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3 A Nlenu of Designs for Reinforcement
Learning Over Time

Paul J. Werbos

3.1 Introduction and Overview

This chaprer will provide a menu of designs for artificial neural networks
which learn to maximize a measure of utility. reinforcement or perfor-
mance over time. By defining urility as the negative of cost. we can use
these same designs to minimize a measure of cast.

Maximization problems of this sort arise in a variety of contexts. For
example. when we want a robot arm to follow a desired trajectory. and
We want 10 minimize the energy it uses. we can translate this into a
problem of cost minimization: we simply define the measure of cost as
the sum of two terms. one representing the deviarion berween the actual
trajectory and the desired trajectory. and the other representing energy
espenditure. Jordan (1989) has shown that this approach actually works
in simulation tests. Kawaro. in chaprer 9. takes a similar approach to
trajectory planning. as do Nguven and \Widrow in chapter 12. Psyvchol-
ogists have studied the idea of learning based on reinforcement signals
for decades. Manyv problems in industry can be stated as problems in
long-term profit maximization.

In designing neural networks 1o solve these problems. the biggest chal-
lenge is to accounr for the link berween present actions and fuiture con-
sequences. There are two basic wavs to meet this challenge. One way is
10 build an explicit model of the external environment which the neural
net is rving to cantrol. and use backpropagation through time (BTT) wo
calculate the derivatives of future urtility with respect 1o present actions.
(ALl references to BTT in this chapter will refer to this particular way
of using backpropagation. See Werbos (1990b) for a rurorial on back-
propagarion through rime in more general applications). The other way
is to adapt a “critic” network. a special network which outputs an esti-
mate of the total furure urility which will arise from present situations
or acdons. This chapter will focus on the adaptive critic approach.

This book presents these Two approaches as ways of adapting artificial
neural networks. However, both approaches can be applied just as eas-
ilv vo adaptng any nerwork of differentiable functions. They can both
be viewed as general methods in cantrol theory. For example, Werbas
(1939a) used BTT to maximize profits in the natural gas industry, as
part of the official 1988 forecasts of the Fnergy Information Administra-
von: the model of the enviranment in that case was a simple economic

model of that industryCopyrigtited Waterinl of contral theory. BTT is
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the same as the first-order calculus of variations (Bryson and Ho 1969),
modified only by the use of a more efficient, parallel algorithm to cal-
culate the derivatives (Lagrange multipliers). Likewise, the adaptive
critic can be derived as a way of approrimating dynamic programming;
dynamic programming, in turn, is the only exact and efficient method
available to control motors or muscles over time, so as to maximize
a utility function in a noisy, nonlinear environment, without making
highly specialized assumptions about the nature of that environment.
Section 3.7 will describe how to implement the ideas in this chapter in
the general situation, not limited to neural networks as such.

BTT is easy to use and exact, but it has no provision for handling noise
or error in one’s model of the plant, and it is not suitable for real-time
learning as in biological systems (Werbos 1988b). Thus the very first
journal article mentioning backpropagation (Werbos 1977) focused on its
use in a subordinate role, as an adjunct to the adaptive critic approach.
In this approach, backpropagation may be used from cell to cell at a
given time, but not backwards through time. Many people believe that
backpropagation is not biologically plausible even in that limited role;
however, arguments can be made for its plausibility (e.g., Werbos 1988a,
1988b), especially in light of new evidence that the cytoskeleton inside
of mammalian cells can transmit information at speeds on the order of
millimeters per millisecond (Zhu and Skalak 1988).

This chapter will focus in depth on the adaptive critic approach, which
is a large and important subject in its own right. Other chapters and
papers cited above already describe BTT (chapter 4 also describes some
variants of BTT). For background information on all these methods,
see chapter 1 and chapter 2. For concise mathematical definitions and
examples, see section 3.7.

Adaptive critic designs come in many shapes and forms. The sim-
plest and best-known designs have been criticized for their inability to
handle very large control problems. This chapter will argue that these
criticisms are legitimate, but that we can overcome them by using more
complex adaptive critic designs. Many applications do not require such
complexity, but in the long-term—to duplicate or explain the capabili-
ties of the brain—we will need to work with it. This chapter will begin
by presenting a simple, generic design for an adaptive critic system, and
then—section by section—show how additional features can be added,
to arrive at additional capabilities.

Section 3.2 will present a simple design, made up of only two neu-
ral networks—a critic network and an action network. Designs like this

have worked well in redlpppygfetdeMatdneits (not just simulations);
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however, the examples I know of are proprietary, confidential, or so re-
cent that I have only heard oral presentations. (For example, John May-
hew of Sheffield University in England has spoken about applications to
controlling a simple autonomous vehicle.)

Section 3.3 will describe two minor limitations of the simple design,
related to the possibility of divergence and the impact of unobserved
variables. It will describe how to overcome these limitations, by go-
ing back to the literature on dynamic programming, and upgrading the
design to reflect that literature.

Sections 3.4 and 3.5 will focus on the deeper, more difficult problem
of how to handle a large number of control variables (e.g., many motors
or muscles to control) or sensor variables. Certainly the human brain
is capable of handling millions of control variables, and there are many
engineering applications where a number of motors must be controlled in
tandem. Section 3.4 will describe a way of coping with these problems,
in adapting the action network, and will draw some parallels with the
human brain. Section 3.5 will go further, by describing alternative ways
to adapt the critic network itself.

Section 3.6 will discuss a few topics for future research, such as the
problem of high-speed motor control and the problem of extending the
effective planning horizon. Section 3.7 will give equations and examples
to assist in implementation.

3.2 A Simple Two-Component Adaptive Critic Design

3.2.1 What the Design Tries to Do

This section will describe the design of a neural network system to solve
the problem of reinforcement learning. Before describing that system, I
will first describe the problem which it tries to solve.

