ðkÞ uT ðkÞ�T is the NN input, and emðkÞ is the
bounded NN functional approximation error, sð�Þ is the NN
activation function and selected to be hyperbolic tangent func-
tion. Besides, the NN activation functions are bounded such that
Jsð�ÞJrsM for a constant sM .

For convenience of analysis, only the output weights are
updated during the training, while the hidden weights are kept
fixed. So the activation function sðnnT

m zðkÞÞ can be rewritten as
sðzðkÞÞ in the hidden layer, where zðkÞ ¼ nnT

m zðkÞ,zðkÞARl. Thus, the
NN model for the system is constructed as

x̂ðkþ1Þ ¼ ôT
mðkÞsðzðkÞÞ, ð21Þ

where x̂ðkÞ is the estimated system state vector and ômðkÞ is the
estimation of the ideal weight matrix on

m.
Then, we define the system identification error as

~xðkþ1Þ ¼ x̂ðkþ1Þ�xðkþ1Þ

¼ ~omðkÞsðzðkÞÞ�emðkÞ, ð22Þ

where ~omðkÞ ¼ ômðkÞ�on
m. Let fðkÞ ¼ ~oT

mðkÞsðzðkÞÞ. Thus, we have

~xðkþ1Þ ¼fðkÞ�emðkÞ: ð23Þ

The weights are adjusted to minimize the following error

Eðkþ1Þ ¼ 1
2
~xT
ðkþ1Þ ~xðkþ1Þ: ð24Þ

Using the gradient-based adaptation rule, the weights are updated by

ômðkþ1Þ ¼ ômðkÞ�lm
@Eðkþ1Þ
~xðkþ1Þ

@ ~xðkþ1Þ
~wmðkÞ

¼ ômðkÞ�lmsðzðkÞÞ ~xT
ðkþ1Þ, ð25Þ

where lm40 is the learning rate.
Inspired by the work in [22], before proceeding, we need to

give the following assumption which is considered mild in
comparison with the approximation error being bounded by a
known constant.

Assumption 1. The NN approximation error emðkÞ is assumed to
be upper bounded by a function of estimation error such that

eT
mðkÞemðkÞrlM ~x

T
ðkÞ ~xðkÞ, ð26Þ

where lM is a finite constant value.

Next, the stability analysis of the system identification scheme
is presented by using the Lyapunov method.

Theorem 1. Let the identification scheme (21) be used to identify

the nonlinear system (1), and let the NN weights be updated by (25),
then, the system identification error ~xðkÞ is asymptotically stable

while the parameter estimation error ~omðkÞ is bounded.

Proof. Considering the following positive definite Lyapunov
function candidate:

JðkÞ ¼ ~xT
ðkÞ ~xðkÞþ

1

lm
trf ~oT

mðkÞ ~omðkÞg: ð27Þ

The first difference of the Lyapunov function candidate is given by

DJðkÞ ¼ ~xT
ðkþ1Þ ~xðkþ1Þ� ~xT

ðkÞ ~xðkÞ

þ
1

lm
trf ~oT

mðkþ1Þ ~omðkþ1Þ� ~oT
mðkÞ ~omðkÞg: ð28Þ



+

+ +

−

-

Fig. 1. The structure diagram of the feedforward neuro-controller.
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With the identification error dynamics (23) and the weight tuning
rule (25), we can obtain

DJðkÞ ¼fT
ðkÞfðkÞ�2fT

ðkÞemðkÞþeT
mðkÞemðkÞ

þ lmsT ðzðkÞÞsðzðkÞÞ ~xT
ðkþ1Þ ~xðkþ1Þ

� ~xT
ðkÞ ~xðkÞ�2fT

ðkÞ ~xðkþ1Þ: ð29Þ

Applying the Cauchy–Schwarz inequality, we can get

DJðkÞr�fT
ðkÞfðkÞþeT

mðkÞemðkÞ� ~x
T
ðkÞ ~xðkÞ

þ2lmsT ðzðkÞÞsðzðkÞÞðfT
ðkÞfðkÞþeT

mðkÞemðkÞÞ: ð30Þ

Considering JsðzðkÞÞJrsM and (26), we have

DJðkÞr�ð1�2lms2
MÞJfðkÞJ

2

�ð1�lM�2lmlMs2
MÞJ ~xðkÞJ

2: ð31Þ

Let lm be selected as lmrb2=2s2
M . Then, (31) becomes

DJðkÞr�ð1�b2
ÞJfðkÞJ2

�ð1�lM�lMb
2
ÞJ ~xðkÞJ2: ð32Þ

Therefore, DJðkÞr0 provided that 0rlM r1 and

max �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�lM

lM

s
,�1

8<
:

