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3.1 Introduction and O..-en-iew 

This chapter will prmide a menu of d€5igns for artificial neural networks 
which learn TO ma.'Ci.mizt' a me&-llrE' of utility. reinforcement or perfor­
mance m-er time_ By defining mility as the neg-ati,-e of CQ:,-r. WE' can lL'E' 
the-se same d�on;; to minimizt' a me&-llrE' of C1..�-r. 

�Ia.-timization probleIlli of this 50Tt arL.'E' in a variety of conte..,-,s. For 

example_ when WE' want a robot arm TO follow a desired trajectory. and 
WE' want to minimizt' the energy it lL't':S. WE' can tran..�ate this into a 
problem of CQ:,-r minimization: WE' simply define the measure of CQ:" as 
the sum of two teTIll5. one repre-senting the de,iation betWE'en the acmal 

trajectory and the desired trajecTOry. and the Olher represeming eneIID­
e..-q>enditure. Jordan (1989) ha.5 shown that this approach acmally works 
in simulation tE'::>',s. Kawaro. in chapter 9. take.s a similar approach TO 
trajecTOry planning. a.5 do �gu�-en and 'Yidrow in chapter 12. Psychol­
ogb',s haw smdied the idea of learning ba..'E'd on reinforcement si..,anals 
for decade.s. :\Iany probleIlli in indlb-rry can be stated a.5 probleIlli in 
long-term profit ma."timization. 

In designing neural networks TO :;.olw Tne.se probleIlli. the bigga-.-r chal­

lenge is to account for the link betWE'en present actions and future con­

;;equences. TherE' are two basic ways TO mE'E'T this challelloue. One way is 
to build an explicit model of the enernal emironmem which the neural 

neT is �ing TO control. and lL'E' bacl...-proJ>8ca-arion through time (BTT) to 
calculate the derinnlYI:':' of furore utility with re:,-pecT TO pre.sem actions. 

(All reierE'nces to BIT in this chapter will refer to this particular way 
of u..� baci...-proJ>8ca-ation. See Weroo.s (l990b) for a tutorial on back­

propa."a-arion through time in more general applicarions). The other way 
is to adapr a -critic - network. a special network which ourput,s an �--ti­
mQt� of the total furore utiliTY which will arL.� from pre-sent simations 

or actions. This chapter will focus on the adaptiw critic approach. 

This book pn>Sellt.s th� two approach€5 a.5 ways of adapting artificial 
neural nenrorks_ Howt'Yl'x, both approach€5 can be applied jlb, as ea.."­
ih- to adapting any network of d.ifi'e.rE'ntiable functions. They can both 
� newro as general methods in control theory. For e.."GlIIlple., Weroo.s 
(19S9a) u..� BIT to ma."'llinize profit.s in the natural gas indlb-rry. as 
part of the official1� forecast.s of The Energy Information _-\.d.minblni­
tion: the model of the emironmem in that ca..� Vi"8S a simple economic 
model of that indm.u� CIi�c1�J of connol theory. BIT is 
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the same as the first-order calculus of variations (Bryson and Ho 1969), 
modified only by the use of a more efficient, parallel algorithm to cal­
culate the derivatives (Lagrange multipliers). Likewise, the adaptive 
critic can be derived as a way of approximating dynamic programming; 
dynamic programming, in turn, is the only exact and efficient method 
available to control motors or muscles over time, so as to maximize 
a utility function in a noisy, nonlinear environment, without making 
highly specialized assumptions about the nature of that environment. 
Section 3.7 will describe how to implement the ideas in this chapter in 
the general situation, not limited to neural networks as such. 

BTT is easy to use and exact, but it has no provision for handling noise 
or error in one's model of the plant, and it is not suitable for real-time 
learning as in biological systems (Werbos 1988b). Thus the very first 
journal article mentioning backpropagation (Werbos 1977) focused on its 
use in a subordinate role, as an adjunct to the adaptive critic approach. 
In this approach, backpropagation may be used from cell to cell at a 
given time, but not backwards through time. Many people believe that 
backprop�gation is not biologically plausible even in that limited role; 
however, arguments can be made for its plausibility (e.g., Werbos 1988a, 
1988b), especially in light of new evidence that the cytoskeleton inside 
of mammalian cells can transmit information at speeds on the order of 
millimeters per millisecond (Zhu and Skalak 1988). 

This chapter will focus in depth on the adaptive critic approach, which 
is a large and important subject in its own right. Other chapters and 
papers cited above already describe BTT (chapter 4 also describes some 
variants of BTT). For background information on all these methods, 
see chapter 1 and chapter 2. For concise mathematical definitions and 
examples, see section 3.7. 

Adaptive critic designs come in many shapes and forms. The sim­
plest and best-known designs have been criticized for their inability to 
handle very large control problems. This chapter will argue that these 
criticisms are legitimate, but that we can overcome them by using more 
complex adaptive critic designs. Many applications do not require such 
complexity, but in the long-term-to duplicate or explain the capabili­
ties of the brain-we will need to work with it. This chapter will begin 
by presenting a simple, generic design for an adaptive critic system, and 
then-section by section-show how additional features can be added, 
to arrive at additional capabilities. 

Section 3.2 will present a simple design, made up of only two neu­
ral networks-a critic network and an action network. Designs like this 
have worked well in reDp��ts (not just simulations); 
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however, the examples I know of are proprietary, confidential, or so re­
cent that I have only heard oral presentations. (For example, John May­
hew of Sheffield University in England has spoken about applications to 
controlling a simple autonomous vehicle.)  

Section 3.3 will describe two minor limitations of the simple design, 
related to the possibility of divergence and the impact of unobserved 
variables. It will describe how to overcome these limitations, by go­
ing back to the literature on dynamic programming, and upgrading the 
design to reflect that literature. 

Sections 3.4 and 3.5 will focus on the deeper, more difficult problem 
of how to handle a large number of control variables (e.g., many motors 
or muscles to control) or sensor variables. Certainly the human brain 
is capable of handling millions of control variables, and there are many 
engineering applications where a number of motors must be controlled in 
tandem. Section 3.4 will describe a way of coping with these problems, 
in adapting the action network, and will draw some parallels with the 
human brain. Section 3.5 will go further, by describing alternative ways 
to adapt the critic network itself. 

