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This paper presents a new approach for the calibration and control of spark ignition engines using a
combination of neural networks and sliding mode control technique. Two parallel neural networks are
utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines.
The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of
using error backpropagation algorithm, the network weights of equivalent control are updated using the
Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective
control. Both modifications of the NSLMC are aimed at improving the transient performance and speed
of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for
the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers
to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values
under various operating conditions. From simulation studies, the feasibility and efficiency of the approach
are illustrated. For both control problems, excellent tracking performance has been achieved.
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1. Introduction

In an effort to design more advanced engine con-
trol algorithms with the objective of reduced emis-
sions and improved performance, we develop and
evaluate a learning control technique based on slid-
ing mode control methods (SLMCs). The theory
of sliding mode control has been developed and
widely used for more than three decades due to its
robustness to system parameter uncertainties and

external disturbances.14,19,23–26,34,38,41 Essentially,
SLMCs utilize a high-speed switching control law to
drive state trajectory of the nonlinear system onto a
specified surface in the state space, called the sliding
surface, and to maintain the system state trajectory
on this surface for all subsequent times. The system
dynamics restricted to this surface result in highly
robust control systems. By proper design of the slid-
ing surface, SLMCs achieve the conventional goals
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of control such as stabilization, tracking and regula-
tion. In practical control applications, however, the
problem of chattering and difficulty in the calcula-
tion of equivalent control limit the implementation
of SLMCs. The equivalent control cannot be cal-
culated accurately because only partial knowledge
about the system is available. The chattering brought
by the high frequency oscillations of the controller
output results in low control accuracy and potential
instability. The most common approach to reducing
the chattering is using a saturation function.44 In
order to compensate for the uncertainties of the plant
and reduce the computational burden, we use an
estimation technique based on a neural network for
the calculation of the equivalent control. Meanwhile,
the continuous output of the corrective controller
replaces the discontinuous sign term in conventional
SLMCs for the elimination of chattering effects.

Automotive engines are known to be complex
nonlinear dynamical systems. The control problems
of automotive engines have been investigated by
many researchers (see, e.g.,2,27–29,33,37,43 and the
references cited therein). Almost every branch of
the modern and classical control theory has been
researched for the control of automotive engines.
The present study considers the neuro-sliding mode
control (NSLMC) for both engine torque (TRQ)
and air-to-fuel ratio (AFR) control of automotive
engines. A good deal of work has been reported for
the engine control using SLMCs, a few examples of
which are cited in.4,22,31,32,35,39,42 The application of
model-based SLMCs is the emphasis in these works.
SLMCs also have been applied to motion control and
robotics.

Integration of a neural network into SLMCs can
alleviate the problems associated with SLMCs,21

which can be classified into three main categories.
The first method is the use of different kinds of neu-
ral networks to approximate the plant nonlinearities
or uncertainties and subsequently improve the con-
trol performance.10,18,43 The second method utilizes
a neural network for the adaptation of the SLMCs
parameters where the SLMCs parameters are pro-
gressively updated.20,27 The third approach is the
use of neural network together with SLMCs either
in parallel to act as the compensator for the conven-
tional SLMCs controller1,24 or to compute the equiv-
alent and corrective control.6,13,40 In Refs. 11 and

36), two parallel neural networks were used to real-
ize the equivalent control and the corrective control
of sliding mode control (SLMC) design. The distinc-
tion between these two works is in the error term for
updating the neural network of the equivalent con-
trol. In (Ref. 11), the corrective control is handled as
the error while in (Ref. 36), it is the sliding function
S. However, the speed of convergence of either algo-
rithm is slower than the one proposed in this paper
where no special parameter tuning is needed.

The present work uses two parallel neural net-
works to realize the equivalent control and the correc-
tive control of the SLMC design. The calculation of
the equivalent control is realized by adaptively learn-
ing without a priori knowledge of the plant dynam-
ics. The proposed adaptation scheme directly results
in a chatter-free control action for the corrective con-
trol. The method has been successfully applied for
the TRQ control16 in our earlier phases of the engine
control and calibration work. However, the AFR reg-
ulation is a more difficult control problem due to vari-
able time delay, uncertain external disturbances, and
pure dynamic effects of the process. Consequently,
special considerations include the characteristics of
the AFR process and control structure need to be
taken. The distinct feature of the present technique
is that the learning and control are carried out simul-
taneously, which allows the neural network controller
to be further refined and improved in real-time vehi-
cle operation through continuous learning and adap-
tation. For practical reasons, during the initial stage
of the neural network controller learning, it is not
practical to use on-line learning at the initial stage.
At the initial stage, off-line engine data for initial
simulation studies must be used to avoid damages
to the engine if it is controlled by a randomly chosen
initial controller. We will therefore first develop mod-
els of the engine for the purpose of initial controller
training. In the real-time implementation, models
will be replaced by the actual processes.