9=
;rbrmin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�lM

lM

s
,1

8<
:

9=
;,

where ba0. As long as the parameters are selected as discussed
above, we have DJðkÞr0. Therefore, the identification error ~xðkÞ
and the weight estimation error ~omðkÞ are bounded provided ~xð0Þ
and ~omð0Þ are bounded in the compact set S. Furthermore,
according to [9], by summing both side of (32) to infinity and
taking limits when k-1, it can be concluded that the estimation
error ~xðkÞ approaches zero with k-1. &

After a sufficiently long learning process, the NN identification
error approaches zero, and the system dynamics (1) can be
written as

xðkþ1Þ ¼ x̂ðkþ1Þ ¼ ôT
mðkÞsðzðkÞÞ: ð33Þ

In the following, optimal tracking control for the unknown non-
linear system will be achieved using the result of the system
identification in (33). In order to obtain the desired control ud(k),
a feedforward neuro-controller is constructed to learn the inverse
dynamics of the system by a three-layer feedforward NN.

Note that the desired control can be obtained by setting
xðkÞ ¼ rðkÞ and uðkÞ ¼ udðkÞ for all k in the original system (1), i.e.,

rðkþ1Þ ¼ FðrðkÞ,udðkÞÞ

udðkÞ ¼ F�1
ðrðkþ1Þ,rðkÞÞ ð34Þ

where ud(k) is the desired control and F�1 is the inverse function
of F. For the unknown nonlinear system, since it is almost
impossible to get the specific solution of F�1, we introduce the
feedforward neuro-controller as an inverse mapping of the
system. The feedforward neuro-controller is established with
the aid of the trained NN identifier as shown in Fig. 1.

The feedforward neuro-controller is trained to adjust its
weight parameters so that the output of the NN identifier
r̂ðkþ1Þ approximates the given reference value rðkþ1Þ. It is clear
that the feedforward neuro-controller is trained for driving the
output of the NN identifier to approximate the reference trajec-
tory. Thus, we can consider that the purpose of training the
feedforward neuro-controller is to learn the inverse dynamics of
the system for generating the desired control ud(k).

From Fig. 1, the feedforward neuro-controller outputs ûdðkÞ.
Then, ûdðkÞ is propagated to the NN identifier for outputing
the estimated reference trajectory r̂ðkþ1Þ. Thus, it is reason-
able to consider that the objective of training the feedforward
neuro-controller is to minimize the error function defined by

Egðkþ1Þ ¼ 1
2eT

g ðkþ1Þegðkþ1Þ, ð35Þ

where egðkþ1Þ ¼ r̂ðkþ1Þ�rðkþ1Þ. In addition, it should be noted
that the error is propagated backward through the NN identifier
to adjust the weight parameters in the feedforward neuro-
controller. The weight update rule for the feedforward neuro-
controller is the gradient-based adaptation given by

ogðkþ1Þ ¼ogðkÞþDogðkÞ, ð36Þ

DogðkÞ ¼ �lg
@Egðkþ1Þ

@ogðkÞ
, ð37Þ

@Egðkþ1Þ

@ogðkÞ
¼
@Egðkþ1Þ

@r̂ðkþ1Þ

@r̂ðkþ1Þ

@ûdðkÞ

@ûdðkÞ

@ogðkÞ
, ð38Þ

where lg 40 is the learning rate and og is the weight vector in the
feedforward neuro-controller. Note that @r̂ðkþ1Þ=@ûdðkÞ can be
obtained by backpropagation from the output of the NN identifier
r̂ðkþ1Þ to its input ûdðkÞ.

Before starting the training, some small random values are
selected to initialize the weight parameters in feedforward neuro-
controller. At the end of training, the weight parameters in the
feedforward neuro-controller are adjusted so that the output of
the NN identifier r̂ðkþ1Þ can follow the reference value rðkþ1Þ.
Hence, we can consider that the feedforward neuro-controller has
learned the steady-state inverse dynamics of the system with the
aid of the NN identifier.