The problem of reinforcement learning has very deep roots in the
literature of psychology. Sutton (1984) has traced this problem back to
Marvin Minsky, in the early 1960s and earlier.

Figure 3.1 illustrates the problem. Imagine a little man (or computer)
sitting in front of a row of levels labeled u, through u,. Beside him is
a big meter (which looks like a thermometer in the cartoon), labeled
U. The meter gives a measure of how well the man is doing. His job is
to control the levers so as to make U as large as possible. The blinking
lights, labeled X; through X,,, are simply a source of information which
the man can use in deciding which levers to pull and when to pull them.

In principle, the man de@RYRgiedWalaliaho knowledge of the lights
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Figure 3.1
Cartoon image of reinforcement learning over time.

or the meter; he may have to learn everything from scratch, allowing
for the possibility of nonlinear fluctuations and noise in the external
environment.

This notation is similar to that used in decision and control theory.
The collection of variables u; through u, form a vector, u, called the
control vector (Bryson and Ho 1969). The observation variables X,
through X,, form a vector X, similar to the observation vector of control
theory. The variable U—called “reinforcement” in psychology—plays
the same role as the utility function U in the theory of cardinal utility
developed by John Von Neumann and popularized by Howard Raiffa.
(U may also be used to represent a “performance index” or a ‘cost

function” or a “profit fmeawrghted Material
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Figure 3.2
A simple adaptive critic system.

Williams (1988) has discussed earlier formulations of reinforcement
learning, in which the actions u(t) are chosen to maximize U(t), as
if later times did not matter. This chapter will focus entirely on the
problem of reinforcement learning over time, in which the goal is to
maximize the long-term expected value of U(t). We will always try to
account for the effect of current actions on the state of the world at later
times, either explicitly or implicitly.

3.2.2 Overview of the Two-Component Design

Figure 3.2 shows one way to build an adaptive critic system, taken (with
modification) from Sutton (1984). Two neural networks are adapted
over time—an action network and a critic network. The action network
outputs the actual control signals, u(t), while the critic network guides
how the action network is adapted. The critic network inputs a descrip-
tion of the state of the world (X (t)) and outputs a single number, J(t),
which is an evaluation of how well the action network is doing in creating
a “good” situation. (The letter J stands for “Judgement,” and is also
used by Bryson and Ho (1969) and Raiffa (1968).) Then, in each time
t, the action network is “rewarded” or “punished,” based on what kind
of situation it produces; in other words, actions u(t) are “rewarded” if
they lead to good results (larger J(t + 1)) and “punished” if they lead
to bad results (smaller J(t + 1)).

To translate this psychological intuition into a working design, we

need two things: Copyrighted Material
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1. A learning rule which states how the weights in the action network
change in response to reward and punishment (J(t + 1));

2. A learning rule which states how the weights in the critic network
change as a result of experience.

To adapt the action network, Barto, Sutton and Anderson (1983) ad-
justed the weights in response to correlations between various variables
calculated in the network and the variable J. I will not discuss the details
of their method, in part because they are already well known, and in
part because section 3.4 will discuss some alternatives.

The remainder of this section will describe a simple form of heuristic
dynamic programming (HDP), a method for adapting the critic network
proposed in Werbos (1977). This chapter will not describe the better-
known method of temporal differences used by Barto, Sutton and An-
derson to adapt their critic networks; however, Werbos (1990a) argues
that HDP may be viewed as a generalization of that method. Grossberg
and his collaborators have also developed critic-like networks, which are
beyond the scope of this chapter.

3.2.3 Description of HDP

As noted above, the critic network yields an output, J, which is a func-
tion of its current inputs, X, and of its weights, w. Let us write this
function as J(X, w).

Intuitively, we want to find weights w which make J(X(¢),w) an ac-
curate assessment of “how good” X(t) is. (Section 3.3 will provide a
more rigorous basis for this idea.) We want to know how good X(t) is,
relative to the problem we started with—maximizing the expected value
of U across all future times. Ideally, then, we would want J(X(t),w) to
be an estimate of:

Ut) + Ut +1) + ... + U(c0) (3.1)

assuming that this sum converges. (Section 3.3 describes what to do if
not.)

How can we train the critic network to provide such an estimate?
HDP, like backpropagation, can be implemented in a variety of ways.
For example, it can be implemented through real-time learning (where
the weights are updated after each pattern is analyzed), or it can be
implemented through batch learning (where the weights are updated all
at once after a big pass through all the patterns). For simplicity, I will
consider the case of bat&iopmightedhddaterial
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In order to simplify our future discussion, it will help to remember that
U(t) is available at time t as one of the observed inputs to the system.
Thus we can assume that it is available as one of the components of the
vector X; in other words, X (t) = U(t) or some k. This lets us write U
as a function of X, U(X) = Xj. Let us also assume that we are given
a time series of vectors, X (t), for ¢ going from 1 to T. Once again, our
goal is to adapt the weights w in the critic network.

In HDP, we use some sort of supervised learning method to adapt
the critic. Any supervised learning method will do, so long as we use
the right inputs and targets. For example, anyone familiar with basic
backpropagation should be able to fill in the rest of the details, when
the inputs to the net and the targets are fully specified, for the training
set.

In the simplest form of HDP, we carry out several passes through
the training set. We start with an initial set of weights w(®; in pass
number n, we derive a new set of weights w(™. We keep going through
the training set, over and over, until the weights settle down, i.e. until
w(nﬁ-l) — w(n)'

On each pass, our training set consists of T' — 1 pairs of inputs and
target, for t = 1 through T — 1. (There is only one target for each pair,
because the critic network has only one output, J.) The inputs for time
t are simply the vector X (t). The target for time ¢, within pass number
n, is:

J(X(t+1), D) + UX(2)) (3.2)

In other words, before we begin the adaptation of the weights in pass
number n, we have to plug in X (¢ + 1) into the critic network, using the
old weights, in order to calculate the target for each time t. The targets
are then fized throughout pass number n. Then, in the adaptation phase
of pass number n, we update the weights to try to reach the targets. We
could do this in an exhaustive way, by searching the entire weight space,
or by using a supervised learning method (like Kohonen’s pseudo-inverse
method) which converges in a single pass; alternatively, we could simply
do a single pass of backpropagation.