This paper is organized as follows: In Sec. 2,
neural network models of the test engine are devel-
oped. In Sec. 3, SLMC will be briefly introduced. In
Sec. 4, neuro-sliding mode controller will be devel-
oped. In Sec. 5, simulation results for engine TRQ
and exhaust AFR tracking control using NSLMC will
be presented. In Sec. 6, the paper will be concluded
with some remarks.
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2. Neural Network Modelling of TRQ
and AFR Dynamics

2.1. Engine description

A test vehicle with a V8 engine and 4-speed auto-
matic transmission is instrumented with engine and
transmission torque sensors, wide-range AFR ratio
sensors in the exhaust pipe located before and after
the catalyst on each bank, and exhaust gas pressure
and temperature sensors. The vehicle is equipped
with a dSPACE rapid prototyping controller for data
collection and controller implementation. Data are
collected at each engine firing event under various
driving conditions, such as federal test procedure
(FTP cycles), as well as the more aggressive driv-
ing patterns (known as US06 driving cycles), for a
length of about 95,000 samples during each test. The
production engine is run under closed-loop fuel con-
trol using switching oxygen sensors. During testing
of the control algorithms, the closed-loop fuel control
system uses information from the wide-range AFR
sensors. The dSPACE is interfaced with the pow-
ertrain control module in a by-pass mode. Neural
networks offer one of the most attractive techniques
to the design of the highly nonlinear and dynamic
models5,36 in such cases as AFR and TRQ estima-
tion processes. Due to distinct characteristics of the
TRQ and AFR processes, two neural network models
are built for these processes with structures compat-
ible with the mathematical engine models developed
by Dobner8,9 and others.

2.2. Identification of TRQ using
feedforward neural network

In view of the fact that the torque generation pro-
cess appears to be quasi-static and governed mostly
by nonlinear properties, it is assumed that a simple
multilayer feedforward network17 should be sufficient
for the process characterization and identification.
The system model is represented by a neural net-
work containing four input neurons, one hidden non-
linear layer using tansig function (i.e., the hyperbolic
tangent function) in Matlab7 with 10 neurons, and
one linear output neuron.16 The inputs to the model
are: TPS (throttle position), MAP (manifold abso-
lute pressure), RPM (engine speed) and SPA (spark
advance) where TPS is the control signal and the
other three inputs are reference signals compatible
with the control signal at any operating conditions.

The output is TRQ. The target is TRQ∗ which repre-
sents the measured values of engine torque generated
by the engine using conventional engine controllers in
open- and closed-loop operation. The TRQ network
was initialized to small random weights between
−0.18 and 0.18. The error backpropagation learn-
ing algorithm11 in the batch mode was utilized for
the training of the weights. The size of learning for
TRQ modeling is 10000 events. The learning rate is
set 0.01 at first. Then, the learning algorithm will
automatically adjust the learning rate according to
the performance. All the values of input and output
are normalized between the range of −1 and 1 for the
convenience of neural network training in both TRQ
and AFR modelling. Figure 1 shows the validation
result for the modelling of TRQ. Figure 2 shows the
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Fig. 1. Illustration of engine torque TRQ validation
data.
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relative deviation of the model from TRQ∗, that is,
(TRQ − TRQ∗)/ max(TRQ∗). Both figures demon-
strate a high degree of model accuracy.

2.3. Identification of AFR using
nonlinear output error model

Considering the AFR process dominated by purely
dynamic effects, we choose nonlinear output error
(NNOE) model30 to model AFR dynamics. In prac-
tice, NNOE model has been used frequently for
function approximation.3,30 The general form of the
NNOE model is:

ŷ(t|θ) = F [ŷ(t − 1|θ), ŷ(t − 2|θ), . . . , ŷ(t − m|θ),
u(t − 1), . . . , u(t − n)] (1)

where ŷ(t|θ) is the output, θ is the adjustable param-
eter, u(t) is a vector with several inputs, the indices
m = 2, n = 3 define the lag space dimensions of
external inputs and feedback variables, and F is a
nonlinear mapping function realized by a recurrent
neural network. We choose FPW (fuel pulse width)
as the control input which is generated using our
neural sliding mode controller. We also choose MAP
and RPM as reference inputs. Thus, the inputs u(t)
to the model are: MAP, RPM and FPW. The input
terms in (1) have the following structure:


u(t − 1)

u(t − 2)
u(t − 3)


 =




MAP(t − 1)
RPM(t − 1)
FPW(t − 1)
MAP(t − 2)
RPM(t − 2)
FPW(t − 2)
MAP(t − 3)
RPM(t − 3)
FPW(t − 3)




.