Remark 2. Considering (34), it should be noted that the inverse is
not unique in general and any solution is sufficient for control
purpose, i.e., ûdðkÞ drives the output of the NN identifier r̂ðkþ1Þ to
approximate the reference value rðkþ1Þ. However, considering
the control input is control energy, the smallest solution of ûdðkÞ

is preferred. Therefore, the training of feedforward neuro-
controller begins with small random values of weight parameters.
This allows the desired control to grow from a small random
value and converge to the smallest solution of ûdðkÞ, which is
preferred over all other possible solutions. Similar results can be
seen in [23].

According to (8) and (9) discussed previously, the optimal
tracking problem of (1) has been transformed into an optimal
regulation problem. Therefore, in the following, a greedy iterative
ADP algorithm is introduced to obtain the optimal feedback
control which will not only stabilize the system but also guaran-
tee the cost function to be finite.
4. The iterative ADP algorithm

Three parts are included in this section. The derivation of the
iterative ADP algorithm is provided in the first part, the corre-
sponding convergence proof is presented in the second part, and
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the implementation of the optimal control scheme is described in
the third part.

4.1. The derivation of the iterative ADP algorithm

In this part, we present the iterative ADP algorithm based
on Bellman’s principle of optimality and the greedy iterative
principle.

First, we start with the initial cost function V0ð�Þ ¼ 0 which is
not necessarily the optimal value function, and then the law of
single control vector v0ðeðkÞÞ can be solved by

v0ðeðkÞÞ ¼ arg min
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþV0ðeðkþ1ÞÞg: ð39Þ

Then, we update the cost function as

V1ðeðkÞÞ ¼min
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþV0ðeðkþ1ÞÞg

¼ eT ðkÞQeðkÞþvT
0ðeðkÞÞRv0ðeðkÞÞ: ð40Þ

Therefore, for i¼ 1,2, . . ., the iterative ADP algorithm can be
implemented by the iterations between

viðeðkÞÞ ¼ arg min
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþViðeðkþ1ÞÞg

¼�
1

2
R�1gT ðeðkÞþrðkÞÞ

@Viðeðkþ1ÞÞ

@eðkþ1Þ
ð41Þ

and

Viþ1ðeðkÞÞ ¼min
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþViðeðkþ1ÞÞg

¼ eT ðkÞQeðkÞþvT
i ðeðkÞÞRviðeðkÞÞþViðeðkþ1ÞÞ ð42Þ

where eðkþ1Þ ¼ FðeðkÞ,viðeðkÞÞÞ, i represents the iterative index of
the control law and the cost function, while k represents the time
index of the system state trajectory. In addition, in the iterative
ADP algorithm, it is worth noting that the cost function and the
control law are updated by recursive iterations with the iterative
index i increasing from 0 and the initial cost function V0ð�Þ ¼ 0.

4.2. Convergence analysis of the iterative ADP algorithm

Next, we present a convergence proof of the iteration between
(41) and (42), with the cost function Vi-Jn and the control law
vi-un

e as i-1.

Lemma 2. Let fmig be an arbitrary sequence of control laws and fvig

be the control sequence expressed in (41). Define ViðeðkÞÞ as in (42)
and Li as

Liþ1ðeðkÞÞ ¼ eT ðkÞQeðkÞþmT
i ðeðkÞÞRmiðeðkÞÞþLiðeðkþ1ÞÞ: ð43Þ

If V0ðeðkÞÞ ¼L0ðeðkÞÞ ¼ 0, then ViðeðkÞÞrLiðeðkÞÞ, 8i.

Proof. It can clearly be seen that Viþ1ðeðkÞÞ is the result of mini-
mizing the right-hand side of (42) with respect to the control input
ue(k), while Liþ1ðeðkÞÞ is a result of arbitrary control input. &

Lemma 3. Let the cost function sequence fVig be defined in (42). If

the system is controllable, then there exists an upper bound Y such

that 0rViðeðkÞÞrY , 8i.