Theory tells us that we should simply throw out the case where t = T,
when we are trying to control an infinite, continuous process, because
equation 3.2 is not well defined in that case (since X (T +1) is unknown).
In many practical applications, however, our set of observations X (1)
through X (T) is actually made up of several strings of observations,
where each string repre@upyrghifbet Muatexyeiiment on the system to be
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controlled. In those applications, X (7T') usually represents the comple-
tion of the last experiment; thus the case t = T should be added to the
data set, with a target of U(X(t)). In fact, the target for the final time
t of any such string is simply U(X(t)). In some applications, we may
even want to use a different utility function, U, for the final time, to
measure how well the experiment is completed; this can be done quite
easily when using HDP.

Werbos (1990a) has shown that this simple form of HDP converges to
exactly the right weights, for a simple class of linear problems. More pre-
cisely, it converges whenever the external environment is a linear system,
governed by a matrix equation with multivariate normal noise, when the
Critic network has the appropriate form (which is simply linear in this
case), and when the supervised learning method is itself statistically
consistent.

3.3 HDP and Dynamic Programming

3.3.1 Background

Figure 3.3 illustrates the basic trick used in dynamic programming, which
is one of the fundamental tools used in control theory. Dynamic pro-
gramming is discussed in standard textbooks like Bryson and Ho (1969)
and Gale (1979), but the extension of dynamic programming developed
by Howard (1960) is most relevant here.

Dynamic programming requires as its input a utility function U and
a model of the external environment or plant, which I denote as “F”.
Dynamic programming produces, as its major output, another function,
J*, which I like to call a secondary or strategic utility function. The key
insight in dynamic programming is that you can maximize the expected
value of U, in the long term, over time, simply by maximizing the func-
tion J* in the immediate future. Whenever you know the function J*
and the model F, it is a simple problem in function maximization to
pick the actions which maximize J*. The function J of section 3.2 may
be viewed as an approzimation to the function J*.

Why should we train our Action network to maximize an approxima-
tion like J instead of the exact function J*? Clearly it is better to use
the exact function, when this is possible. But the computational cost of
finding J* grows exponentially with the number of variables in the prob-
lem. To cope with complicated problems in the general case, we really
have only one choice; we have to approximate dynamic programming, by

using a model or networRdwyrispinant MMedal function or its derivatives.
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Figure 3.3
What dynamic programming requires and produces.

The derivatives of J*(X,w) with respect to the variables X form a vec-
tor \*; the Lagrange multipliers used in the calculus of variations are an
example of this vector. In fact, all approximation methods—including
neural net methods—for “solving” the reinforcement learning problem
over time in a general environment may be viewed as general approxi-
mations to dynamic programming; in all cases which I am familiar with,
they do include specific functions which try to approximate J* or A* in a
general way. Examples may be found in numerous fields, including arti-
ficial intelligence, physics, economics, and schools of psychology ranging
from the behaviorist to the avowed mystic (Werbos 1986).

By looking at dynamic programming more closely, we will see two
features—involving two new terms, R and Up—to enhance the design of
section 3.2. Copyrighted Material
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3.3.2 Mathematics

Dynamic programming assumes the availability of a model of the exter-
nal environment or plant which we may write as:

R(t + 1) = E(R(t), u(t), noise) (3.3)

where u(t) refers to the vector of actions at time ¢, noise is a vector
of random numbers, and R is a vector describing the current state
of Reality—the plant or the environment. For mnemonic purposes, it
helps to recall that “R” stands for “recurrent,” “representation” and
“reconstruction” —all of which apply to some extent.

At this point, some readers may believe that the shift from X to R
is an oversight or an unnecessary inconvenience. However, this shift is
truly fundamental to the validity of the method. If equation 3.3 were
an accurate description of reality with R = X, then the shift would
indeed be unnecessary; however, this is usually not the case in practical
applications and is certainly not the case in human psychology. For
example, when a person sees a ball roll under a chair, he does not act
as if the ball has vanished from reality. Likewise, in control theory, the
state vector and the vector of observables are usually quite distinct.

How can we build a neural network to represent the function F'? A
simple, popular approach is to build a network which inputs X (t), which
uses X (¢ + 1) as its targets, and which includes recurrent hidden units.
In that case, the vector R(t) would consist of the outputs of the hidden
units and all the components of X (¢). Unfortunately, this approach has
a number of weaknesses, involving its robustness over long time periods,
its representation of noise, and problems involving real-time convergence.
Werbos (1987a) offers a few suggestions for overcoming these weaknesses,
based on extensive empirical work, but more research is needed. The
first stage of Kawato’s cascade method is an example of what Werbos
(1977) calls the “pure robust method”; it is a good first step, but very
far from the whole story. Difficulties in this area are arguably the most
serious obstacle now facing us in neurocontrol.

In any event, it is safe to treat X as part of the vector R, since what we
observe is part of reality. For this reason, we may treat U as a function
of R, U(R). Henceforth, I will also define:

0
OR;

Howard has proven that the function J* can be found by solving a

modified form of the Blauightasidbaterial

() =

3

J7(R(1)) (3-4)
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J*(R) = Maz < J*(E(R, u,noise)) > U(R) - Uo (3.5)

where Up is an intercept term used to prevent drift off to infinity, and
where the angle brackets denote the average or expected value. (Nota-
tional standards vary greatly here; angle brackets are standard in physics
and some branches of statistics, because they minimize confusion in long
calculations.) Howard’s equation was slightly more complicated, in that
he allows U to depend on u as well as R; that feature is of little value
here, and would lead to unnecessary confusion.

