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GENERAL SYSTEMS
Volume XXII, 1977

ADVANCED FORECASTING METHODS FOR GLOBAL CRISIS WARNING AND MODELS OF INTELLIGENCE*

Paul J. Werbos

I. APPLICATIONS AS GOALS
FOR COMPUTER FORECASTING

The Maryland Crisis Warning and Management project
[1] has tried to develop and organize a broad set of tools
for coping with crises, among which are computer forecast-
ing methods. A complete crisiss-management system must
exploit a wide varicty of forecasting methods, involving
man-machine interaction, human intuition, ete. However,
like the economists, we still have need of computer
forecasting in the classical sense, in which the computer
itself fits a quantitative model to a well-structured numeri-
cal databank,

(i) to help us unifv and make precise our knowledge
of the dynamics of large-scale social trends. In politics, as
in economics, there are many key phenomena which result
from continuous changes within a large population. To
understand these phenomena, it is not enough to fall back
on our intuition about the behavior of individual people:
we need to use methods which can exploit the available
knowledge about hundreds of political societies in the
past. Current trends in Mexico present a clear example of
the relevance of this approach to national security: if we
wait until Mexico’s population/economic problems grow
into a political threat to the US, before paying sufficient
attention to them, it may be too late for us; also, we need
to have a feeling for how the trends work in order to act
constructively, to get at the roots of the conflicts instead
of increasing contradictions.

(ii) to stimulate a higher level of relevance in human
political analysis. High-level decision makers need to have
assessments of the probabilities of what will happen in the
future, if they exercise a given set of policy options. In
other words, they need the best available answers to very
difficult questions. But, in government and in academia,
there are incentives for people to focus on easier questions,
on questions which ‘““can be answered.” Thus there is a
tendency for political analysts to compete with the
newspapers in providing passive, factual background infor-
mation, which can become quickly obsolete; a decision-
maker then may prefer to read the New York Times
instead of an official intelligence report.

Computer forecasting methods can help overcome
these negative incentives. If computer forecasts must be
passed up to decision-makers on a regular basis, human
political analysts can be encouraged to comment on these
forecasts. In effect, the analyst can ‘‘blame the computer”
if the computer offers a frightening, “alarmist™ prediction
of conflict. When the analyst evaluates the computer’s
prediction, and points to factors which the computer

cannot account for, he is applying his human knowledge to
the problem of prediction; he is allowing himself to
become more relevant. (This reminds us of traditional
Mandarin China, where there was a high level of cultural
creativity despite a stifling belief that no modern scholar
could improve on the Great Classics; creativity came from
“commentaries” and “explanations” of the Classics which
went far beyond what was really in the Classics.)

(iii) fo alert us to the unexpected. Computer forecast-
ing probably does a better job of predicting trends than of
predicting anomalous events such as crises. How can it be
used then to help us with the short-term warning problem?
If it predicts the normal routine flow of events from day
to day, how can it help predict a crisis?

Computer models can alert us to any “improbable”
discrepancy between their predictions and the current flow
of events. After all, we cannot say that the flow of events
is “out of the ordinary” until we have a good idea of what
“ordinary” means. The computer can give us this baseline.
Once the alert is given, a different set of analyses can be
called into play. Among these may be computer models
fitted to daily event data from previous crisis or anomalous
situations. Even if human analysts are skeptical about the
alert, it would be wise to pass on the information as part
of routine daily reports to policy makers. To make all this
work, however, one will need to use regular high-frequency
data, such as daily satellite data or FBIS condensations.
Also, there is a serious problem of security: we consider it
unwise even to discuss certain possibilities for indicators,
when we know that they could be “jammed” by an
aggressor who knows about them. We doubt that this prob-
lem would be reduced very much even if a portion of this
work were conducted under the usual terms of industrial
top secret. For now, the goal is to develop the methods
themselves, not the models which would be used for alerts.

Further applications may also exist in the areas of
artificial intelligence and leaming theory; some of these
possibilities will become apparent in Section I11.

I1. A REVIEW OF PRIOR
CONCEPTS AND EMPIRICAL RESULTS

ll-a. The Classical “Econometric” Approach to Political
Forecasting

Despite twenty years or so of quantitative work in
international relations, the three “‘needs” above have not
been fully satisfied. Why not? Until recently, it seemed as
if we could still point to a simple lack of substantive
knowledge. Tt took many years to build up adequate data
sources and to pinpoint key variables and interactions.
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Very little work had been done in putting the various
studies together, to build up unified, dynamic models.
Nevertheless, with a bit more work, we could hope to
imitate the success of econometrics. Above all, we could
hope to fit models to data by trying to minimize least
square error. In other words, we could make use of
existing computer software which performs multiple
regression or nonlinear regression. These methods, at least,
seemed highly reliable: the two dominant schools of
thought in statistics—"Bayesians” and “maximum
likelihood” people—have agreed on this.

