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Adaptive Feedback Control by Constrained
Approximate Dynamic Programming

Silvia Ferrari, Member, IEEE, James E. Steck, and Rajeev Chandramohan

Abstract—A constrained approximate dynamic programming
(ADP) approach is presented for designing adaptive neural net-
work (NN) controllers with closed-loop stability and performance
guarantees. Prior knowledge of the linearized equations of motion
is used to guarantee that the closed-loop system meets perfor-
mance and stability objectives when the plant operates in a linear
parameter-varying (LPV) regime. In the presence of unmodeled
dynamics or failures, the NN controller adapts to optimize its
performance online, whereas constrained ADP guarantees that
the LPV baseline performance is preserved at all times. The
effectiveness of an adaptive NN flight controller is demonstrated
for simulated control failures, parameter variations, and near-stall
dynamics.

Index Terms—Approximate dynamic programming (ADP), con-
strained optimization, feedback control, neural networks (NNs).

I. INTRODUCTION

HE AEROSPACE community has long been interested in

applying adaptive neural networks (NNs) to flight control
in the hope of handling unexpected failures and emergency
maneuvers. This problem is very challenging because, although
the adaptation must handle a variety of operating conditions, the
controller must maintain a high level of safety and performance
at all times. On the other hand, adaptive NN controllers could
greatly impact commercial and general aviation aircraft. One
goal of the industry is to produce a safer aircraft by eliminating
loss of control and adapting to failure. Another goal is to build
an aircraft that is easier to fly and cheaper to operate by opti-
mizing its response to pilot command inputs and minimizing
control usage.

There is considerable precedent for applying classical control
designs and approximate dynamic programming (ADP) to neu-
rocontrol to handle uncertainties and nonlinear plant dynamics
[1]-[7]. A common approach consists of superimposing an
adaptive neural element onto a classical control structure to
handle uncertainties. However, by assuming a special form for
the plant dynamics, these designs may display poor perfor-
mance and robustness elsewhere in the operating domain. In
principle, ADP NN controllers can optimize performance sub-
ject to any plant dynamics. However, they are often criticized
for the lack of closed-loop stability and performance guarantees
that characterize classical controllers. A few approaches based
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on Lyapunov functions [8], [9] and linear difference inclusion
[1] have been proposed to prove the closed-loop stability of
sigmoidal NNs. However, a methodology is still missing for
synthesizing ADP NN controllers that meet classical control
objectives and are closed-loop stable. In this paper, a controller
entirely composed of a recurrent sigmoidal NN adapts online
by a constrained ADP algorithm that preserves classical perfor-
mance and stability guarantees.

II. NN CONTROL OBJECTIVES AND SPECIFICATIONS

Modern gain-scheduled controllers are capable of providing
satisfactory performance in the linear parameter-varying (LPV)
regime of the plant, i.e., X1,py. However, they are not designed
to handle unforeseen operating conditions or failures that cause
the plant to abandon Xy,py. Many real plants are characterized
by a high-dimensional operating domain X and experience a
wide range of unmodeled dynamics and parameter variations
over their lifetime. Therefore, it would be infeasible to de-
sign the controller for all possible conditions a priori. A NN
controller can adapt online and account for non-LPV regimes
only if and when they arise. At the same time, it must provide
the same performance and safety guarantees as classical linear
designs in Xy pv, where the plant operates most of the time.

Consider a plant whose dynamics can be approximated by
the following nonlinear differential equation:

{56=f(x,pm7u) i
Yy = h(z, pm,u)

where z € X < R™*! is the state, u € U  R™*! is the con-
trol, p,, € R#*1 is a vector of parameters, and y € R™*1 is
the output. The differential equation structure and parameters
Pm are not always known a priori and are subject to change.
The complete range of dynamics that the plant can experience
{X, U} is its full operating domain and is assumed to be ob-
servable. The control objectives are expressed by the following
integral cost function:

J = lim

ty—o0

1 f
tft/ﬁ[x(T),u(T)] dr 2)

to be minimized with respect to the control law u = ¢(x).
Typically, the plant operates in a subset of the state
space Xppy C X in which plant dynamics can be closely
approximated by a class of affine nonlinear systems
{ Az = F(z)Az + G(x)Au 3)