Comparing equation 3.5 with equation 3.2, it is clear that “Up” is an
additional complication. If there is no possibility of drift off to infinity
(i.e., if the expected value of equation 3.1 converges), then Up is unnec-
essary. Such convergence can result either from uncertainty about the
future which grows with time (Werbos 1990a) or from discount rates (as
in Barto, Sutton and Anderson 1983). When equation 3.1 does not con-
verge, one can modify HDP by estimating Uy explicitly. For example,
one can define J(R)+ Uy as the output of the network, and keep the tar-
gets as in equation 3.1; one can adapt Uy as one adapts any other weight
in the network. Werbos (1979) talks at length about problems related to
the existence of Uy; fortunately, these problems seem far removed from
the usual neural net applications.

Equation 3.5 assumes the existence of a model, F', while section 2
did not. The point here is that Section 3.2—following Barto, Sutton
and Anderson (1983)—used the world itself as a model of itself. Instead
of using a model, F, and simulating F(R,u,noise) to get a simulated
R(t + 1), it used reality itself to generate R(t + 1). This should yield
the correct expectation values, after enough experience, but there is one
catch: we may need to develop a model F anyway, to help us develop a
representation vector R, in applications where that is important.

Howard has proven many theorems which are relevant to HDP. One of
them may be roughly translated as follows. Suppose that we have a critic
network J(R,w) and an action network u(R,w’) so rich that they can
represent any functions J*(R) and u*(R) by choosing the appropriate
weights. Suppose that we adapt these networks by going back and forth
between two steps:

1. Update w such that J(R(t), w™) equals J(< R(t+1) >, w™ D)+
U(R(t)) — Uy, for all possible vectors R(t), where the expecta-
tion value of R(t + 1) refers to the expectation assuming that
u(R,w' " 1) is used to control system actions;

2. Update w’ such the@@yAgNed Matab@imizes < J(R(t+1),w™ >.
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Then the weights w and w’ will converge to give the optimal strategy of
action. J will converge to J*.

3.4 Alternative Ways to Figure 3.2 in Adapting the
Action Network

3.4.1 The Challenge of Large Problems

The design shown in figure 3.2 has been criticized by Guez (1987) and
others, because it provides such little feedback to guide the action net-
work. There is only a single number, J(t + 1), used to evaluate all
aspects of action. This is very different from the usual situation in su-
pervised learning, where separate error measures are available to each
of the output cells. Here, there is no indication of which output cell
should have had a different output, or of which way the output should
have been different (smaller versus larger). For this reason, when there
are many outputs to be controlled, one can expect much slower learning
than one would get with supervised learning. The problem here is like
the problem of a student trying to figure out what to study when his
professor only gives him an overall grade (like J), instead of giving him
feedback targeted to individual questions on the exam.

These intuitive arguments can also be expressed in statistical terms.
When there are a very large number of variables (like all the weights
in a network) correlated against a single dependent variable (like J),
one faces a problem called multicollinearity (Wonnacott and Wonnacott
1977). With such multicollinearity, it becomes nearly impossible to es-
timate the correct weights, unless one has an astronomically large data
base. The point is that the system learns slowly, when there are many
output variables, for reasons which have nothing to do with the nu-
merical slowness reported with some versions of backpropagation. The
system is slow in the sense that the estimated weights, after numerical
convergence, still converge very slowly to the true weights as the size of
the database, T', goes to infinity. (Multicollinearity is an issue in super-
vised learning as well (Werbos 1987a), but the assumption of a sparse
structure tends to keep it from getting out of hand.)

3.4.2 A Simple Way of Meeting the Challenge

Figure 3.4 illustrates an alternative to figure 3.2, based on the use of

backpropagation, propmwm.
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Figure 3.4

Backpropagated adaptive critic (BAC). (Note how j is not used directly, but its
derivatives—the dotted lines—are.)

Figure 3.4 is based on the idea of following equation 3.5 more exactly.
After all, our goal is to find a vector u which maximizes J(F(R,u)).
Figure 3.2 is a lot like plugging in values of u and looking only at the
values of the function J(F(R,u)). But with backpropagation, we can
calculate the derivatives of J(F (R, u)) with respect to all the compo-
nents of u, in a single pass through the system. In numerical analysis,
at least, we can find the maximum of a function much faster if we ex-
ploit the gradient information, instead of looking only at the value of the
function. (When the gradient is used with steepest ascent, convergence
may be very slow, but Werbos (1988a) describes other ways of using the
gradient information.)

The basic idea here is very straightforward. The action network can
be represented by a function, u(R,w’). Our goal is to adapt the weights

w!. To do this, we use backpropagation to calculate the derivatives of
in response to the derivatives, as in conventional backpropagation. In
this case, we are backpropagating through the critic to the model (F)
and then to the action network, as if the three networks formed one
large feedforward network. Information is passed backwards (the dotted
lines) from network to network in figure 3.4, but it is not propagated

backwards in time. (SeCtipydghtediMdteriabre details.)
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This approach may be viewed as a synthesis of the best features of
figure 3.2 and of backpropagation through time. As with backpropa-
gation through time, we have specific feedback to specific components
of u, rather than one gross evaluation. This feedback accounts for the
cause-and-effect information embedded in the network F. If a machine
or person never uses knowledge of cause and effect to guide his choice
of actions, then there are limits to how well he can cope with a complex
environment.

3.4.3 Procedures for Handling Noise

Williams (1988) has pointed out that we have to be very careful in
propagating derivatives through a network (like F in figure 3.4) which
has noise attached to it. Therefore, I will be very specific about how to
do this.

There are two different ways to handle the noise vector in the F
network—the simulation approach and the imputed-noise approach. I
will describe both of these approaches for the case of batch learning, as
in Section 3.2.