Proof. Let fZiðeÞg be a sequence of admissible control laws, and
let Z0ð�Þ ¼ V0ð�Þ ¼ 0, where ViðeðkÞÞ is updated by (42) and Zi is
updated by

Ziþ1ðeðkÞÞ ¼ eT ðkÞQeðkÞþZT
i ðeðkÞÞRZiðeðkÞÞþZiðeðkþ1ÞÞ: ð44Þ

Considering (44), we can further have

Ziðeðkþ1ÞÞ ¼ eT ðkþ1ÞQeðkþ1ÞþZT
i�1ðeðkþ1ÞÞRZi�1ðeðkþ1ÞÞ

þZi�1ðeðkþ2ÞÞ: ð45Þ
With UðeðkÞ,ZiðeðkÞÞÞ ¼ eT ðkÞQeðkÞþZT
i ðeðkÞÞRZiðeðkÞÞ, the following

relation can be obtained:

Ziþ1ðeðkÞÞ ¼UðeðkÞ,ZiðeðkÞÞÞþUðeðkþ1Þ,Zi�1ðeðkþ1ÞÞÞþZi�1ðeðkþ2ÞÞ

¼UðeðkÞ,ZiðeðkÞÞÞþUðeðkþ1Þ,Zi�1ðeðkþ1ÞÞÞ

þUðeðkþ2Þ,Zi�2ðeðkþ2ÞÞÞþZi�2ðeðkþ3ÞÞ

^

¼UðeðkÞ,ZiðeðkÞÞÞþUðeðkþ1Þ,Zi�1ðeðkþ1ÞÞÞ

þUðeðkþ2Þ,Zi�2ðeðkþ2ÞÞÞ

þ � � � þUðeðkþ iÞ,Z0ðeðkþ iÞÞÞþZ0ðeðkþ iþ1ÞÞ, ð46Þ

where Z0ðeðkþ iþ1ÞÞ ¼ 0. Then, (46) can be written as

Ziþ1ðeðkÞÞ ¼
Xi

j ¼ 0

Uðeðkþ jÞ,Zi�jðeðkþ jÞÞÞ: ð47Þ

Considering the fact that U is positive semidefinite, we have

Ziþ1ðeðkÞÞr lim
i-1

Xi

j ¼ 0

Uðeðkþ jÞ,Zi�jðeðkþ jÞÞÞ: ð48Þ

Note that fZiðeÞg is an admissible control law sequence, i.e.,

eðkÞ-0 as k-1. Thus, for 8i, there exists an upper bounded Y

such that

Ziþ1ðeðkÞÞr lim
i-1

Xi

j ¼ 0

Uðeðkþ jÞ,Zi�jðeðkþ jÞÞÞrY : ð49Þ

Then, combining with Lemma 2, we can get

Viþ1ðeðkÞÞrZiþ1ðeðkÞÞrY 8i: & ð50Þ

Next, based on Lemmas 2 and 3, we present our main
theorems.

Theorem 2. Let the control law sequence fvig and the cost function

sequence fVig be defined in (41) and (42), respectively, with

V0ð�Þ ¼ 0. Then, ViðeðkÞÞ is a nondecreasing sequence satisfying

ViðeðkÞÞrViþ1ðeðkÞÞ, 8i. Moreover, as i-1, Vi-Jn, i.e.,

lim
i-1

ViðeðkÞÞ ¼ JnðeðkÞÞ: ð51Þ

Proof. Define a new sequence fFig as follows:

Fiþ1ðeðkÞÞ ¼ eT ðkÞQeðkÞþvT
iþ1ðeðkÞÞRviþ1ðeðkÞÞþFiðeðkþ1ÞÞ ð52Þ

with F0ð�Þ ¼ V0ð�Þ ¼ 0. The control law sequence fvig and the cost
function sequence fVig are updated by (41) and (42), respectively.

In the following, we prove FiðeðkÞÞrViþ1ðeðkÞÞ by mathematical

induction.

First, we prove that it holds for i¼0. Considering

V1ðeðkÞÞ�F0ðeðkÞÞ ¼ eT ðkÞQeðkÞþv0ðeðkÞÞRv0ðeðkÞÞZ0, ð53Þ

thus, for i¼0, we have

F0ðeðkÞÞrV1ðeðkÞÞ: ð54Þ

Second, it is assumed that it holds for i�1, i.e.,

Fi�1ðeðkÞÞrViðeðkÞÞ, 8eðkÞ. For i, since

FiðeðkÞÞ ¼ eT ðkÞQeðkÞþvT
i ðeðkÞÞRviðeðkÞÞþFi�1ðeðkþ1ÞÞ ð55Þ

and

Viþ1ðeðkÞÞ ¼ eT ðkÞQeðkÞþvT
i ðeðkÞÞRviðeðkÞÞþViðeðkþ1ÞÞ ð56Þ

hold, we can get

Viþ1ðeðkÞÞ�FiðeðkÞÞ ¼ Viðeðkþ1ÞÞ�Fi�1ðeðkþ1ÞÞZ0,
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i.e.,

FiðeðkÞÞrViþ1ðeðkÞÞ: ð57Þ

Therefore, (57) is true for any i by mathematical induction.