The output quantity is the exhaust AFR. The target
is AFR∗ which is obtained from the measured values
of air fuel ratio by a wide-range AFR sensor in the
dataset. The initial weights of the network were ini-
tialized to small random values between −0.18 and
0.18. Levenberg-Marquardt optimization algorithm
was employed to update the weights of the NNOE
neural model of AFR. The size of learning for AFR
modeling is 5000 events. Figure 3 shows the valida-
tion result for the modelling of AFR. Figure 4 shows
the relative deviation of the model from AFR∗, that
is, (AFR−AFR∗)/ max(AFR∗). Both figures indicate
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Fig. 3. Illustration of engine air-to-fuel ratio AFR vali-
dation data.
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Fig. 4. Illustration of relative deviation of the model
from AFR∗.

a very good match between the real vehicle data and
the NNOE model output.

3. Brief Introduction of Sliding Mode
Control

The aim of SLMCs is to drive the system states to
the sliding surface S = 0 and remain on the surface.
Once the states are on the sliding surface, the system
is insensitive to parameter variations or external dis-
turbances. The sliding mode control design approach
consists of two steps. The first step is to select a
sliding surface that models the desired closed-loop
performance in the state variable space according to
design specifications. The second step is concerned
with the selection of a control law which will drive
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the system state trajectory toward the sliding surface
and remain on it.

Consider the following nonlinear, multi-input
multi-output system:

Ẋ = G(X, U) (2)

where X ∈ Rp and U ∈ Rq are the states and the
control, respectively. The control problem is to find
a control law so that the states X can track the
desired trajectory Xd. Let the tracking error of the
system be

e = Xd(t) − X(t). (3)

The sliding surface S is defined in the state space
by the scalar function S(e) = 0, where

S(e) = cT e + dT ė (4)

c = [c1 c2 · · · cn]T , d = [d1 d2 · · ·dn]T , e =
[e1 e2 · · · en]T , and n is the number of parameters.
The vector c and d are chosen so that S(e) = 0, which
means the subsequent system is stable.41 Hence, the
control input can drive the system (2) to converge
on the sliding surface.

The design of SLMC is based on the selection
of Lyapunov function. The control should be chosen
such that the candidate Lyapunov function satisfy
Lyapunov stability criteria. In general, the control
input of SLMCs for the system based on Lyapunov
stability criteria is:

U(t) = Ueq(t) + Uc(t) (5)

where Ueq represents the equivalent control which is
the control action necessary to maintain an ideal slid-
ing motion on the sliding surface and Uc represents
the corrective control which drives the phase trajec-
tory towards the sliding surface. The calculation of
the equivalent control requires a good mathematical
model of the system, G in Eq. (2), which is hard to
obtain. The corrective control is given by Ksign(S) in
conventional SLMCs which exhibits high frequency
oscillations in its output, resulting in the chatter-
ing problem. The introduction of the boundary layer
as a substitute for the sign function could provide
a chattering-free system.44 However, a finite steady
error would always exist. To eliminate the chattering
effect, we suggest that instead of the sign function,
a saturation or a sigmoid function12 is used. In our

design, the shifted sigmoid function T (S) is used to
compute the corrective control:

Uc(t) = KT (S) (6)

where T (S) is chosen as follows:

T (S) =
1 − e−S

1 + e−S
. (7)

Since the output of the corrective controller is con-
tinuous and variable, the chattering is effectively
eliminated.

4. Neuro-Sliding Mode Control

In this study, considering the difficulty of the cal-
culation of the equivalent control, we use neural
networks to generate both the equivalent control
and the corrective control in the SLMC. The com-
bination of neural networks and SLMCs assures
the desirable properties of both neural network and
SLMCs are captured. Neural network- based equiv-
alent control and corrective control possess the abil-
ity for self-adaptation to system uncertainties and
also robustness to parameter variations and exter-
nal disturbances. In this work, the goal of NSLMC
design is to minimize the value of sliding function S

such that the system states reach the sliding surface
as soon as possible. Two neural networks in parallel
are used to realize the equivalent control and cor-
rective control of SLMC design as in Fig. 5 which
shows where neural network 1 (NN1) is used to esti-
mate the equivalent control (Ueq), and neural net-
work 2 (NN2) is employed to generate the corrective
control (Uc).