Assume that we have a set of vectors R(t) for t = 1 through 7. Assume
that the model network F and the critic network J will be held constant.
Our goal for now is to adapt the action network u(R, w’).

In the simulation approach, we begin by simulating the noise vectors.
For each value of ¢t and each component of the vector noise, we pick a
value at random, based on the probability distribution for that compo-
nent. This procedure will yield vectors noise(t) for all ¢, which we hold
constant thereafter. Then on each pass through the data, calculate the
derivatives of J with respect to a weight w] as:

3 J(E(R(), u(R(t), w), noise(t)),
iy

treating both noise and R(t) as constants. Many variations are possi-
ble, such as the simulation of multiple noise vectors for each R(t), res-
imulation after each major pass, and comparison tests across different
simulations.

Many readers will ask where we find a probability distribution for each
component of noise. In fact, this probability distribution is really part
of our model of the plant. It may come from our substantive knowledge
of the plant, or it may come from a neural network adapted to represent
the plant; as discussed in section 3.3, it is not a simple issue how we
should adapt such a netwopNfighted Material
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One way of developing such a model of the plant is to build a network
which inputs R(t) and u(t), and aims at R(t + 1) as the targets for its
output. We can then assume the following stochastic model of the plant:

R(t+1) = R(R(t),u(t)) + noise, (3.6)

where the only form of noise is error in the forecast R(t + 1). We can
assume that the noise for each component is normally distributed, and
we can estimate the variance by simply looking at the variance of R; — R;
across the training set. (For high performance, one can modify this very
slightly, to assume that the noise acts on the activation level of the
output cells.)

When our model of the plant looks like equation 3.6, we have a very
simple alternative to the simulation approach. For each pair of vec-
tors R(t) and R(¢t + 1) in our data, we can simply plug R(t) into the
forecasting network R, and impute:

noise = R(t+ 1) — R(R(t),u(t))

In fact, this procedure turns out to be very simple in practice. It amounts
to plugging in the actual R(t + 1) into the critic for the first part of the
backpropagation (through the critic), but backpropagating straight on
through to the forecasting network and the action network as if there
had been no noise. We don’t even have to estimate the variance of the
noise, because we never really use it for anything,.

The approach of section 3.2 is really an example of the imputed noise
approach. However, the simulation approach could also be used with
HDP as well. Furthermore, it is also possible to simulate the vectors
R(t) themselves, when using the simulation method. The imputed noise
approach has the advantage of staying close to observed data, and there-
fore being more robust and reliable. The simulation approaches (like
“dreaming”) have the advantage of allowing the system to prepare for
situations it can predict but has never experienced; for example, if hu-
mans were not capable of dreaming, we would not be capable of embark-
ing on projects like space programs or building new devices which have
never existed in the past. It is impossible to map out a complex deci-
sion space without including some provision—either dreaming or actual
exploration—to ensure that all regions in the space are considered.

3.4.4 Beyond the Design of Figure 3.4

Figure 3.4 has certain advantages over figure 3.2, which have been dis-

cussed. However, it hasChgydightegMateall. For example, its validity
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depends on the validity of the model of the plant, F'. Figure 3.2 may be
slower but more reliable at times, since it sticks to observed data only.
If there is a sudden, unexpected painful event, a system like Figure 3.2
may be able to respond immediately, by changing its weights, instead
of waiting for a change in the model of the plant which can explain the
situation. (On the other hand, models of the plant like Kawato’s may
be a better guide to action than the empirical data, at times, because
they can filter out confusing short-term fluctuations.)

These relative strengths and weaknesses are similar in flavor to the
strengths and weaknesses of backpropagation versus associative memory
in conventional supervised learning (Werbos 1987a, 1988a). Once again,
one would like to find a blend which combines the best of both methods.
This blend is really needed only in the most sophisticated applications,
where it is important to combine the advantages of both.

One possible blend has emerged from discussion between Barto and
myself this past year. In essence, one can start with HDP, as in section
3.2, but also adapt an auxiliary network J’(u, R) which tries to predict
the error, J(R(t)) minus the targets in equation 3.2. Then one can
backpropagate through the critic and the model network back to u, as
in figure 3.4, but also backpropagate through the J’' network directly
to u. If J' is adapted by a high-speed supervised learning method (like
associative memory), then this will provide an immediate reward or
punishment to weights which lead to unexpected good or bad results.
There are many refinements possible here, and other alternatives as well.
This approach can also be extended quite easily to the methods of section
3.5. A similar structure, based in different mathematical objectives, has
worked well in simulations by Lukes et al. (1990).

3.4.5 Biological Parallels

The human brain is not a homogeneous mass of identical neurons, but
it is not a preprogrammed hierarchy of cells with fixed specific tasks
either. During the workshop which led to this book, James Houk stated
that the brain is actually quite flexible and modular; it is made up of
five or so major subsystems, each containing a high degree of flexibility
(albeit with different cell types) within it. From a functional point of
view, standard texts like Nauta and Feirtag (1986) suggest that the five
major adaptive subsystems are: (1) the limbic system; (2) the basal
ganglia; (3) the thalamus/cerebral-cortex system; (4) the brain stem;
(5) the cerebellum. Copyrighted Material
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Figure 3.4 shows only three major subsystems. Werbos (1987b) cites
extensive physiological evidence consistent with the idea that the limbic
system is like a critic network, the corticothalamic system like a model
network (F), and the brain stem like an action network. But this leaves
out the basal ganglia, including the nucleus basalis, which recent research
points to as very important. The connections of the basal ganglia are
more like figure 3.2 than figure 3.4, suggesting that the brain might
represent a kind of blend of these architectures. This blend may be very
different in quality from the blend discussed in this section; if so, it is
all the more important to study these differences in detail, because they
may point to new opportunities on the engineering side. The cerebellum
is well known to be responsible for smoothing out high-speed motor
control, to be discussed in section 3.6.