Section 3.6 will discuss a few topics for future research, such as the 
problem of high-speed motor control and the problem of extending the 
effective planning horizon. Section 3.7 will give equations and examples 
to assist in implementation. 

3.2 A Simple Two-Component Adaptive Critic Design 

3.2.1 What the Design Tries to Do 

This section will describe the design of a neural network system to solve 
the problem of reinforcement learning. Before describing that system, I 
will first describe the problem which it tries to solve. 

The problem of reinforcement learning has very deep roots in the 
literature of psychology. Sutton (1984) has traced this problem back to 
Marvin Minsky, in the early 1960s and earlier. 

Figure 3.1 illustrates the problem. Imagine a little man (or computer) 
sitting in front of a row of levels labeled Ul through Un. Beside him is 
a big meter (which looks like a thermometer in the cartoon), labeled 
U. The meter gives a measure of how well the man is doing. His job is 
to control the levers so as to make U as large as possible. The blinking 
lights, labeled Xl through Xm, are simply a source of information which 
the man can use in deciding which levers to pull and when to pull them. 
In principle, the man &e�(ttM�ho knowledge of the lights 
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Figure 3.1 
Cartoon image of reinforcement learning over time. 

or the meter; he may have to learn everything from scratch, allowing 
for the possibility of nonlinear fluctuations and noise in the external 
environment. 

This notation is similar to that used in decision and control theory. 
The collection of variables Ul through Un form a vector, y, called the 
control vector (Bryson and Ho 1969). The observation variables Xl 
through Xm form a vector X, similar to the observation vector of control 
theory. The variable U -called "reinforcement" in psychology-plays 
the same role as the utility function U in the theory of cardinal utility 
developed by John Von Neumann and popularized by Howard Raiffa. 
(U may also be used to represent a "performance index" or a "cost 
function" or a "profit f�ed Material 
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Figure 3.2 
A simple adaptive critic system. 

Williams (1988) has discussed earlier formulations of reinforcement 
learning, in which the actions g( t) are chosen to maximize U (t), as 
if later times did not matter. This chapter will focus entirely on the 
problem of reinforcement learning over time, in which the goal is to 
maximize the long-term expected value of U(t). We will always try to 
account for the effect of current actions on the state of the world at later 
times, either explicitly or implicitly. 

3.2.2 Overview of the Two-Component Design 

Figure 3.2 shows one way to build an adaptive critic system, taken (with 
modification) from Sutton (1984). Two neural networks are adapted 
over time-an action network and a critic network. The action network 
outputs the actual control signals, g(t), while the critic network guides 
how the action network is adapted. The critic network inputs a descrip­
tion of the state of the world (X(t)) and outputs a single number, J(t), 
which is an evaluation of how well the action network is doing in creating 
a "good" situation. (The letter J stands for "Judgement," and is also 
used by Bryson and Ho (1969) and Raiffa (1968).) Then, in each time 
t, the action network is "rewarded" or "punished," based on what kind 
of situation it produces; in other words, actions g(t) are "rewarded" if 
they lead to good results (larger J{t + 1)) and "punished" if they lead 
to bad results (smaller J (t + 1)). 

To translate this psychological intuition into a working design, we 
need two things: Copyrighted Material 
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1. A learning rule which states how the weights in the action network 
change in response to reward and punishment (J(t + 1»; 

2. A learning rule which states how the weights in the critic network 
change as a result of experience. 

To adapt the action network, Barto, Sutton and Anderson (1983) ad­
justed the weights in response to correlations between various variables 
calculated in the network and the variable J. I will not discuss the details 
of their method, in part because they are already well known, and in 
part because section 3.4 will discuss some alternatives. 

The remainder of this section will describe a simple form of heuristic 
dynamic programming (HDP), a method for adapting the critic network 
proposed in Werbos (1977). This chapter will not describe the better­
known method of temporal differences used by Barto, Sutton and An­
derson to adapt their critic networks; however, Werbos (1990a) argues 
that HDP may be viewed as a generalization of that method. Grossberg 
and his collaborators have also developed critic-like networks, which are 
beyond the scope of this chapter. 

3.2.3 Descr iption of HDP 

As noted above, the critic network yields an output, J, which is a func­
tion of its current inputs, X, and of its weights, w. Let us write this 
function as J (X, Yl.). 

Intuitively, we want to find weights w which make J(X(t),Yl.) an ac­
curate assessment of "how good" X(t) is. (Section 3.3 will provide a 
more rigorous basis for this idea.) We want to know how good X(t) is, 
relative to the problem we started with-maximizing the expected value 
of U across all future times. Ideally, then, we would want J(X(t),Yl.) to 
be an estimate of: 

U(t) + U(t + 1) + .. . + U(oo) (3.1) 

assuming that this sum converges. (Section 3.3 describes what to do if 
not.) 

How can we train the critic network to provide such an estimate? 
HDP, like backpropagation, can be implemented in a variety of ways. 
For example, it can be implemented through real-time learning (where 
the weights are updated after each pattern is analyzed), or it can be 
implemented through batch learning (where the weights are updated all 
at once after a big pass through all the patterns). For simplicity, I will 
consider the case of batao�dtMeterial 
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In order to simplify our future discussion, it will help to remember that 
U(t) is available at time t as one of the observed inputs to the system. 
Thus we can assume that it is available as one of the components of the 
vector X; in other words, Xk(t) = U(t) or some k. This lets us write U 
as a function of X, U(X) = Xk. Let us also assume that we are given 
a time series of vectors, X ( t), for t going from 1 to T. Once again, our 
goal is to adapt the weights W. in the critic network. 

In HDP, we use some sort of supervised learning method to adapt 
the critic. Any supervised learning method will do, so long as we use 
the right inputs and targets. For example, anyone familiar with basic 
backpropagation should be able to fill in the rest of the details, when 
the inputs to the net and the targets are fully specified, for the training 
set. 

In the simplest form of HDP, we carry out several passes through 
the training set. We start with an initial set of weights w.(O); in pass 
number n, we derive a new set of weights w.(n). We keep going through 
the training set, over and over, until the weights settle down, Le. until 
w.(n+I) = w.(n). 