Furthermore, from Lemma 2, we have ViðeðkÞÞrFiðeðkÞÞ. There-

fore, we can get

ViðeðkÞÞrFiðeðkÞÞrViþ1ðeðkÞÞ: ð58Þ

Moving on, let fZðlÞi g be the lth admissible control law sequence.

We define the associated sequence PðlÞi ðeðkÞÞ as follows:

PðlÞiþ1ðeðkÞÞ ¼
Xi

j ¼ 0

Uðeðkþ jÞ,ZðlÞi�jðeðkÞÞÞ: ð59Þ

Let i-1, we have

PðlÞ1ðeðkÞÞ ¼ lim
i-1

Xi

j ¼ o

Uðeðkþ jÞ,ZðlÞi�jðeðkÞÞÞ: ð60Þ

Note that the control law sequence fZðlÞi g is admissible. Thus,

PðlÞ1ðeðkÞÞ is finite. For any l, there exists an upper bound Yl such

that

Viþ1ðeðkÞÞrPðlÞiþ1ðeðkÞÞrYl, 8l,i: ð61Þ

According to the definition of JnðeðkÞÞ in (12), for any e40, there

exists a sequence of admissible control law fZðlÞi g such that the

corresponding cost function satisfies PðlÞ1ðeðkÞÞr JnðeðkÞÞþe. With

(61), we can obtain

lim
i-1

ViðeðkÞÞrPðlÞ1ðeðkÞÞr JnðeðkÞÞþe: ð62Þ

Since e is chosen arbitrarily, we have

lim
i-1

ViðeðkÞÞr JnðeðkÞÞ: ð63Þ

On the other hand, since Viþ1ðeðkÞÞrPðlÞiþ1ðeðkÞÞrYl,8l,i, we

have limi-1ViðeðkÞÞr inf lfYlg. According to the definition of

admissible control law sequence, the control law sequence

associated with the cost function limi-1ViðeðkÞÞ must be an

admissible control law sequence. Thus, there exists a sequence

of admissible control laws fZðLÞi g which satisfies limi-1ViðeðkÞÞ ¼

PðLÞ1 ðeðkÞÞ. Since JnðeðkÞÞ is the infimum cost function of all admis-

sible control sequences starting from e(k) with length1, we have

lim
i-1

ViðeðkÞÞZ JnðeðkÞÞ: ð64Þ

Considering (63) and (64), we have limi-1ViðeðkÞÞ ¼ JnðeðkÞÞ, i.e.,

JnðeðkÞÞ is the limit of the cost function sequence fViðeðkÞÞg. &

In the above, we have completed the proof of Theorem 2.
Hence, we can conclude that the cost function sequence fVig is a
monotonically nondecreasing sequence with an upper bound and
Jn is the limit of the cost function sequence fVig. Next, when we
make i-1 in (42), we can get the following result.

Theorem 3. For any e(k), define

lim
i-1

ViðeðkÞÞ ¼ V1ðeðkÞÞ
as the limit of the cost function sequence fVig. V1ðeðkÞÞ satisfies the

HJB equation

V1ðeðkÞÞ ¼min
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþV1ðeðkþ1ÞÞg: ð65Þ

Proof. For any i and ue(k), according to (42), we have

ViðeðkÞÞreT ðkÞQeðkÞþuT
e ðkÞRueðkÞþVi�1ðeðkþ1ÞÞ: ð66Þ

Then, considering Theorem 2, we have

ViðeðkÞÞreT ðkÞQeðkÞþuT
e ðkÞRueðkÞþV1ðeðkþ1ÞÞ: ð67Þ

Let i-1. Then, we can obtain

V1ðeðkÞÞreT ðkÞQeðkÞþuT
e ðkÞRueðkÞþV1ðeðkþ1ÞÞ: ð68Þ

Note that ue(k) is chosen arbitrarily, so we have

V1ðeðkÞÞrmin
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþV1ðeðkþ1ÞÞg: ð69Þ