3.5 Alternatives to HDP in Adapting the Critic
Network

Section 3.4 began with a discussion of the challenge of large problems, as
it affects the adaptation of the action network. The exact same problem
also affects the adaptation of the critic network. If we use HDP, as
described in section 3.2, then we still have that problem, even if we use
the design of figure 3.4 to adapt the action network. HDP still only uses
one piece of information—the target for J as given in equation 3.1—to
adapt the critic network.

3.5.1 Utility Functions

One useful step in solving this problem is to exploit our knowledge (if
any) of the utility function, U(R). Section 3.2 showed how the reinforce-
ment learning problem can be represented as a special case of utility
maximization, of maximizing some function U(R). However, the meth-
ods of this chapter can all be applied to an arbitrary differentiable utility
function. If we know apriori how to connect our performance measure
to more concrete variables (like the position of a robot arm), then we
can avoid wasting time as our system relearns this information. The
examples of backpropagation through time cited in section 3.1 all take
advantage of this.

Klopf (1982) has placed great stress on the importance of these effects.
He defines the problem of drive reinforcement learning as the problem

of maximizing U (R) wHeBRY(BHRIMMN Y@ obey:
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U(R) = Z ViR;, (3.7)

where the V; are treated as fixed weights. This is more plausible biolog-
ically than the situation shown in figure 3.1, because it allows for the
fact that primary reinforcement comes from a variety of cells, not just
one “master cell.”

It is very straightforward to extend HDP to the case of drive reinforce-
ment learning. We need to define our critic as a network with multiple
outputs, J;4, one for each component of the vector V. Conceptually, we
may define:

J=Y"J, (3.8)

but we never really need to calculate J. We can still use supervised
learning, as in section 3.2, but we now need targets for each output J;.
The target for J; is simply:

Ji(B(t + 1),w™ V) + ViRi(t),

with allowance for Uy if convergence is a problem, as discussed in Section
3.2. (Alternatively, we could weight the sum in equation 3.8 by V;, and
eliminate the V; in equation 3.9.) To adapt the action network, we can
backpropagate through the critic just as easily as we could before; we
begin by noting that the derivative of J with respect to each J; is simply
1, and proceed backwards in the usual way.

This does not tell us how to exploit our knowledge of U(R) if U is a
nonlinear function or network. To do that, we must go beyond HDP to
more advanced methods.

3.5.2 Dual Heuristic Programming (DHP)

In examining figure 3.4, Barto has asked whether we really need the critic
network at all here. All we are really getting from the critic network are
the derivatives, the dotted lines feeding back from the critic to the model
of the plant (F). If we could estimate the derivatives of J* with respect
to R(t + 1) directly, then we would not need the critic at all. This is
basically what DHP tries to do.

Strictly speaking, DHP does not eliminate the critic. It replaces the
critic with a new network, whose output is an estimate of the derivatives
of J* with respect to R. We can think of this new network as an alter-

native type of critic. The derivatives of J* with respect to R are simply
the vector \*, defined iGQRpAglYeBMate¥iainay say that DHP adapts
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a A-type critic, rather than a J-type critic. When we adapt the action
network, we use this new critic to calculate ), and then propagate these
derivatives back through the model of the plant and the action network
just as we would if A had come out of backpropagation.

How can we adapt a A-type critic? First let us consider the theory
behind DHP. DHP is based on differentiating equation 3.5 on both sides
(and suppressing the expectation operator and maximization, as in Sec-
tion 3.2) to get:

aJ* -y aJ* OF; N U
OR;i(t) — OR;(t+1) OR:(t) ~ ORi(t)

(3.9)

Note that the unpleasant Uy term has dropped out. Recalling our defi-
nition of A*, and defining the rightmost term as V;(R), we get:

M) = SN+ D3ps + () (3.10)
j i

Using DHP, we no longer need to assume the availability of U(R); in-
stead, we assume the availability of the reinforcement vector V', which—
unlike the V of the previous section—truly varies over time, as a function
of the situation. The summation in the middle of the equation is simply
an application of the chain rule, a calculation of derivatives; to calculate
such derivatives efficiently in practice, we can simply use backpropaga-
tion.

All of this theory leads to the following procedure. With DHP, as in
HDP, we adapt a critic network. Our critic now has multiple outputs,
A;. The input to the critic is R(t), exactly as in HDP. We can use any
supervised learning method to adapt this network, to make the outputs
match the targets. We have to iterate through many passes, as in HDP,
even if we use a one-pass supervised learning method in each pass.

The only difference with HDP is in where we get the targets. Instead
of using equation 3.2, we now try to use the right-hand side of equation
3.11. In order to use the right-hand side of equation 3.11, we have to
use backpropagation as a way of calculating the summation term in that
equation. In other words, DHP forces us to use backpropagation as a
way to obtain the targets, not as a way to adapt the network to match
the targets. (Backpropagation can be used in both places, of course, if
we so desire, as in the Appendix.)

More precisely, in each pass n, we assume that the weights w(™—1)
are available (as in HDP). Our first step (as in HDP) is to calculate the
targets for each time t. CUp)ighteaYlaterial
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1. Inserting R(t + 1) as the input into the A-critic, using the old
weights w(®~1) in that network. The output will be A(t — 1).

2. Backpropagating these derivatives (i.e., the components of A(t +
1)) through the model of the plant (F'), all the way back to the
R;(t) variables input to that model. This yields an estimate of the
derivatives of J* with respect to each of the R;(t).

3. Set the target for \;(t) to be V;(R(t)) plus this new estimate of the
derivative of J* with respect to R;(t).

The next step is to adapt the weights so as to make the outputs closer
to the targets, exactly as in HDP.

Just like the BAC design of figure 3.4, DHP takes full advantage of the
cause-and-effect information embedded in the model of the plant (F).
It focuses the computationaf effort on estimating the slope of J*, which
is usually more important to making good decisions than is the absolute
level of J*.