On each pass, our training set consists of T - 1 pairs of inputs and 
target, for t = 1 through T - 1. (There is only one target for each pair, 
because the critic network has only one output, J.) The inputs for time 
t are simply the vector X(t). The target for time t, within pass number 
n, is: 

J(X(t + 1), wen-I»� + U(X(t» (3.2) 

In other words, before we begin the adaptation of the weights in pass 
number n, we have to plug in X (t + 1) into the critic network, using the 
old weights, in order to calculate the target for each time t. The targets 
are then fixed throughout pass number n. Then, in the adaptation phase 
of pass number n, we update the weights to try to reach the targets. We 
could do this in an exhaustive way, by searching the entire weight space, 
or by using a supervised learning method (like Kohonen's pseudo-inverse 
method) which converges in a single pass; alternatively, we could simply 
do a single pass of backpropagation. 

Theory tells us that we should simply throw out the case where t = T, 
when we are trying to control an infinite, continuous process, because 
equation 3.2 is not well defined in that case (since X(T+ 1) is unknown). 
In many practical applications, however, our set of observations X(I) 
through X(T) is actually made up of several strings of observations, 
where each string repr��Mtajetiment on the system to be 
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controlled. In those applications, X (T) usually represents the comple­
tion of the last experiment; thus the case t = T should be added to the 
data set, with a target of U(X(t». In fact, the target for the final time 
t of any such string is simply U(X(t». In some applications, we may 
even want to use a different utility function, U, for the final time, to 
measure how well the experiment is completed; this can be done quite 
easily when using HDP. 

Werbos (1990a) has shown that this simple form of HDP converges to 
exactly the right weights, for a simple class of linear problems. More pre­
cisely, it converges whenever the external environ�ent is a linear system, 
governed by a matrix equation with multivariate normal noise, when the 
Critic network has the appropriate form (which is simply linear in this 
case), and when the supervised learning method is itself statistically 
consistent. 

3.3 HDP and Dynamic Programming 

3.3.1 Background 

Figure 3.3 illustrates the basic trick used in dynamic programming, which 
is one of the fundamental tools used in control theory. Dynamic pro­
gramming is discussed in standard textbooks like Bryson and Ho (1969) 
and Gale (1979), but the extension of dynamic programming developed 
by Howard (1960) is most relevant here. 

Dynamic programming requires as its input a utility function U and 
a model of the external environment or plant, which I denote as "E". 
Dynamic programming produces, as its major output, another function, 
J*, which I like to call a secondary or strategic utility function. The key 
insight in dynamic programming is that you can maximize the expected 
value of U, in the long term, over time, simply by maximizing the func­
tion J* in the immediate future. Whenever you know the function J* 
and the model F, it is a simple problem in function maximization to 
pick the actions which maximize J*. The function J of section 3.2 may 
be viewed as an approxiTl!-ation to the function J*. 

Why should we train our Action network to maximize an approxima­
tion like J instead of the exact function J*? Clearly it is better to use 
the exact function, when this is possible. But the computational cost of 
finding J* grows exponentially with the number of variables in the prob­
lem. To cope with complicated problems in the general case, we really 
have only one choice; we have to approximate dynamic programming, by 
using a model or netwo�Nitelili/function or its derivatives. 
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The derivatives of J* (X, Yl.) with respect to the variables X k form a vec­
tor II *; the Lagrange multipliers used in the calculus of variations are an 
example of this vector. In fact, all approximation methods-including 
neural net methods-for "solving" the reinforcement learning problem 
over time in a general environment may be viewed as general approxi­
mations to dynamic programming; in all cases which I am familiar with, 
they do include specific functions which try to approximate J* or ll* in a 
general way. Examples may be found in numerous fields, including arti­
ficial intelligence, physics, economics, and schools of psychology ranging 
from the behaviorist to the avowed mystic (Werbos 1986). 

By looking at dynamic programming more closely, we will see two 
features-involving two new terms, 11 and Uo-to enhance the design of 
section 3.2. Copyrighted Material 
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3.3.2 Mathematics 

Dynamic programming assumes the availability of a model of the exter­
nal environment or plant which we may write as: 

(3.3) 

where yet) refers to the vector of actions at time t, noise is a vector 
of random numbers, and 11 is a vector describing the current state 
of Reality-the plant or the environment. For mnemonic purposes, it 
helps to recall that "R" stands for "recurrent," "representation" and 
"reconstruction" -all of which apply to some extent. 

At this point, some readers may believe that the shift from X to 11 
is an oversight or an unnecessary inconvenience. However, this shift is 
truly fundamental to the validity of the method. If equation 3.3 were 
an accurate description of reality with 11 = X, then the shift would 
indeed be unnecessary; however, this is usually not the case in practical 
applications and is certainly not the case in human psychology. For 
example, when a person sees a ball roll under a chair, he does not act 
as if the ball has vanished from reality. Likewise, in control theory, the 
state vector and the vector of observables are usually quite distinct. 

How can we build a neural network to represent the function F? A 
simple, popular approach is to build a network which inputs X(t), which 
uses X(t + 1) as its targets, and which includes recurrent hidden units. 
In that case, the vector R(t) would consist of the outputs of the hidden 
units and all the components of X(t). Unfortunately, this approach has 
a number of weaknesses, involving its robustness over long time periods, 
its representation of noise, and problems involving real-time convergence. 
Werbos ( 1987a) offers a few suggestions for overcoming these weaknesses, 
based on extensive empirical work,

' 
but more research is needed. The 

first stage of Kawato's cascade method is an example of what Werbos 
(1977) calls the "pure robust method" ; it is a good first step, but very 
far from the whole story. Difficulties in this area are arguably the most 
serious obstacle now facing us in neurocontro!' 

In any event, it is safe to treat X as part of the vector R, since what we 
observe is part of reality. For this reason, we may treat U as a function 
of 11, U (E). Henceforth, I will also defi�e: 

(3.4) 

Howard has proven that the function J* can be found by solving a 
modified form of the Bf!HfHi{fig_Mi,iferial 
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J*(R) = Max < J*(F(R,y,noise» > U(B.) - Uo (3.5) 

where Uo is an intercept term used to prevent drift off to infinity, and 
where the angle brackets denote the average or expected value. (Nota­
tional standards vary greatly here; angle brackets are standard in physics 
and some branches of statistics, because they minimize confusion in long 
calculations.) Howard's equation was slightly more complicated, in that 
he allows U to depend on y as well as H; that feature is of little value 
here, and would lead to unnecessary confusion. 