On the other hand, for any i, the cost function sequence satisfies

ViðeðkÞÞ ¼min
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþVi�1ðeðkþ1ÞÞg: ð70Þ

With ViðeðkÞÞrV1ðeðkÞÞ, 8i, we have

V1ðeðkÞÞZmin
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþVi�1ðeðkþ1ÞÞg: ð71Þ

Let i-1. Then we can get

V1ðeðkÞÞZmin
ueðkÞ
feT ðkÞQeðkÞþuT

e ðkÞRueðkÞþV1ðeðkþ1ÞÞg: ð72Þ

Then, combining (69) and (72), we can obtain (65). &

As a result, we can conclude that the cost function sequence
fVig converges to the optimal cost function of the discrete-time
HJB equation Jn, i.e., Vi-Jn as i-1. Furthermore, according to
(41), it is clear that the corresponding control law sequence fvig

converges to the optimal control law un
e , i.e., vi-un

e as i-1.

4.3. NN implementation of the iterative ADP algorithm

In this part, we implement the iterative HDP algorithm using
NNs. Since the regulation system (8) converted from the tracking
control problem is still a nonlinear system, it is difficult to get the
optimal feedback control analytically. Thus, we need to use
parametric structures, such as NNs, to approximate the cost
function and the corresponding control law.

In the iterative HDP algorithm, there are four NNs, which are
model network (the NN identifier), the feedforward neuro-con-
troller, critic network and action network. All the networks are
chosen as three-layer feedforward NNs. The structure diagram
of the iterative HDP algorithm is shown in Fig. 2, where
êðkþ1Þ ¼ x̂ðkþ1Þ�rðkþ1Þ.

From Fig. 2, it can be seen that with e(k), r(k) and v̂iðeðkÞÞ, the
estimated tracking error êðkþ1Þ can be obtained with the aid of
the NN identifier and feedforward neuto-controller. Using the
feedforward neuro-controller, we can obtain the desired control
ud(k) corresponding to the reference trajectory r(k). Then, with
xðkÞ ¼ eðkÞþrðkÞ and uðkÞ ¼ v̂iðeðkÞÞþudðkÞ, x̂ðkþ1Þ can be obtained
by the NN identifier. Furthermore, with x̂ðkþ1Þ and rðkþ1Þ, we
can get the estimated tracking error êðkþ1Þ. The detailed estab-
lishments of the NN identifier and feedforward neuro-controller
have been shown in Section 3.

Additionally, it should be noted that before implementing the
iterative algorithm, the training of both the NN identifier and the
feedforward neuro-controller should be completed. Then, the
corresponding weights are kept unchanged.
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Fig. 2. The structure diagram of the iterative HDP algorithm.
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The critic network is used for approximating the cost function
Viþ1ðeðkÞÞ. The output of the critic network is denoted as

V̂ iþ1ðeðkÞÞ ¼oT
cðiþ1Þsðn

T
cðiþ1ÞeðkÞÞ: ð73Þ

Based on (42), Viþ1ðeðkÞÞ can be written as

Viþ1ðeðkÞÞ ¼ eT ðkÞQeðkÞþ v̂
T
i ðeðkÞÞRv̂iðeðkÞÞþ V̂ iðeðkþ1ÞÞ: ð74Þ

Thus, we define the prediction error for the critic network as

ecðiþ1ÞðkÞ ¼ V̂ iþ1ðeðkÞÞ�Viþ1ðeðkÞÞ: ð75Þ

The objective function to be minimized for the critic network is

Ecðiþ1ÞðkÞ ¼
1
2eT

cðiþ1ÞðkÞecðiþ1ÞðkÞ: ð76Þ

The weight updating rule for the critic network is the gradient-
based adaptation given by

ocðiþ1Þðjþ1Þ ¼ocðiþ1ÞðjÞ�ac
@Ecðiþ1ÞðkÞ

@ocðiþ1ÞðjÞ

� �
,

ncðiþ1Þðjþ1Þ ¼ ncðiþ1ÞðjÞ�ac
@Ecðiþ1ÞðkÞ

@ncðiþ1ÞðjÞ

� �
, ð77Þ

where ac 40 is the learning rate of the critic network and j is the
inner-loop iterative step for updating the weight parameters.