3.5.3 Globalized DHP (GDHP)

As in section 3.4, there are numerous possibilities for blends between
the two basic methods. GDHP is one such blend.

HDP has the advantage of coherence. Because there is only one J
function, there is one consistent evaluation of how well one is doing.
DHP, however, is not guaranteed to be internally consistent; the deriva-
tive of A;(R) with respect to R; ought to equal the derivative of \;(R)
with respect to R;, but it may not come out that way in our approx-
imation. Ideally, one would want to know the absolute level of J—for
use in making big decisions—while also learning about the slope in fine
detail.

GDHP makes this possible. In GDHP, we adapt a J-type critic, as
in HDP, but we try to minimize the error in equation 3.10, as in DHP.
(As in HDP, we treat the weights on the right-hand side as constants, to
avoid the problems discussed in Werbos (1990a).) In fact, we could even
expand this error measure by adding it to the error function implicit in
HDP.

Unfortunately, the only way I know to minimize such an error measure
is to use backpropagation to adapt the critic network. In using back-
propagation, we need to calculate the derivatives of error with respect to
the weights in the critic network; however, the error measure itself con-
tains derivatives, so that we need to calculate second derivatives. The

details of this are given&ﬂ}ﬁd}f@@rﬂ%ﬁa[
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Better methods may be found to achieve the same objectives, but
I am not aware of any such at present. The best I can imagine at
present is the adaptation of further networks to approximate some of
these calculations.

3.6 Some Topics for Further Research

3.6.1 The Problem of “Vision” (Effective Long-Term
Foresight)

Even in Howard’s dynamic programming, the current estimate of J*
in any iteration will tend to represent the future H periods into the
future (i.e., it will really tell you how to maximize the sum of U(t)
through U(t + H), not U(t) through U(c0)). On each full application
of the Bellman equation, H grows to H + 1. But if the cycle time for
calculation is, say, a fifth of a second, and the unit time period is a fifth
of a second as well, it would take years to build up a time horizon of
years at best; realistic inefficiencies, and a lack of a complete update in
neural networks, could lead to a time horizon of only a few days after
years of learning.

If adaptive critics were adapted by backpropagation, one could replace
steepest descent by an accelerator method which could work far faster—
at the risk of instability (a risk which may have its biological counter-
part). Also, most accelerator methods do not allow for this kind of
“moving target” problem, where parameter changes themselves change
the target.

Werbos (1987b, 1990a) mentions a few ideas on how to cope with this
problem, but it is a wide-open area. It is also a difficult area, and less
than essential to near-term engineering applications. Still, it may be
very important to human intelligence.

3.6.2 The Problem of High-Speed Motor Coordination
(Cerebellum)

GDHP takes a long time to go through a cycle of calculations, because
there are so many calculations to go through. Werbos (1987b) compared
it in detail with literature on the human cerebral cortex and limbic
system, which are also relatively slow and relatively coherent. The brain
needs a faster system to smooth out actions—the cerebellum.

How can we link a primary neurocontrol system, based on some-

thing like GDHP, with GorutgdiestdMafaniatation system which is less
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integrated, less statistically efficient (i.e., learns slowly), but much faster
in operation (smaller cycle time)? How could we build an artificial cere-
bellum? Perhaps we might use something like \;(t + 1) — \;(t)—as
estimated by the primary system—to be used as V; in a subordinate,
fast HDP system without a model. The multivariate richness of the
A(t+ 1) — A(¢) vector would partly overcome the usual slowness of HDP.
Or perhaps a very simple associative model could be used with DHP,
or other inputs could be used in HDP with a goal of simply smoothing
motion. The biological studies discussed by Kawato in chapter 9 sug-
gest very strongly that the human cerebellum does indeed minimize a
cost measure (torque change) over time. In general, the interface be-
tween multiple sets of neurocontrollers—including humans as well—will
be important to many practical applications.

3.6.3 The Need For Tests

This is almost certainly the most critical research area for now. All the
trade-offs discussed above seem fairly clear from the mathematics, but
concrete tests are needed, across a wide spectrum of problems, to clarify
and communicate the nature of these tradeoffs in practice. Likewise, a
creative approach to “making things work”—by diagnostic analysis and
modification as necessary—is vital to solving realistic problems using any
of the methods in this book. Few things in this field are likely to work out
perfectly the very first time they are tried, when they are implemented
in the most trivial way; in chapter 7 Shanno cites examples of the same
phenomenon in numerical analysis and function minimization, which
present very similar challenges. Diagnostic analysis—drawing on a wide
range of disciplines as well as immersion in the behavior of concrete
examples—will be essential, as will mathematical analysis of simplified
problems which abstract the essence of more realistic ones.

3.7 Equations and Code For Implementation

Many engineers would find it difficult to understand the ideas above
without seeing a few equations. Unfortunately, the equations will look
very different, depending on the type of network to be used (neural net
versus econometric model versus fuzzy logic net versus fluid dynamics
code versus . .. ), the type of learning schedule, the type of computer (se-
quential versus parallel versus dedicated), etc. This section will describe
the key details, as they might look in a sequential computer, applied
to real-time learning, uSopuiged\lalenialpproach to handling noise
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and basic backpropagation with steepest ascent to handle all supervised
learning problems. This is not the best way to go, but it should at least
clarify the basic ideas.

The flowcharts in this chapter exploit a modular way of thinking about
systems design. To preserve this modularity, I will present the key cal-
culations in terms of subroutines which are then linked together to form
a system. The result will look a lot like real code, but there has been no
effort to optimize its efficiency or carry out numerical testing/debugging.

3.7.1 Preliminaries

A functional network may be defined as a subroutine NET(X;w;z;Y),
which inputs arrays X and w and outputs arrays z and Y, and performs
the following calculations internally:

r;=X; t<m
Z; :fi(zi—l’---,IZ,xlyﬂ)r 3:m+17aN

Yi=zitn, t=1,..,n

where m, n and N are constants built into the subroutine, and the f;
are twice-differentiable functions also built into the subroutine. Y is
the “real” output of the network, but the entire array z is sometimes
needed.