Comparing equation 3.5 with equation 3.2, it is clear that "Uo" is an 
additional complication. If there is no possibility of drift off to infinity 
(i.e., if the expected value of equation 3.1 converges), then Uo is unnec­
essary. Such convergence can result either from uncertainty about the 
future which grows with time (Werbos 1990a) or from discount rates (as 
in Barto, Sutton and Anderson 1983). When equation 3.1 does not con­
verge, one can modify HDP by estimating Uo explicitly. For example, 
one can define J(H) + Uo as the output of the network, and keep the tar­
gets as in equation 3.1; one can adapt Uo as one adapts any other weight 
in the network. Werbos (1979) talks at length about problems related to 
the existence of Uo; fortunately, these problems seem far removed from 
the usual neural net applications. 

Equation 3.5 assumes the existence of a model, F, while section 2 
did not. The point here is that Section 3.2-following Barto, Sutton 
and Anderson (1983)-used the world itself as a model of itself. Instead 
of using a model, F, and simulating F(H,y, noise) to get a simulated 
R(t + I), it used reality itself to generate H(t + 1). This should yield 
the correct expectation values, after enough experience, but there is one 
catch: we may need to develop a model F anyway, to help us develop a 
representation vector R, in applications where that is important. 

Howard has proven many theorems which are relevant to HDP. One of 
them may be roughly translated as follows. Suppose that we have a critic 
network J(H, w ) and an action network u(R,w') so rich that they can 
represent any functions J* (H) and Jl* (H) by choosing the appropriate 
weights. Suppose that we adapt these networks by going back and forth 
between two steps: 

1. Update Y!. such that J(B.(t) , y!'(n) equals J( < H(t+ 1) >, y!'(n-l)+ 
U(H(t» - Uo, for all possible vectors H(t), where the expecta­
tion value of H( t + 1) refers to the expectation assuming that 
y(R,!ll(n-l) is used to control system actions; 

2. Updatey!" such th�fl:«iJ(�(M'mruHmizes < J(B.(t+1),y!'(n) >. 



78 General Principles 

Then the weights :!Q and :!Q' will converge to give the optimal strategy of 
action. J will converge to J*. 

3.4 Alternative Ways to Figure 3.2 in Adapting the 

Action Network 

3.4.1 The Challenge of Large Problems 

The design shown in figure 3.2 has been criticized by Guez (1987) and 
others, because it provides such little feedback to guide the action net­
work. There is only a single number, J(t + 1), used to evaluate all 
aspects of action. This is very different from the usual situation in su­
pervised learning, where separate error measures are available to each 
of the output cells. Here, there is no indication of which output cell 
should have had a different output, or of which way the output should 
have been different (smaller versus larger). For this reason, when there 
are many outputs to be controlled, one can expect much slower learning 
than one would get with supervised learning. The problem here is like 
the problem of a student trying to figure out what to study when his 
professor only gives him an overall grade (like J), instead of giving him 
feedback targeted to individual questions on the exam. 

These intuitive arguments can also be expressed in statistical terms. 
When there are a very large number of variables (like all the weights 
in a network) correlated against a single dependent variable (like J), 
one faces a problem called multicollinearity (Wonnacott and Wonnacott 
1977). With such multicollinearity, it becomes nearly impossible to es­
timate the correct weights, unless one has an astronomically large data 
base. The point is that the system learns slowly, when there are many 
output variables, for reasons which have nothing to do with the nu­
merical slowness reported with some versions of backpropagation. The 
system is slow in the sense that the estimated weights, after numerical 
convergence, still converge very slowly to the true weights as the size of 
the database, T, goes to infinity. (Multicollinearity is an issue in super­
vised learning as well (Werbos 1987a), but the assumption of a sparse 
structure tends to keep it from getting out of hand.) 

3.4.2 A Simple Way of Meeting the Challenge 

Figure 3.4 illustrates an alternative to figure 3.2, based on the use of 
backpropagation, prop

.
���. 
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Backpropagated adaptive critic (BAC). (Note how j is not used directly, but its 
derivatives-the dotted lines-are.) 
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Figure 3.4 is based on the idea of following equation 3.5 more exactly. 
After all, our goal is to find a vector y. which maximizes J (F (R, y) ) . 
Figure 3.2 is a lot like plugging in values of u and looking only at the 
values of the function J(F(R,y')) . But with backpropagation, we can 
calculate the derivatives of J(F(E,y.)) with respect to all the compo­
nents of y', in a single pass through the system. In numerical analysis, 
at least, we can find the maximum of a function much faster if we ex­
ploit the gradient information, instead of looking only at the value of the 
function. (When the gradient is used with steepest ascent, convergence 
may be very slow, but Werbos (1988a) describes other ways of using the 
gradient information.) 

The basic idea here is very straightforward. The action network can 
be represented by a function, y(R,!Q'). Our goal is to adapt the weights 
w�. To do this, we use backpropagation to calculate the derivatives of 
J(F(R,y'(R,yj))) with respect to the wi. Then we adjust the weights 
in response to the derivatives, as in conventional backpropagation. In 
this case, we are backpropagating through the critic to the model (F) 
and then to the action network, as if the three networks formed one 
large feedforward network. Information is passed backwards (the dotted 
lines) from network to network in figure 3.4, but it is not propagated 
backwards in time. (Se£�MalftriIbre details.) 
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This approach may be viewed as a synthesis of the best features of 
figure 3.2 and of backpropagation through time. As with backpropa­
gation through time, we have specific feedback to specific components 
of y., rather than one gross evaluation. This feedback accounts for the 
cause-and-effect information embedded in the network F. If a machine 
or person never uses knowledge of cause and effect to guide his choice 
of actions, then there are limits to how well he can cope with a complex 
environment. 