Ay = H,(z)Az + H,(z)Au
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Fig. 1. State-feedback dynamic NN controller.

where A denotes deviations from the equilibrium. The func-
tions F', G, H;, and H, can be approximated by a set of
matrices A; ~ F((;), B; = G((;), Cj = Hy((;), and D; ~
H,(¢;) for p equilibria or scheduling vectors {C1,...,(p} €
X1pv, where ¢ € R**! contains time-varying parameters and
state variables that significantly influence plant dynamics.
Then, there exists a linear time-invariant (LTI) model that
provides a satisfactory representation of plant dynamics near
¢; € Xrpv and can be represented by the transfer function
P;(s), where

J=L...,p. 4

P Az = AjAx + BjAu
8 {AijAerDjAu

A dynamic state-feedback control law is given by the NN

{iJK = Ak (Q)zx + Br(¢)Ay )
Au=uy = v®(Wz,)
with input z, = [xT (T]7, where y :=[AxT 2L ]T €

R¥*! and the controller state zx € R**! is a function of
uny (Fig. 1). The control is assumed to be scalar without
loss of generality. The adjustable parameters v € R'*! and
W € R>(¥+2) and the matrix functions Ax (¢) € R*** and
Bk (¢) € R**", are determined in Section IV. ® is a diagonal
operator with repeated sigmoids, i.e.,

®(n) := [o(n1) o(m)]" (6)
where n; denotes the ith component of a signal n € R*!. In
this paper, o(n;) := (e —1)/(e™ + 1); thus, 0 : R — R is
monotonically nondecreasing, is slope restricted, and belongs
to the sector o, 8], witha =0 and 8 = 1/2.

The design objectives of the NN controller are given as
follows.

1) Provide the same performance and stability guarantees as
a classical linear controller given a priori knowledge of
the plant dynamics in Xy py.

2) Adapt online to accommodate for plant dynamics that are
unknown a priori, or arise in {X\Xppy }, by optimizing
the same control objectives used in objective 1).

3) Satisfy objective 1) while adapting according to objec-
tive 2) to preserve the desired LPV performance baseline
at all times.

983

III. REVIEW OF IQCs

This section reviews the results from [10] on integral
quadratic constraints (IQCs) for monotonic and slope-restricted
diagonal operators. IQCs are used to analyze feedback intercon-
nections between an LTI operator

H(s):{XAX+Bg

@)
n=Cx+ Eg

and a bounded causal operator ® that is possibly nonlinear,
where xy € R"*Y, n e £, , g € LT, and L3, denotes the lin-
ear space of all functions ¢ : (0, 00) — R™, which are square
integrable on any finite interval.

Assume that @ can be described by the following IQC

inequality:
][] nia

(M} dw >0 ®)
(Jw)

where N (jw) and G (jw) denote the Fourier transforms of n(¢)
and g(t) at frequency w, respectively, (-)* denotes the adjoint
of a matrix, and II is a Hermitian matrix function. Then, under
appropriate assumptions [11, Th. 1], the IQC stability theorem
states that if there exists € > 0 such that

{H(;w)rn(jw) {H(;'w)} <—el, VweR (9)

then the feedback interconnection of H and & is globally
exponentially stable. The class ITg of all II that define a valid
IQC for a particular operator ® is convex and, in some cases,
can be readily found in the literature [11].

If ® is a monotonic and slope-restricted diagonal operator
with repeated nonlinearity, e.g., (6), the search for a suitable
II € IIs can be restricted to a finite-dimensional subset, and,
by applying the Kalman—Yakubovich-Popov lemma [11], the
inequality in (9) can be transformed into the following feasibil-
ity problem [10]:

T=TTQ=Q"
l
J=1,j7#i
ATQ+ QA QB +CT'T
. - <0 (10)
(@QB)T +TC —2T+ E'T+TE

where T' € R and Q) € R¥* are constant matrices.