The action network takes the state e(k) as the input and
outputs the control v̂iðeðkÞÞ. The output can be formulated as

v̂iðeðkÞÞ ¼oT
cisðn

T
cieðkÞÞ: ð78Þ

Considering (41), the target value of the control vi(k) can be
obtained by

viðeðkÞÞ ¼�
1

2
R�1gT ðeðkÞþrðkÞÞ

@V̂ iðeðkþ1ÞÞ

@êðkþ1Þ
: ð79Þ

Thus, we define the prediction error for the action network as

eaiðkÞ ¼ v̂iðeðkÞÞ�viðeðkÞÞ: ð80Þ

The weights of the action network are updated to minimize the
following performance error measure:

EaiðkÞ ¼
1
2eT

aiðkÞeaiðkÞ: ð81Þ

The weight update for the action network is similar to the weight
adjustment in the critic network. By the gradient descent rule

oaiðjþ1Þ ¼oaiðjÞ�ba

@EaiðkÞ

@oaiðjÞ

� �
,

naiðjþ1Þ ¼ naiðjÞ�ba

@EaiðkÞ

@naiðjÞ

� �
, ð82Þ

where ba40 is the learning rate of the action network and j is the
inner-loop iterative step for updating the weight parameters.

Additionally, considering (79), it is important to note that the
control coefficient matrix gðxðkÞÞ is required for computing the
target value of the control viðeðkÞÞ. However, for unknown non-
linear systems, gðxðkÞÞ cannot be obtained directly. In this paper,
using the NN identifier, we can obtain the estimated value of the
control coefficient matrix, i.e., ĝ ðxðkÞÞ. Considering (1) and (33),
we have

ĝðxðkÞÞ ¼
@ôT

mðkÞsðzðkÞÞ
@uðkÞ

¼ ôT
mðkÞ

@sðzðkÞÞ
@zðkÞ

nnT
m

@zðkÞ

@uðkÞ
: ð83Þ

Thus, it is clear that ĝðxðkÞÞ can be obtained by the backpropaga-
tion from the outputs x̂ðkþ1Þ of the NN identifier to its input u(k).
5. Simulation study

In this section, an example is provided to demonstrate
the effectiveness of the proposed tracking control scheme. The
example is derived from [24].

Considering the following nonlinear system:

xðkþ1Þ ¼ f ðxðkÞÞþgðxðkÞÞuðkÞ, ð84Þ

where xðkÞ ¼ ½x1ðkÞ x2ðkÞ�
T AR2 is the system state and uðkÞ ¼

½u1ðkÞ u2ðkÞ�
T AR2 is the control input. The corresponding f ðxðkÞÞ

and gðxðkÞÞ are given as

f ðxðkÞÞ ¼
�sinð0:5x2ðkÞÞx

2
1ðkÞ

�cosð1:4x2ðkÞÞsinð0:9x1ðkÞÞ

" #
,

gðxðkÞÞ ¼
1 0

0 1

� �
:

The reference trajectory for the above system is defined as

rðkÞ ¼
sinð0:25kÞ

cosð0:25kÞ

" #
:
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Fig. 4. The desired control ud1 from feedforward neuro-controller.
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The initial state is set as xð0Þ ¼ ½0:5 0:5�T . The cost function is
defined by (10), where Q and R are chosen as identity matrices of
appropriate dimensions. It is assumed that the system dynamics
is completely unknown and the input–output data are available.

To begin with, an NN identifier is established by a three-layer
BP NN which is chosen as 4–8–2 structure with 4 input neurons,
8 hidden neurons and 2 output neurons. For the NN identifier, the
hidden layer uses the sigmoidal function tansig and the output
layer uses the linear function purelin. Let the learning rate
lm¼0.05. With the initial weights being chosen randomly in
½�0:1,0:1�, we train the NN identifier for 1000 steps using 500
data samples by the Levenberg–Marquardt algorithm. The train-
ing result is shown in Fig. 3.

From Fig. 3, it is clear that since the system identification error
converges to zero, so the NN identifier successfully learns the
dynamics of the unknown nonlinear system. Then, with the aid of
the trained NN identifier, a feedforward neuro-controller is set up
by a BP NN with the structure of 2–15–2. Similar to the NN
identifier, the initial weights are chosen randomly in ½�0:1,0:1�.
Considering the practical tracking region, the reference output is
given randomly in the time range from 0 to 1000 seconds in our
simulation. Then, we train the feedforward neuro-controller for
1000 steps using 1000 data samples. After the training of the
feedforward neuro-controller completes, it is tested with a
reference output within the selected time region. The results are
shown in Figs. 4 and 5.