3.4.3 Procedures for Handling Noise 

Williams (1988) has pointed out that we have to be very careful in 
propagating derivatives through a network (like F in figure 3.4) which 
has noise attached to it. Therefore, I will be very specific about how to 
do this. 

There are two different ways to handle the noise vector in the F 
network-the simulation approach and the imputed-noise approach. I 
will describe both of these approaches for the case of batch learning, as 
in Section 3.2. 

Assume that we have a set of vectors R(t) for t = 1 through T. Assume 
that the model network F and the critic network J will be held constant. 
Our goal for now is to adapt the action network y'(R, w'). 

In the simulation approach, we begin by simulating the noise vectors. 
For each value of t and each component of the vector noise, we pick a 
value at random, based on the probability distribution for that compo­
nent. This procedure will yield vectors noise(t) for all t, which we hold 
constant thereafter. Then on each pass through the data, calculate the 
derivatives of J with respect to a weight w� as: 

�l L J(F(R(t), y'(R(t), w' ) , noise(t))), 
• t 

treating both noise and R( t) as constants. Many variations are possi­
ble, such as the simulation of multiple noise vectors for each R(t), res­
imulation after each major pass, and comparison tests across different 
simulations. 

Many readers will ask where we find a probability distribution for each 
component of noise. In fact, this probability distribution is really part 
of our model of the plant. It may come from our substantive knowledge 
of the plant, or it may come from a neural network adapted to represent 
the plant; as discussed in section 3.3, it is not a simple issue how we 
should adapt such a ne&mtrrighted Material 
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One way of developing such a model of the plant is to build a network 
which inputs R( t) and !!( t), and aims at R( t + 1) as the targets for its 
output. We can then assume the following stochastic model of the plant: 

R(t + 1) = R(R(t),!!(t» + noise, (3.6) 

where the only form of noise is error in the forecast R(t + 1). We can 
assume that the noise for each component is normally distributed, and 
we can estimate the variance by simply looking at the variance of � - R.. 
across the training set. (For high performance, one can modify this very 
slightly, to assume that the noise acts on the activation level of the 
output cells.) 

When our model of the plant looks like equation 3.6, we have a very 
simple alternative to the simulation approach. For each pair of vec­
tors R(t) and R(t + 1) in our data, we can simply plug R(t) into the 
forecasting network R, and impute: 

noise = R(t + 1) - iUR(t),!!(t» 

In fact, this procedure turns out to be very simple in practice. It amounts 
to plugging in the actual R( t + 1) into the critic for the first part of the 
backpropagation (through the critic), but backpropagating straight on 
through to the forecasting network and the action network as if there 
had been no noise. We don't even have to estimate the variance of the 
noise, because we never really use it for anything. 

The approach of section 3.2 is really an example of the imputed noise 
approach. However, the simulation approach could also be used with 
HDP as well. Furthermore, it is also possible to simulate the vectors 
R(t) themselves, when using the simulation method. The imputed noise 
approach has the advantage of staying close to observed data, and there­
fore being more robust and reliable. The simulation approaches (like 
"dreaming") have the advantage of allowing the system to prepare for 
situations it can predict but has never experienced; for example, if hu­
mans were not capable of dreaming, we would not be capable of embark­
ing on projects like space programs or building new devices which have 
never existed in the past. It is impossible to map out a complex deci­
sion space without including some provision-either dreaming or actual 
exploration-to ensure that all regions in the space are considered. 

3.4.4 Beyond the Design of Figure 3.4 

Figure 3.4 has certain advantages over figure 3.2, which have been dis­
cussed. However, it h�cM�n. For example, its validity 
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depends on the validity of the model of the plant, F. Figure 3.2 may be 
slower but more reliable at times, since it sticks to observed data only. 
If there is a sudden, unexpected painful event, a system like Figure 3.2 
may be able to respond immediately, by changing its weights, instead 
of waiting for a change in the model of the plant which can explain the 
situation. (On the other hand, models of the plant like Kawato's may 
be a better guide to action than the empirical data, at times, because 
they can filter out confusing short-term fluctuations.) 

These relative strengths and weaknesses are similar in flavor to the 
strengths and weaknesses of backpropagation versus associative memory 
in conventional supervised learning (Werbos 1987a, 1988a). Once again, 
one would like to find a blend which combines the best of both methods. 
This blend is really needed only in the most sophisticated applications, 
where it is important to combine the advantages of both. 

One possible blend has emerged from discussion between Barto and 
myself this past year. In essence, one can start with HDP, as in section 
3.2, but also adapt an auxiliary network J' (,!!, B.) which tries to predict 
the error, J(R(t)) minus the targets in equation 3.2. Then one can 
backpropagate through the critic and the model network back to ,!!, as 
in figure 3.4, but also backpropagate through the J' network directly 
to '!!. If J' is adapted by a high-speed supervised learning method (like 
associative memory), then this will provide an immediate reward or 
punishment to weights which lead to unexpected good or bad results. 
There are many refinements possible here, and other alternatives as well. 
This approach can also be extended quite easily to the methods of section 
3.5. A similar structure, based in different mathematical objectives, has 
worked well in simulations by Lukes et al. (1990) . 

3.4.5 Biological Parallels 

The human brain is not a homogeneous mass of identical neurons, but 
it is not a preprogrammed hierarchy of cells with fixed specific tasks 
either. During the workshop which led to this book, James Houk stated 
that the brain is actually quite flexible and modular; it is made up of 
five or so major subsystems, each containing a high degree of flexibility 
(albeit with different cell types) within it. From a functional point of 
view, standard texts like Nauta and Feirtag (1986) suggest that the five 
major adaptive subsystems are: (1) the limbic system; (2) the basal 
ganglia; (3) the thalamus/cerebral-cortex system; (4) the brain stem; 
(5) the cerebellum. Copyrighted Material 
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Figure 3.4 shows only three major subsystems. Werbos ( 1987b) cites 
extensive physiological evidence consistent with the idea that the limbic 
system is like a critic network, the corticothalamic system like a model 
network (F) , and the brain stem like an action network. But this leaves 
out the basal ganglia, including the nucleus basalis, which recent research 
points to as very important. The connections of the basal ganglia are 
more like figure 3.2 than figure 3.4, suggesting that the brain might 
represent a kind of blend of these architectures. This blend may be very 
different in quality from the blend discussed in this section; if so, it is 
all the more important to study these differences in detail, because they 
may point to new opportunities on the engineering side. The cerebellum 
is well known to be responsible for smoothing out high-speed motor 
control, to be discussed in section 3.6. 