IV. LPV PERFORMANCE OF THE NN CONTROLLER

Several gain-scheduling techniques, including multivari-
able control, p-synthesis, and linear matrix inequalities, have
been developed to design parameter-dependent controllers in
the form

tx = Ag(Q)rx + Br(¢)Ay

11
Au=ug = Cg(Q)zx + Dk (()Ay (b

K(s.0)+ {
that meet multiple design objectives, such as H,, and Hj
performance and pole placement, for a plant in Xppy [12]. In
gain scheduling, the state-space matrices in (11) are obtained
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by interpolating a set of LTI controllers K = {K7,...,K,},

where
Ak, Bk, Ar(C) Br(C
Kj - < K; K; ) = < K(C]) K(Cj)) (12)
Ck; Dk, Ck () Dk(G)
and j = 1,...,p[12]. Here, it is assumed that X is provided by

a gain-scheduling technique and, thus, can be used to specify
the performance of the NN controller (5) in X pv, i.e.,

Theorem 1: Given a set of LTI controllers /C, there exists a
controller (5), with [ = p, that is input—output equivalent to (11)
at the equilibria {1, ..., } € Xipv, i.e., satisfies the closed-
loop requirements

un (C5) = uk ((5)
Ge(¢5) = Z=(¢y)

if there exist a matrix W = [W, W] and a vector v/ € R"*!
that satisfy the linear systems

J=1...p (13)

N =Wz
SvT =b (14)
DVW, = M,

and provided that the matrices (I — D; D) are invertible,
where

My, :==(I — D;Dg,)"" [C; D;Ck,] (15)
M2 = [0 Ck; |+ Dg, M, (16)
My = (Mg, - M) (17)
Z :[Cl Gl (13)
N:=[n' .- n?] (19)
S = [®(n") o(nr)]" (20)
D := [®(n') @' (nP)]". (21)

V = diag(v), b := l;zp, 1p = Lpx1, b is a known constant, and
@' is defined in terms of o’ = do(n;)/dn; as

o'(m)]"

A proof is provided in [13]. The systems in (14) are linear in
N, W¢, v, and W, provided that they are solved in this order.

Closed-loop stability conditions are obtained by showing that
at ¢; € Xrpv, the feedback interconnection of (3) and (5) is an
IQC interconnection [11]. In fact, the closed-loop dynamics of
the NN-controlled system at ¢; are given by

®'(n) :=[o'(n1) (22)

Xet = Act(¢j)Xer + Ba(&j)vg
n = WXcl J = ]-7 » P (23)
g=®(n)

where

N | A 0 Voo | B
Aaleg) = |:BKjCj AK]‘] Baleg) = |:BKij:| '
Although (10) could be used for stability analysis, it is not as
useful for synthesis because it is not linear with respect to v
and W. Thus, the following result is proven in [13].

Theorem 2: Assume that A.;(¢;) € R¥*¥ is asymptotically
stable V(; € Xypv, and v and W satisfy (14). Then, if there

exist p symmetric matrices P; € RP*? such that P; = ST}, 57,
with T); diagonally dominant, and

W 2 |
{ S <0, j=1...,p (24)
where

W= —[T Ry 17| (25)
II:= [(DVST) "My STTNZT] (26)
=QjBa(G)b" 27)

and (); is a known positive-definite matrix obtained from
AL(G)Q) + QjAu((y) = —Ri — Ry (28)

the feedback interconnections in (23) are exponentially stable.

V. CONSTRAINED ADAPTATION IN NON-LPV REGIMES

ADP aims at overcoming the curse of dimensionality by
discretizing ¢ € [0,ty) by a fixed interval At and by embedding
the optimization of (2) into the optimization of a value function

ty—At
1

Vo lolte).e] = lim ¢ = 37 Lple(t).u(t)] o (29)
ti=tk

subject to a suitable discrete-time model of (1) [14, p. 144].
From hereon, the subscript () p will be omitted for simplicity.
Howard [15] showed that if the control law and value function
approximations ¢, and V; are updated by iterating between a
policy improvement routine

ceyr [x(ti)] = arg Imin {L[2(tx), ulte)] + Ve [2(tx), e}
(30)

and a value determination operation

Ver [2(tx), con] =L [x(tk), ultx)] + Ve [2(tk), cera]  GD

they eventually converge to their optimal counterparts, where
Z(tgs1) is computed from the discrete-time model of (1).
Furthermore, at each iteration ¢, these two approximations are
improved and are closer to optimal than their predecessors.
As proven in [16], the above algorithm can be implemented
over time by letting ¢ = k such that ¢, and V} are improved at
every time step t; until they eventually converge to the optimal
functions c¢* and V'*, respectively.