4.1. Neural computation of the
equivalent control

The structure will be chosen as a two-layer feedfor-
ward neural network with one hidden layer and one

U System
Actual State

Neural Network 1

Neural Network 2

Ueq

Error

−

+ Uc

Equivalent Control

Corrective Control
Desired State

Actual State

Desired State

Fig. 5. Structure of neuro-sliding mode control.
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output layer. The inputs to the neural network are
the desired target and actual values of the states.
The output of the neural network is the equivalent
control Ueq. The weight adaptation of the neural net-
work is based on a minimization of the cost function
as follows:

E =
1
2
(Ueq − Ûeq)2 =

1
2
ζ2 (8)

where Ûeq is the estimated value of the equivalent
control and ζ = Ueq − Ûeq.

The Levenberg-Marquardt (L-M) algorithm is
used to update the weights of NN1 instead of the
error backpropagation (BP) algorithm. The selection
of L-M algorithm is based on the fact that the L-M
algorithm is widely accepted as the most efficient one
in the sense of realization accuracy for nonlinear least
squares.15

The formula for updating weights is given as
follows:

�W = [JT (W )J(W ) + µI]−1JT (W )ζ (9)

where the parameter µ is adjustable, W is adjustable
weight vector and J(W ) is the Jacobian matrix.
J(W ) can be expressed as follows:

J(W ) =
[

∂ζ

∂W1

∂ζ

∂W2
· · · ∂ζ

∂Wn

]T

. (10)

From Eq. (8),

∂ζ

∂Wi
=

∂(Ueq − Ûeq)
∂Wi

= −∂Ûeq

∂Wi
. (11)

Equation (11) can be calculated using the standard
BP algorithm. Thus, the Jacobian matrix can be
computed by Eq. (10) and Eq. (11).

From Eq. (8), we find that the desired equivalent
control is unknown. To overcome this problem, it is
suggested that Ueq − Ûeq is replaced by the value of
sliding function S since the characteristics of Ueq −
Ûeq and S are similar, that is, when S is close to 0,
Ueq − Ûeq → 0.40

4.2. Neural computation of the
corrective control

The structure of the NN2 is decided by the design of
SLMC. From Eq. (4) and Eq. (6), the gains of SLMC
are represented as the weights of neural network 2

e 1
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•
•
•

•
•
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•

•
) K

en
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en

c 1

cn

d1

dn

Uc

Fig. 6. Structure of neural network #2 for the corrective
control.

as shown in Fig. 6. In this way, the gains of SLMC
are adapted gradually to the best values. The cost
function is chosen to drive the states converging to
sliding surface as follows:

Jc =
1
2
SST . (12)

Minimization of Jc results in minimization of S. To
minimize Jc, the weights are changed in the direction
of the negative gradient,

�K = −µ
∂Jc

∂K
(13)

�ci = −µ
∂Jc

∂ci
(14)

�di = −µ
∂Jc

∂di
(15)

where K is defined in Eq. (6), ci and di are both
defined in Eq. (4), and µ is the learning rate.

The gradient descent for ci can be derived using
Eq. (4) as:

�ci = −µ
∂Jc

∂ci
= −µ

∂Jc

∂S

∂S

∂ci
= −µS

∂S

∂ci

= −µ · S · ei. (16)

The gradient descent for di can be derived using
Eq. (4) as:

�di = −µ
∂Jc

∂di
= −µ

∂Jc

∂S

∂S

∂di
= −µS

∂S

∂di

= −µ · S · ėi. (17)

The gradient descent for K can be derived as:

�K = −µ
∂Jc

∂K
= −µ

∂Jc

∂S

∂S

∂K
= −µS

∂S

∂K
. (18)

From Eq. (4),

S(e) = cT e + dT ė = cT (Xd − X) + dT ė. (19)
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That is, from Eq. (2), Eq. (5), Eq. (6) and Eq. (19)

∂S

∂K
= −cT ∂X

∂K
= −cT ∂X

∂U

∂U

∂Uc

∂Uc

∂K

= −cT ∂X

∂U
T (S) (20)

where X is the state of the system and T (S) is
defined in Eq. (7). Since TRQ and AFR dynamics
are represented by neural networks, according to the
BP algorithm, ∂X/∂U can be derived easily. Finally,