3.5 Alternatives to HDP in Adapting the Critic 

Network 

Section 3.4 began with a discussion of the challenge of large problems, as 
it affects the adaptation of the action network. The exact same problem 
also affects the adaptation of the critic network. If we use HDP, as 
described in section 3.2, then we still have that problem, even if we use 
the design of figure 3.4 to adapt the action network. HDP still only uses 
one piece of information-the target for J as given in equation 3.1-to 
adapt the critic network. 

3.5.1 Utility Functions 

One useful step in solving this problem is to exploit our knowledge (if 
any) of the utility function, U(R). Section 3.2 showed how the reinforce­
ment learning problem can be represented as a special case of utility 
maximization, of maximizing some function U(R). However, the meth­
ods of this chapter can all be applied to an arbitrary differentiable utility 
function. If we know apriori how to connect our performance measure 
to more concrete variables (like the position of a robot arm) , then we 
can avoid wasting time as our system relearns this information. The 
examples of backpropagation through time cited in section 3.1 all take 
advantage of this. 

Klopf ( 1982) has placed great stress on the importance of these effects. 
He defines the problem of drive reinforcement learning as the problem 
of maximizing U(H) w�.� obey: 
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U(R) = LVi�, 

General Principles 

(3.7) 

where the Vi are treated as fixed weights. This is more plausible biolog­
ically than the situation shown in figure 3.1, because it allows for the 
fact that primary reinforcement comes from a variety of cells , not just 
one ''master cell." 

It is very straightforward to extend HDP to the case of drive reinforce­
ment learning. We need to define our critic as a network with multiple 
outputs, Ji+, one for each component of the vector V. Conceptually, we 
may define: 

(3.8) 

but we never really need to calculate J. We can still use supervised 
learning, as in section 3.2, but we now need targets for each output Ji. 
The target for Ji is simply : 

Ji(R(t + l),1!l(n-l» + Vi�(t), 
with allowance for UiO if convergence is a problem, as discussed in Section 
3.2. (Alternatively, we could weight the sum in equation 3.8 by Vi, and 
eliminate the Vi in equation 3.9.) To adapt the action network, we can 
backpropagate through the critic just as easily as we could before; we 
begin by noting that the derivative of J with respect to each Ji is simply 
1, and proceed backwards in the usual way. 

This does not tell us how to exploit our knowledge of U(R) if U is a 
nonlinear function or network. To do that, we must go beyond HDP to 
more advanced methods. 

3.5.2 Dual Heuristic Programming (DHP) 

In examining figure 3.4, Barto has asked whether we really need the critic 
network at all here. All we are really getting from the critic network are 
the derivatives , the dotted lines feeding back from the critic to the model 
of the plant (F). If we could estimate the derivatives of J* with respect 
to R( t + 1) directly, then we would not need the critic at all. This is 
basically what DHP tries to do. 

Strictly speaking, DHP does not eliminate the critic. It replaces the 
critic with a new network, whose output is an estimate of the derivatives 
of J* with respect to R. We can think of this new network as an alter­
native type of critic. The derivatives of J* with respect to R are simply 
the vector �", defined iG�flc:hlllatwifJlnay say that DHP adapts 
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a A-type critic, rather than a J-type critic. When we adapt the action 
network, we use this new critic to calculate �, and then propagate these 
derivatives back through the model of the plant and the action network 
just as we would if � had come out of backpropagation. 

How can we adapt a A-type critic? First let us consider the theory 
behind DHP. DHP is based on differentiating equation 3.5 on both sides 
(and suppressing the expectation operator and maximization, as in Sec­
tion 3.2) to get: 

8r � 8r 8Fj 8U 
8R;(t) = � 8Rj(t + 1) 8R;(t) + 8R;(t) 

J 

(3.9) 

Note that the unpleasant Uo term has dropped out. Recalling our defi­
nition of �*, and defining the rightmost term as Vi(R), we get: 

>.;(t) = � >.j(t + 1) 
8':tt) + V;(R) 

J 
(3.10) 

Using DHP, we no longer need to assume the availability of U(R); in­
stead, we assume the availability of the reinforcement vector V, which­
unlike the V of the previous section-truly varies over time, as a function 
of the situation. The summation in the middle of the equation is simply 
an application of the chain rule, a calculation of derivatives; to calculate 
such derivatives efficiently in practice, we can simply use backpropaga­
tion. 

All of this theory leads to the following procedure. With DHP, as in 
HDP, we adapt a critic network. Our critic now has multiple outputs, 
Ai. The input to the critic is R(t), exactly as in HDP. We can use any 
supervised learning method to adapt this network, to make the outputs 
match the targets. We have to iterate through many passes, as in HDP, 
even if we use a one-pass supervised learning method in each pass. 

The only difference with HDP is in where we get the targets. Instead 
of using equation 3.2, we now try to use the right-hand side of equation 
3. 1 1 .  In order to use the right-hand side of equation 3.11, we have to 
use backpropagation as a way of calculating the summation term in that 
equation. In other words, DHP forces us to use backpropagation as a 
way to obtain the targets, not as a way to adapt the network to match 
the targets. (Backpropagation can be used in both places, of course, if 
we so desire, as in the Appendix.)  

More precisely, in each pass n ,  we assume that the weights 1Q(n-l) 
are available (as in HDP). Our first step (as in HDP) is to calculate the 
targets for each time t. ClI1,�aterial 
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1 .  Inserting R{t + 1 )  as the input into the A-critic, using the old 

weights :!Q(n-l) in that network. The output will be �(t - 1 ) .  

2.  Backpropagating these derivatives {Le. ,  the components o f  �(t + 
1»  through the model of the plant (F) , all the way back to the 
R;. (t) variables input to that model. This yields an estimate of the 
derivatives of J* with respect to each of the R;. {t) .  