A. Constrained Policy Improvement Routine

The ADP algorithms (30) and (31) are locally implemented
using only one state sample at every iteration £ = k. The control
law approximation is provided by the dynamic NN (5), i.e.,

o [2o(t)] :=0® [W[é]xa(t)} +ug,, £=0,1,2,.... (32)

Thus, it is updated by modifying the parameter values v!¥} and
W at every policy improvement iteration /. up, is a constant
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nominal control vector that is obtained using (4). Every control
design objective defines a quadratic cost index

J; = lim

ty—00 tf

Z & (tx)&iltx)

tr=0

(33)

formulated in terms of the state and the control. For exam-
ple, both H, performance and pole placement can be ex-
pressed by a cost index &;(tx) = Mil/Q[mZ(tk) uT (t)]*
through a symmetric weighting matrix M; of design parameters
[14, Sec. 6.3]. Suppose that the control objectives define a set
of ¢ cost indexes {Ji,...,J,} to be minimized. Then, (29)
is readily defined by letting £Lp = >, &I (t1,)&i(tx), and the
value-function approximation is updated using (31) [16].

At £ =0, v[% and WO are set equal to the values obtained
from the LPV design equations (14) and (24). Then, if the plant
leaves Xy,py or deviates from (3) due to failures or parameter
variations, the optimality condition in [3] is violated, setting off
the ADP adaptation. To preserve the LPV performance, equality
constraints obtained from (14) and (24) are adjoined to (30),
leading to the following constrained optimization problem:

q

=28

-sjvg[f [Z(tx), pm(tK), ce [Za(tK)]],
]

minimize ep(w (tx & 1729}

ARG (34)
N-W.Z
SvT —b
subject to F'(w) := DV;/}V M,y =0 (35)
X

W+ [IR; N7

where (*) denotes a vector evaluated at the actual state value
observed from the plant online. v and W are rearranged
into a vector of variables w = [w; wy |7 € RV*1. The
known constants Z, b, M, R5, and W and the matrix functions
of w (N, S, D, V,and II) are all defined in Section IV.

B. Constrained NN Parameter Update

The constrained training approach presented in [17] can be
used to minimize (34) subject to (35). The solution of a con-
strained optimization problem can be pursued by the method
of Lagrange multipliers or by direct elimination [18]. As a first
step, w is partitioned into two sets of weights, i.e., w € RELx1
and s € R°*1, such that L + S = N, and (35) can be written
as F(w,s) =0. If (OF/0w)|s # 0, then the constraints (35)
uniquely imply a function

w = H(s) (36)

which can be used in place of (35) to simplify the solution of
the constrained optimization [18]. In this case, the method of
direct elimination can be applied by writing (34) as

E@(S) =ey (H(S)’ S)

such that s can be determined independently of w. Then, w is
used to satisfy (36), and s is used to minimize (37). It also
follows that the solution of (34) and (35) is an extremum of
(37) that obeys 0F;/0s|s« = 0. Once the optimal value s* is

(37)

determined, w* can be obtained from s* using (36). Further-
more, the substitution of (36) into (37) can be circumvented by
implementing the adjoined error gradient [17]
aEz aez 86@ 8H
g—aﬂ'%? 8624-66487'[
0,y denotes the gradient of y with respect to . dsey and 0,,ey
are obtained by back-propagation, and the Jacobian OsH is
derived from (36) using the properties in [17].
If (OF/0w)|s = 0, the method of Lagrange multipliers can
be used to seek the solution of (34) and (35). By this method,
(35) is adjoined to (34) obtaining the augmented error function

E,,(w) = ep(w) — )\TF(w).