�K = −µScT ∂X

∂U
T (S). (21)

The most significant feature of an SLMC is its
robustness. When a system is in a sliding mode, it is
insensitive to noise or external disturbances. There-
fore, it is a good candidate for tracking control of
uncertain nonlinear systems.21

5. Simulation Studies of NSLMC
of a V8 Engine Control

The objective of the present engine controller design
is to provide control signals, so that the TRQ gen-
erated by the engine will track the TRQ measure-
ment as in the dataset and the AFR will track the
target values also as in the dataset. The measured
TRQ values in the data are generated by the engine
using the existing controller. Our learning controller
will assume no knowledge about the control signals
provided by the existing controller. It will generate
a set of control signals that are independent of the
control signals in the measured data. Based on the
data collected, we use our learning controller to gen-
erate control signals TPS and FPW with the goal of
producing exactly the same TRQ and AFR as in the
data set. That is to say, we require our system out-
puts follow the cooresponding measured values as in
the dataset and build controllers that provide con-
trol signals that achieve the target TRQ and AFR
control performance of the engine.

5.1. NSLMC for engine control

The neural network for the equivalent control for
both TRQ and AFR is chosen as a 2-9-1 structure
with 2 inputs and 9 hidden layer neurons. Both the
hidden layer and the output layer use the tansig

function. The block diagram of the present NSLMC
controller for TRQ control is shown in Fig. 7. The

System

Neural Network 1

Neural Network 2

Ueq

Error

−

+ Uc

Equivalent Control

Corrective Control

TPS TRQ

TRQ*

Fig. 7. Structure of NSLMC for the TRQ control.

System
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Neural Network 2

Ueq

Error

−

+ Uc

Equivalent Control

Corrective Control

*

AFRFPW

AFR

MAP(t−1)

RPM(t−1)

Fig. 8. Structure of NSLMC for the AFR control.

inputs to the NN1 are TRQ∗ (TRQ∗ is the com-
manded TRQ value) and the measured TRQ. The
sum of two outputs of the NN1 and NN2 is TPS
which is the control signal for the TRQ control loop.
The block diagram for the AFR control is shown in
Fig. 8. The inputs to the NN1 are MAP(t-1) and
RPM(t-1) from the data. The sum of the two outputs
of the NN1 and NN2 is FPW (fuel pulsewidth) which
is the control signal for the AFR control loop. AFR∗

is the desired AFR value. Both TRQ∗ and AFR∗ are
read from the data set, indicating the desired val-
ues for the present control algorithm to track. The
TRQ and AFR dynamic systems are rpresented by
the neural network models we built in Sec. 2.

The sliding surface S is defined as:

S = c1e + d1ė (22)

where e represents the difference between the tar-
get (TRQ∗ or AFR∗) and the actual values (TRQ or
AFR). The sliding surface chosen in this way will lead
to control objectives of TRQ which follows TRQ∗

and AFR which follows AFR∗. The overall proce-
dures of NSLMC technique for engine control are
given as follows:

Step 1. Initialize: Set all weights of NN1 to small
random values in the range of [−0.18 0.18].
The weights of NN2: ci, di and K can be
selected randomly, that is, they do not have
to be selected with big initial values. The
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range of [1 3] works well. In the simulations,
ci, di and K are set as 1 for TRQ control
and 1, 1, 2, respectively, for AFR control.
Set learning rate 0 < µ < 1. All values of
signals were normalized to a range between
−1 and 1 for convenience in the neural net-
work training.

Step 2. Compute the equivalent control Ueq from
NN1.

Step 3. Compute the corrective control Uc from
NN2.

Step 4. Apply the sum of equivalent control and cor-
rective control to the engine system.

Step 5. Measure the state of the engine system
(TRQ or AFR).

Step 6. Adjust the weights of NN1 and NN2 accord-
ing to the weight adaptation rules described
in Sec. 4.

Step 7. Repeat by going to Step 2 until the conver-
gence criterion is achieved.