3. Set the target for Ai{t) to be Vi{R{t» plus this new estimate of the 
derivative of J* with respect to R;. {t). 

The next step is to adapt the weights so as to make the outputs closer 
to the targets, exactly as in HOP. 

Just like the BAC design of figure 3.4, OHP takes fuR advantage of the 
cause-and-effect information embedded in the model of the plant (E.). 
It focuses the computational effort on estimating the slope of J* , which 
is usually more important to making good decisions than is the absolute 
level of J* . 

3.5.3 Globalized DHP (GDHP)  

As in section 3.4, there are numerous possibilities for blends between 
the two basic methods. GOHP is one such blend. 

HOP has the advantage of coherence. Because there is only one J 
function, there is one consistent evaluation of how well one is doing. 
OHP, however, is not guaranteed to be internally consistent; the deriva­
tive of Ai {R) with respect to Rj ought to equal the derivative of Aj {R) 
with respect to R;., but it may not come out that way in our approx­
imation. Ideally, one would want to know the absolute level of J-for 
use in making big decisions-while also learning about the slope in fine 
detail. 

GOHP makes this possible. In GOHP, we adapt a J-type critic, as 
in HOP, but we try to minimize the error in equation 3.10, as in OHP. 
(As in HOP, we treat the weights on the right-hand side as constants, to 
avoid the problems discussed in Werbos ( 1990a) . )  In fact , we could even 
expand this error measure by adding it to the error function implicit in 
HOP. 

Unfortunately, the only way I know to minimize such an error measure 
is to use backpropagation to adapt the critic network. In using back­
propagation, we need to calculate the derivatives of error with respect to 
the weights in the critic network; however, the error measure itself con­
tains derivatives, so that we need to calculate second derivatives. The 
details of this are given �/iJI1dHtitJW!Wterial 
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Better methods may be found to achieve the same objectives, but 
I am not aware of any such at present. The best I can imagine at 
present is the adaptation of further networks to approximate some of 
these calculations. 

3.6 Some Topics for Further Research 

3.6. 1 The Problem of "Vision" (Effective Long-Term 
Foresight) 

Even in Howard's dynamic programming, the current estimate of J* 
in any iteration will tend to represent the future H periods into the 
future (Le. , it will really tell you how to maximize the sum of U(t) 
through U(t + H) , not U(t) through U(oo)) .  On each full application 
of the Bellman equation, H grows to H + 1 .  But if the cycle time for 
calculation is, say, a fifth of a second, and the unit time period is a fifth 
of a second as well, it would take years to build up a time horizon of 
years at best; realistic inefficiencies, lind a lack of a complete update in 
neural networks, could lead to a Hme horizon of only a few days after 
years of learning. 

If adaptive critics were adapted by backpropagation, one could replace 
steepest descent by an accelerator method which could work far faster­
at the risk of instability (a risk which may have its biological counter­
part) . Also, most accelerator methods do not allow for this kind of 
"moving target" problem, where parameter changes themselves change 
the target. 

Werbos (1987b, 1990a) mentions a few ideas on how to cope with this 
problem, but it is a wide-open area. It is also a difficult area, and less 
than essential to near-term engineering applications. Still, it may be 
very important to human intelligence. 

3.6.2 The Problem of High-Speed Motor Coordination 
(Cerebellum) 

GDHP takes a long time to go through a cycle of calculations, because 
there are so many calculations to go through. Werbos ( 1987b) compared 
it in detail with literature on the human cerebral cortex and limbic 
system, which are also relatively slow and relatively coherent. The brain 
needs a faster system to smooth out actions-the cerebellum. 

How can we link a primary neurocontrol system, based on some­
thing like GDHP, with raQPllii��ftatation system which is less 
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integrated, less statistically efficient (i.e. , learns slowly) , but much faster 
in operation (smaller cycle time)? How could we build an artificial cere­
bellum? Perhaps we might use something like Ai (t + 1 )  - Ai(t)-as 
estimated by the primary system-to be used as Vi in a subordinate, 
fast HDP system without a model. The multivariate richness of the 
�(t + 1) - �(t) vector would partly overcome the usual slowness of HDP. 
Or perhaps a very simple associative model could be used with DHP, 
or other inputs could be used in HDP with a goal of simply smoothing 
motion. The biological studies discussed by Kawato in chapter 9 sug­
gest very strongly that the human cerebellum does indeed minimize a 
cost measure (torque change) over time. In general, the interface be­
tween multiple sets of neurocontrollers-including humans as well-will 
be important to many practical applications. 

3.6.3 The Need For Tests 

This is almost certainly the most critical research area for now. All the 
trade-offs discussed above seem fairly clear from the mathematics, but 
concrete tests are needed, across a wide spectrum of problems, to clarify 
and communicate the nature of these tradeoffs in practice. Likewise, a 
creative approach to "making things work" -by diagnostic analysis and 
modification as necessary-is vital to solving realistic problems using any 
of the methods in this book. Few things in this field are likely to work out 
perfectly the very first time they are tried, when they are implemented 
in the most trivial way; in chapter 7 Shanno cites examples of the same 
phenomenon in numerical analysis and function minimization, which 
present very similar challenges. Diagnostic analysis--drawing on a wide 
range of disciplines as well as immersion in the behavior of concrete 
examples-will be essential, as will mathematical analysis of simplified 
problems which abstract the essence of more realistic ones. 

3.7 Equations and Code For Implementation 

Many engineers would find it difficult to understand the ideas above 
without seeing a few equations. Unfortunately, the equations will look 
very different, depending on the type of network to be used (neural net 
versus econometric model versus fuzzy logic net versus fluid dynamics 
code versus . . .  ) , the type of learning schedule, the type of computer (se­
quential versus parallel versus dedicated) , etc. This section will describe 
the key details, as they might look in a sequential computer, applied 
to real-time learning, uQOI!I�lelVatpproach to handling noise 
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and basic backpropagation with steepest ascent to handle all supervised 
learning problems. This is not the best way to go, but it should at least 
clarify the basic ideas. 

The flowcharts in this chapter exploit a modular way of thinking about 
systems design. To preserve this modularity, I will present the key cal­
culations in terms of subroutines which are then linked together to form 
a system. The result will look a lot like real code, but there has been no 
effort to optimize its efficiency or carry out numerical testing/debugging. 