From Figs. 4 and 5, it can be seen that the feedforward neuro-
controller have learned the desired control ud(k).

The initial weights of the critic and action networks are all set
to be random in ½�0:1,0:1�. Let the learning rate ac ¼ ba ¼ 0:05,
we train the critic and action networks for 200 iterations (i.e., for
i¼ 1,2, . . . ,200) with each of iteration containing 300 training
steps to reach the given accuracy e¼ 10�6. Then, we apply the
optimal tracking control scheme to the system for 50 time steps
and obtain the relevant simulation results. The obtained state
curves are shown in Figs. 6 and 7, where the corresponding
reference trajectories are also plotted for assessing the tracking
performance. The tracking control curves and the tracking errors
are shown in Figs. 8 and 9, respectively. The simulation results
show that the proposed tracking controller based on the iterative
HDP algorithm obtains the satisfying tracking performance for
unknown nonlinear systems.

To further check the effectiveness of the proposed optimal
tracking control scheme, for the above example, we change
the control coefficient matrix gðxðkÞÞ from a constant matrix to a
function matrix.
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Let the function matrix gðxðkÞÞ be rewritten as

gðxðkÞÞ ¼
ðx1ðkÞÞ

2
þ1:5 0:1

0 0:2ððx1ðkÞþx2ðkÞÞ
2
þ1Þ

" #
:

All the other parameters are set the same as the above.



0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time steps

u
1

u
2

Fig. 8. The tracking control trajectory u.

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time steps

T
he

 tr
ac

ki
ng

 e
rr

or

e
1

e
2

Fig. 9. The tracking error e.

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

Time steps

r
1

x
1

Fig. 10. The state trajectory x1 and the reference trajectory r1.

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

Time steps

r
2

x
2

Fig. 11. The state trajectory x2 and the reference trajectory r2.

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

Time steps

r
2

x
2

Fig. 7. The state trajectory x2 and the reference trajectory r2.

Y. Huang, D. Liu / Neurocomputing 125 (2014) 46–5654
First, the NN identifier and feedforward neuro-controller are
retrained using the new input–output data with the relevant NN
parameters selected the same as in the above example. Then, let
the initial weights of the critic and action networks be random in
½�0:1,0:1�. With the learning rate ac ¼ ba ¼ 0:05, we train the critic
and action networks for 300 iterations (i.e., for i¼ 1,2, . . . ,300)
with each of iteration containing 500 training steps to reach the
given accuracy e¼ 10�6. Then we apply the optimal tracking
control scheme to the system for 50 time steps and obtain the
relevant simulation results.

The obtained state curves are shown in Figs. 10 and 11. The
tracking errors are shown in Fig. 12. Besides, the tracking control
curves are given in Fig. 13. Hence, from these simulation results, it
is clear that the optimal tracking control scheme proposed in this
paper is very effective in solving the tracking control problems for
unknown nonlinear systems.
6. Conclusion

In this paper, we propose an optimal tracking control scheme
based on the iterative HDP algorithm for a class of unknown
discrete-time nonlinear systems. For dealing with the unknown
nonlinear system, two BP NNs are employed to construct the NN
identifier and feedforward neuro-controller, respectively. The NN
identifier is used to learn the dynamics of the system, while
the feedforward neuro-controller is used to learn the inverse
dynamics of the system for outputting the desired tracking
control. Then, the iterative HDP algorithm is introduced to obtain
the optimal feedback control for stabilizing the state tracking
error dynamics. In the implementation of the iterative algorithm,



0 10 20 30 40 50
−8

−6

−4

−2

0

2

4

6

8

Time steps

u
1

u
2

Fig. 13. The tracking control trajectory u.

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time steps

T
he

 tr
ac

ki
ng

 e
rr

or

e
1

e
2

Fig. 12. The tracking error e.

Y. Huang, D. Liu / Neurocomputing 125 (2014) 46–56 55
the feedforward NNs are used as parametric structures to approx-
imate the cost function and the corresponding control. Simulation
results confirmed the validity of the optimal tracking controller
based on the iterative HDP algorithm.
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