Artificial neural networks are a special case of functional networks,
where fr42;4+1 for all j calculates a weighted sum of the outputs of earlier
neurons, and fn42j42 calculates 1/(1 + ezp(—Zn42;+1))—the output of
the (j+41)st neuron. It is possible to handle networks where f; is allowed
to use x;4+1, T;+2, €tc., as arguments, in addition to the arguments shown
here; however, this requires special methods (Werbos 1988b).

For any functional network, we can construct a dual subroutine,
FNET(F_Y;z; F_w;F_X;F_z). The inputs to this subroutine are
the arrays F_Y and z. The main outputs are F_w and F_X. (F_z
is usually just scratch space.) The dual has the following key property:
if F_Y represents the gradient of some quantity L with respect to Y,
and Y is the output of the subroutine NET, then F_w and F_X will
be the gradients of L with respect to the weights w and the inputs X,
respectively. (Werbos (1989a) gives a more rigorous definition of what
this means.)

The dual can be cod oaés yrf'?gl %vg(sf I%%%?ig}l backpropagation:
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Fzyn=FY;

N+n
of;

E Fz; (z,w), i=N,..1
0z;
j=i+1

N+n a

Fw Z fzj B,

j=m+1

all weights

FX;,=Fz;, i<m

Finally, for GDHP, we need to pay special attention to networks NET
which have only a single output. For the critic network, we need to
construct a doubly dual subroutine, G_F NET(z; F_z; Weight X; G w),
whose first three arguments are inputs and whose last argument is an
output. If the output of the subroutine NET is a single scalar, J, then
we want to calculate:

8%J

G_’U),; = ; Wezght_Xj BT-Ja_w—,

To calculate these derivatives efficiently, we may use the tricks in Werbos
(1988a), which lead to the following equations:

i—1
3ﬂ
GFzz—Wezghtx,+Jz-:lG_ _ ’6 =1,..,.N

(where Weight_z; = 0 for ¢ > n)

G__:L‘N+1=0
N+1 af;

Gz = Z (G J-i—F ZG’F k3 ),i:N,...,m+1
L Tk
J=i+1

N+1 62 f

; J
;(G +F JZGszawiaxk)
For relatively sparse networks (and neural networks especially), these
second derivatives tend to be very sparse as well, and the summations

turn out to be relativelyCsimplghtedulierials 1988a).
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3.7.2 Implementing Section 3.4

To implement the BAC method of figure 3.4, we require three subrou-
tines or networks, whose arguments are ordered by the conventions just
stated:

CRITIC(R; w; z; J)
MODEL(R(t), u(t), noise; w”; z"; R(t + 1))
ACTION(R(t); w'; z';u(t))

Our goal is to adapt w and w’; we assume that w” is already known.
Note that the input array to MODEL consists of the concatenation of
three vectors. As in a real computer program, the order of arguments—
not their names—is what controls the process.

When we use the simulation approach to handling noise, and we use
real-time learning, we can assume that we start from a vector R describ-
ing reality. We next simulate a noise vector noise, and must then adjust
the weights. To adjust the action network according to figure 3.4, we
calculate:

CALL ACTION(R;w';z'; u)

CALL MODEL(R, u, noise; w"; z"; R2)

CALL CRITIC(R2; w; z; J)

CALL F_CRITIC(1; z; scratch; F_R2; scratch)

CALL F_MODEL(F_R2; z"; scratch; scratch, F _u, scratch; scratch)
CALL F_ACTION(F u;z'; F w'; scratch; scratch)

w’ = w' + learning_rate x F v’

where “scratch” refers to scratch space (i.e., unused outputs).

3.7.3 Dual Heuristic Programming (DHP)

To implement DHP under the same conditions, we change our CRITIC
to:

CRITIC(R; w; z; lambda)
To adapt this critic network, we calculate:

CALL ACTION(R;w'; z';u)

CALL MODEL(R, u, notse; w”; z"; R2)

CALL CRITIC(R2; w; z; lambda2)

CALL F_.MODEL(lambda2; z"; scratch; F_R, F _u, scratch; scratch)
CALL CRITIC(R; w; z; lambda) error = lambda2 + V(R2)—lambda
CALL F_CRITIC(error; z; F_w; scratch; scratch)

w = w+learning_ratexFCOPyrighted Material
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where the function V is as defined in Section 3.4. To adapt the action
network, along the lines of Figure 3.4, we go on to calculate:

CALL F_ACTION(F u; z'; F w'; scratch; scratch)
w’ = w’'+learning_ratexF_w'

3.7.4 Globalized DHP (GDHP)

Section 3.5 proposed that we minimize an error measure based on equa-
tion 3.10. For the sake of generality, let us assume that we minimize
a weighted sum of square error, where the error for each value of i is
weighted by an arbitrary constant A;. (Those who are disturbed by this
may simply use A; = 1, as we did implicitly with DHP.) Our calculations
are:

CALL ACTION(R; w'; z'; u)

CALL MODEL(R, u, noise; w"; ''; R2)

CALL CRITIC(R2; w; z; J2)

CALL F_CRITIC(1; z; scratch; F'_R2; scratch)
CALL CRITIC(R; w; z; J)

CALL F_CRITIC(1; z; scratch; F_R; save)
error=V(R2)+ F R2— F R

delta(i) = error(i) * A() (for all i)

CALL G_F_CRITIC(z; save; delta; G_w)

w = wtlearning_ratexG_w

Adapting the action network is then straightforward. Note how the
error vector here is equivalent in meaning to the error vector we used
in DHP; the two methods are minimizing the same measure of square
error, but in GDHP the lambda vector (i.e., F_R) has to be computed
by backpropagation.
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