3.7. 1 Preliminaries 

A functional network may be defined as a subroutine NET(X; !Y.; ;f; Y) ,  
which inputs arrays X and !Y. and outputs arrays ;f and Y,  and performs 
the following calculations internally: 

Xi = Xi ,  i :S  m 

Yi = XHN , i = 1, . . .  , n  

where m , n and N are constants built into the subroutine, and the Ii 
are twice-differentiable functions also built into the subroutine. Y is 
the "real" output of the network, but the entire array ;f is sometimes 
needed. 

Artificial neural networks are a special case of functional networks, 
where I n+2j + 1 for all j calculates a weighted sum of the outputs of earlier 
neurons, and In+2j+2 calculates 1/ (1 + exp( -Xn+2j+ t } )-the output of 
the (j + 1 )st neuron. It is possible to handle networks where Ii is allowed 
to use Xi+! , xH2 , etc., as arguments, in addition to the arguments shown 
here; however, this requires special methods (Werbos 1988b) . 

For any functional network, we can construct a dual subroutine, 
F _NET(F 1; ;f; F .-!Q; F -.Xi F �) . The inputs to this subroutine are 
the arrays F 1 and ;f. The main outputs are F.-!Q and F....J{. (F � 
is usually just scratch space.) The dual has the following key property: 
if F 1 represents the gradient of some quantity L with respect to Y, 
and Y is the output of the subroutine NET, then F .-!Q and F -.X will 
be the gradients of L with respect to the weights !Y. and the inputs X ,  
respectively. (Werbos ( 1989a) gives a more rigorous definition of what 
this means.)  

The dual can be coded as foUo
t
W� bas

t
ed .ofl backpropagation: 

Copyngn eu Malenal 
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Finally, for GDHP, we need to pay special attention to networks NET 
which have only a single output. For the critic network, we need to 
construct a doubly dual subroutine, G_F_NET(.f.j F�; WeightXi G w),  
whose first three arguments are inputs and whose last argument is  an 
output. If the output of the subroutine NET is a single scalar, J, then 
we want to calculate: 

To calculate these derivatives efficiently, we may use the tricks in Werbos 
(1988a) , which lead to the following equations: 

i - l  ar G_F_Xi = Weigh(xi + L G_F_Xj ax'. , i = 1, . . .  , N 
j=l J 

(where Weigh(xi = 0 for i > n) 

G_XN+1 = 0 

For relatively sparse networks (and neural networks especially), these 
second derivatives tend to be very sparse as well, and the summations 
turn out to be relativel�gt(tedMWerlals 1988a) . 
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3.7.2 Implementing Section 3.4 

To implement the BAC method of figure 3.4, we require three subrou­
tines or networks, whose arguments are ordered by the conventions just 
stated: 

CRITIC(Rj �j �j J) 
MODELCR(t) , y.(t) , noisej �" j �" j R(t + 1) ) 
ACTION(R(t) j �' j �' j y.(t) ) 

Our goal is to adapt � and �' j we assume that �" is already known. 
Note that the input array to MODEL consists of the concatenation of 
three vectors. As in a real computer program, the order of arguments­
not their names-is what controls the process. 

When we use the simulation approach to handling noise, and we use 
real-time learning, we can assume that we start from a vector R describ­
ing reality. We next simulate a noise vector noise, and must then adjust 
the weights. To adjust the action network according to figure 3.4, we 
calculate: 

CALL ACTIONCRj �' j �' j y') 
CALL MODEL(R, y., noisej �" j ;t' j R2) 
CALL CRITIC(R2j �j �j J) 
CALL F_CRITIC(l j �j scratchj F_R2j scratch) 
CALL F_MODEL(F_R2j �" j  scratchj scratch, F_u, scratchj scratch) 
CALL F_ACTION(F_uj �' ;  F_w' ; scratchj scratch) 
w' = w' + learning_rate * F_w' 

where "scratch" refers to scratch space (Le. , unused outputs) . 

3.7.3 Dual Heuristic Programming (DHP) 

To implement DHP under the same conditions, we change our CRITIC 
to: 

CRITICCRj �j �j lambda) 

To adapt this critic network, we calculate: 

CALL ACTION(Rj �' j �' j y') 
CALL MODEL(R, y', noisej �" j �" j R2) 
CALL CRITIC(R2j �j �j lambda2) 
CALL F_MODEL(lambda2j �" j scratchj F_R, F_u, scratchj scratch) 
CALL CRITIC(Rj �j �j lambda) error = lambda2 + Y(R2)- lambda 
CALL F_CRITIC(errorj �j F_wj scratchj scratch) 
w = �+learning_rate*FQiJpyrighted Material 
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where the function V is as defined in Section 3.4. To adapt the action 
network, along the lines of Figure 3.4, we go on to calculate: 

CALL F_ACTION(F_u; �' ;  F_w';  scratch; scratch) 
Yl.' = Yl.'+learning_rate*F_w' 

3.7.4 Globalized DHP (GDHP) 

Section 3.5 proposed that we minimize an error measure based on equa­
tion 3.10. For the sake of generality, let us assume that we minimize 
a weighted sum of square error, where the error for each value of i is 
weighted by an arbitrary constant Ai ' (Those who are disturbed by this 
may simply use Ai = 1, as we did implicitly with DHP. ) Our calculations 
are: 

CALL ACTION(R; Yl.' ; �' ; Y) 
CALL MODEL(lf..u., noise; Yl." ; �" ; R2) 
CALL CRITIC(R2; Yl.; �; J2) 
CALL F _CRITIC ( 1 ;  �; scratch; F_R2; scratch) 
CALL CRITIC(R; w; �; J) 
CALL F_CRITIC(I ; �; scratch; F_R; save) 
error= V(R2) + F_R2 - F_R 
delta(i) = error(i) * ;A(i) (for all i) 
CALL G_F_CRITIC��; save; delta; G_w) 
w = w+learning_rate*G_w 

Adapting the action network is then straightforward. Note how the 
error vector here is equivalent in meaning to the error vector we used 
in DHP; the two methods are minimizing the same measure of square 
error, but in GDHP the lambda vector (i.e. , F_R) has to be computed 
by backpropagation. 
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