5.2. Simulation results

We randomly choose to use 4000 points from the
data (1000-5000 in the data set) for TRQ control
and 3000 points (25000-28000 in the data set) for
AFR control. Figure 9 and 13 show the controller
performance for TRQ and AFR, respectively. Both
figures show that excellent tracking control perfor-
mance is achieved. We note that, at the present stage
of the research, we have not attempted to regulate
the AFR at the stoichiometric value but to track a
given command. In these experiments, we simply try
to track the measured engine-out AFR values, so that
the control signal obtained can be directly validated
against the measured control signals in the vehicle.
Figures 10 and 14 show the output of the equiva-
lent control and corrective control compared to the
TPS or FPW values in the dataset. From the fig-
ures, we can see that most of the time, the corrective
control is around zero. Only when the system states
deviate from the sliding mode, the controller takes
action to pull the system states back to the sliding
surface. The trajectory of the sliding function S is as
in Figs. 11 and 15. From the figures, we can see that
only after 5 events, the sliding function S reaches the
acceptable value (under 0.005 is generally regarded
as acceptable). Figure 12 demonstrates good gener-
alization ability of the NLSMC controller for TRQ
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Fig. 9. Control effect of NSLMC for TRQ control.
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Fig. 13. Control effect of NSLMC for AFR control.
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Fig. 16. NSLMC generalization ability for AFR control.

control and Fig. 16 demonstrates acceptable gener-
alization ability of the NLSMC controller for AFR
control.

5.3. Discussions of the achieved results

The figures shown in this section indicate that
the present learning controller design based on the
combination of neural network and sliding mode con-
trol is effective in training a neural network con-
troller to track the desired TRQ and AFR sequences
through proper control actions. The performance of
TRQ controller is a little better than the perfor-
mance of AFR controller mainly due to the fact that
the process of AFR is far more complex than the
TRQ process. Combustion TRQ is mostly governed
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by process nonlinearities whereas the AFR process is
mostly dominated by dynamic effects.

Figures 11 and 15 show the trajectory of the
sliding function S. For a sliding mode-based con-
trol system, the dynamic behavior is determined by
the sliding surface when the system is in the slid-
ing mode. The sliding surface is chosen as S(e) =
cT e + dT ė which its value reflects the difference
between the actual and the targeted trajectory. The
sliding surface chosen in this way will lead to con-
trol objectives of TRQ which follows TRQ∗ and AFR
which follows AFR∗. When the sliding curve is near
zero, it means that TRQ follows TRQ∗ and AFR
tracks AFR∗.

The adoption of L-M optimization method
instead of BP for updating the weights of neural net-
works increases the convergence rates significantly.
It took only 15 steps (about 1 minute) to achieve
very good results for TRQ control and 20–30 steps
(around 5 minutes) for AFR control (The configura-
tion of computer is Pentium 4 with clock frequency of
3.2GHz with 1GB RAM). Compared to the training
technique used in (Ref. 36) which took one hour for
TRQ control, the training speed is a lot quicker and
there were no oscillations during the training.16 The
parameters of the neural network for the corrective
control were set by trial and error in (Refs. 11 and
36) which is a time-consuming task, and they were
selected as large values to achieve a fast convergence.
In our scheme, the parameters values are selected as 1
or 2 which is enough to guarantee convergence. Since
the controlled systems are modelled using neural net-
work, the way of computation of K here is different
from the method in (Refs. 11 and 36) where the com-
putation of the gradient of K is acquired from the
integral of G(s). The integral of G(s) would bring
unpredictably big values in real experiments, result-
ing in potential instability. Boundary layer is set to
assure stability in (Refs. 11 and 36).

6. Conclusions

Our research results have demonstrated that
NSLMC provides a powerful alternative approach
for engine calibration and control. The design is the
combination of neural networks and sliding mode
control. Two parallel neural networks are utilized to
realize the equivalent control and the corrective con-
trol of SLMC. The successful application of NSLMC

to TRQ and AFR control enables us to reach the
following conclusions: (1) The proposed technique
automatically learns the inherent dynamics and
nonlinearities of engine processes from the real vehi-
cle data and therefore no prior models and/or sys-
tem characterization are necessary, (2) The present
method involves neural network models of an engine
for which a controller is designed and evaluated based
on the models. Such a method will further advance
the development of a virtual powertrain for perfor-
mance evaluation of various control strategies in a
test vehicle, and (3) Learning and control are carried
out simultaneously with very fast convergence rates
in the proposed controller. This allows the controller
to be further refined and improved during real-world
vehicle operation through continuous learning and
adaptation. As such, this technique may offer an
advantage as an enabling tool for real-time engine
calibration and control.

The simulation results indicate that the proposed
NSLMC are effective in achieving the TRQ and AFR
tracking requirements through neural network learn-
ing. In a future work, we plan to implement the algo-
rithms in an actual vehicle for further evaluation and
possible refinements.
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