A € RM*1 jg a vector of Lagrange multipliers, where M is the
number of equality constraints in (35). As shown in [14], in the
vicinity of an extremum of (39), A takes the value

_(8wF)7T(8wel)T

where —1" denotes the inverse transpose of a matrix. Then, the
optimal value of w can be determined from

Ower — (AN)TOL,F =0

(38)

(39)

(40)

(41)
using quasi-Newton or Newton—Raphson algorithms.

Algorithm 1 Pseudocode of constrained ADP algorithm
given e;(+), H(-), and (OE,/0s)(-);
compute wl! and s, such that F(wl’, s[%) = 0;
for/{=k=0,1,2,...do
obtain &, (tx);
if optimality condition is violated, then
1 =0;
wlil = i and sl = sl4;
while e, (24 (), w!?, sl1) > e, do
sttt = sl — plil(QE /s);
w[i+1] — H(S[i+1])
1=1+4+1
end while
Wl = il and gle+1 = glil;
obtain ¢p41 () from (32)
obtain V11 (+) from (31)
end if
end for

The convergence of the unconstrained ADP algorithms (30)
and (31) to ¢* and V* was proven in [16, pp. 89-92]. The
parameter update in Algorithm 1 is performed by a gradient-
based line search algorithm (e.g., [7]) that obeys the Armijo
rule and, thus, is proven to converge in [18, Prop. 1.8]. When
direct elimination is applicable, the constraints merely reduce
the order of the minimization in the constrained ADP algorithm
(34) [14, p. 36]. Otherwise, the method of Lagrange multipliers
can be applied, with local convergence that is at least linear or,
in some cases, superlinear [18, p. 231].

Since direct elimination and Lagrange multipliers can be
effectively implemented by first-order gradient-descent and
Lagrangian methods, respectively, the time complexity of
Algorithm 1 is dictated by the computation of JsEy or Oy ep.
Owey can be computed by multiplication of two matrices that
are at worse N x N [19] and, thus, requires time O(N?3),
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TABLE 1
MSE OF THE LPV DESIGN EQUATIONS

Adaptation Method || o =0 tso =5 s tioo = 10 s

Unconstrained ADP || 1.364-10~7 | 8.850-10'1 | 1.584.101

Constrained ADP 1.364-1077 | 1.202-10~7 | 2.778-10"7

or O(N?-81) by Stressen’s algorithm. As shown in [17], the
computation of d;,H in (38) requires inverting an (M — 1) x
(M — 1) matrix M? times, which requires O(M*%1) time.
Although, typically, M < L, S, 0sH remains the most ex-
pensive computation in (38), and, therefore, the worse-case
computation time of 9,Ey is O(M*8!). As an example, for
a NN with L =15, S =10, M =15, and n = m = 2, this
computation requires 0.04 s and 1.6-kB storage on a laptop
computer with a 2.2-GHz Intel Core Duo CPU.

VI. APPLICATION TO ADAPTIVE AIRCRAFT CONTROL

The approach presented in this paper was used to develop
adaptive NN controllers for a business jet and a Hawker
Beechcraft Bonanza aircraft in [17] and [20]. The aircraft dy-
namics in X are simulated by a 12th-order nonlinear differential
equation obtained from mathematical models and wind-tunnel
data [13]. The control inputs are the throttle, the elevator, the
aileron, and the rudder. The aircraft flight envelope X py and
the p scheduling vectors used in the LPV design equations
are shown in [17] and [20]. The scheduling variables are the
aircraft airspeed V' and the altitude H. The value of &, (ty) is
observed once every At = 0.1 s and is used by Algorithm 1 to
update s and w over a few epochs (indexed by ¢). The results
summarized in this section are obtained for a NN (5) with
[ = p = 36 sigmoids, (v + k) = 8 inputs, and m = 4 outputs.

The numerical experiments show that the NN controller
optimizes the performance during nonlinear maneuvers in X,
control failures, parameter variations, and unmodeled dynamics
with no prior knowledge of these conditions. Also, anytime
the aircraft flies in X py (before or after adaptation), the NN
controller performs optimally [17]. The mse of the LPV design
equations (14) and (24) is shown in Table I for sample adapta-
tion times during a large-angle maneuver [17]. For comparison,
an unconstrained but otherwise equivalent NN controller is
implemented during the same maneuver. Whereas the mse of
the constrained NN controller remains virtually unchanged, the
mse of the unconstrained NN controller increases by several
orders of magnitude, illustrating that its LPV performance
deteriorates over time as a result of the frequent parameter
updates.

A partial elevator failure is simulated in Fig. 2 by changing
the parameters C,,,, and C'; ., representing pitching moment
and lift stability derivatives, respectively, by 10% at ty = 0.
As a result, the LPV performance baseline (11) is no longer
optimal, and the ADP adaptation is set off, leading to approxi-
mately 50% reduction in the path angle overshoot. The ability
of the NN controller to improve performance in the presence of
parameter variations is tested by modifying the stability deriv-
ative Cy,_, representing the influence of the angle of attack «
on the pitching moment coefficient C,,,, and the derivative due
to the pitching velocity C,, . These aerodynamic parameters
determine the pitching moments that are exerted on the aircraft
as a result of the aircraft orientation and velocity relative to the
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Fig.2. Aircraft response to a pilot command of 2° path angle, at H = 3000 ft
and V' = 181.23 ft/s, in the presence of a partial elevator failure.
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Fig. 3. Aircraft response to a pilot command of 2° path angle, at
H = 3000 ft, V = 181.23 ft/s, and with a 10% variation in Cy,,, and Cmq.
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Fig. 4. Aircraft response to a pilot command of —40 ft/s change in airspeed
leading to stall.

airflow. As shown in Fig. 3, when C,,, and C,,  are modified
by 10%, the adaptive NN controller reduces the path angle
overshoot by approximately 25%.

To test the NN controller’s ability to handle unmodeled
dynamics, a stall model is included in the lift curve of the
simulated Bonanza aircraft, without accounting for it in the
control design. As shown in Fig. 4, the aircraft is flying at a
steady level when, at {5 = 0 s, the pilot commands a —40 ft/s
decrease in airspeed and brings the aircraft near stall at
ti =~ 20 s when o > 9° = agpan (Fig. 5) and V' =~ 135 ft/s. At
this speed, the nonlinearity of the resulting drag and lift effects
becomes so significant as to cause the linear controller (11)
to loose control of the aircraft (Fig. 6). The NN controller is
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Fig. 5. Adaptive NN controller averts stall during the maneuver in Fig. 4 near
agtan = 9° for V = 135 ft/s.
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Fig. 6. Adaptive NN controller prevents loss of control that is otherwise
experienced by the linearly controlled aircraft during the maneuver in Fig. 4.
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Fig. 7. Throttle input applied by the adaptive NN controller to control the
maneuver in Fig. 4 significantly differs from that of the linear controller.

tested using the same command and conditions. Its performance
during the maneuver improves so significantly compared to its
baseline (11) that the controller is able to not only avert stall but
also track the pilot command (Fig. 4) and stabilize the aircraft.
Since (11) (dashed line) also specifies the NN controller’s
performance at £y, the NN clearly learns how to control the
maneuver online, ultimately applying a very different throttle
input, as shown in Fig. 7.

VII. CONCLUSION

A novel approach for designing ADP NN controllers is pre-
sented. The control performance and the closed-loop stability in

the LPV regime are formulated as a set of design equations that
are linear with respect to matrix functions of NN parameters.
These design equations are adjoined to the policy improvement
routine to preserve the LPV performance baseline while adapt-
ing to unmodeled dynamics and control failures. This approach
is applied to the adaptive control of aircraft demonstrating that
the NN controller significantly improves performance in the
presence of partial elevator failure and aerodynamic-parameter
variations. Also, the NN controller adapts so quickly as to
avert loss of control in the presence of unmodeled near-stall
dynamics.
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