In particular, we expected to formulate models which
predict the future value of each political variable, Y; as
some function, f; of the present (or past) values of other
political variables and of external (policy) variables, M;. If
we use “Y;” to denote “the predicted value of Y;,” as in
engineering, we could write such a model as

T (4e1) = £ (¥ (&), ¥ (8] oo X (8), M (2) oo M (2) (fori=1tonm)
i i 2 n 1 =

Here t means the current time, and t+ 1 means the next
period of time for which data is available. We use human
judgement to guess what the formulas f; should be. More
precisely, we pick a whole set of plausible models where
each “model” is a guess for what all these functions f;
should be for good predictions. In each model, the
functions f involve unknown parameters which we don’t
feel we can guess a priori. The computer will treat each
function f; in isolation from the other functions: it will
estimate the parameters of f; by minimizing square error:

2 . 2
L e (t+41) = L (Y (t+1) - ¥ (t+1))
t 1 ¢ 1 i

= F {Y (t+1) = £ (¥ () ... M (£)),
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where, in the last expression, we use the measured,
available databanks to get the values for Yi(t+ 1), Y, (1),
ete. Finally, in order to choose the best guess for the
function f;, we simply pick the function which leads to the
least square error in predicting Y;(t+ 1). (However, if
there is another guess for f; which is almost as successful
but much simpler, we prefer it, by Occam’s Razor; this is
usually interpreted as “deleting terms which are statisti-
cally insignificant.”)

After this estimation work is done, we could hope to
go on to use the model for long-range forecasting. If there
are no M; terms, we could start out with the available data
for Y, ... Y, at the present time t; we can use this data in
calculating the values of fi(Y;(t)...Y,(t)) to generate
predictions for Yj(t+ 1), ie., for Y, (t+ 1) through Y,
(t+ 1); we can calculate f(Y(t+1)...Y,(t+ 1)), using
our previous predictions as if they were actual data, to
predict Y;(t+ 2); we can predict Y;(t+3) similarly; etc.
With M; terms present, we can make long-range forecasts
conditional upon given future policies.

This kind of forecasting would be justified, according
to Bayesian statistics, because we have chosen the model
which has the highest probability of being true in light of
the existing data. In other words, we have maximized:

Pr(model and parameters | databank)
= Pr(databank | model and parameters) Pr(model and parameters)
Pr(databank)

Minimizing square error is known to be the same as
maximizing this conditional probability, so long as we have
a “flat prior” (we assume that the a priori probability
Pr(model) is essentially the same for all models), and so
long as we interpret our original model to mean that

Y.lr.rl; = ‘.'I'ital.:- .. t41) = el-.t~1; + :;-_rL-.-._‘....v.: t
where ¢; is a random “error’ disturbance which follows a
normal distribution. These two assumptions are generally
interpreted as reasonable simplifying assumptions; even
though the assumptions are not perfectly true, they, like
the equations of the model themselves, may be close
enough to be reasonable.

The best long-range predictions would always be given
by the “true’”” model. Given that we have picked the model
with the highest probability of truth, we expect that this
model will also give the best long-range predictions. Any
political model which calculates predictions from numeri-
cal data would be subject to fine-tuning and evaluation by
this approach.

II-b. The Failure of Regression and of Advanced Classical
Methods

Initially, we hoped that the “‘econometric” approach
would work. However, in a number of regressions run on a
variety of models or sub-models, we have confirmed the
suspicion that there are some serious difficulties [2, 3].
First, we used the “econometric”” method to estimate the
rates of population growth and national assimilation in
Karl Deutsch’s model of nationalism and social communi-
cations [4]. The results seemed very encouraging; the R?
scores indicated 99-99.9% accuracy in prediction. How-
ever, when these parameter estimates were used in long-
range prediction, the results were quite bad. “Long-range”
prediction error was defined as the mean square error in
predicting from an initial time period through to about
3040 years in the future; we used more than twenty
sample national time-series, each treated as a separate case.
(For the technical details and graphs of the results, see
[2]: the dataset was collected by Karl Deutsch, Sheldon
Kravitz, Raymond Hopkins, et al.) Median error across
different cases was only a bit larger than 10%, but in many
cases rose to as high as 20%, and in a number of cases was
absurd. Even if we were interested in short-term dynamics,
the parameter estimates were absurd, in terms of Deutsch’s
model. Often there were negative rates of national assimila-
tion (including whites apparently turning into blacks in the
US); also the rates were far too large in absolute size,
especially in cases where the supposed “statistical signifi-
cance” was good. Certainly there was no “99 99" accu-
racy in prediction!

At first we hoped we could interpret this failure in
terms of the usual Bayesian or maximum likelihood
philosophies. In particular, we noted that the correlation
of each variable with prior values of itself fell off very
slowly as we considered longer time intervals between the
present and past values. From our past work, we recog-
nized this as a sign of measurement error. The conven-
tional reasoning, (cf. Il-a) assumes that the measured
values of the data are identical with the true values; it




assumes that model *‘errors’” are the result of random
 disturbances which affect the rrue values.

' However, measurement error produces a different
ituation, and in order to account for it we have to
acknowledge that the true values of the variables, Y;, are
different from the measured values, Z;. Two kinds of
random disturbance must be recognized: (i) “‘process
noise,” which affects the true values; (i) “measurement
noise,” which makes the measured date, Z;, differ from the

true value. With the regression approach, we could write
our model as

zi[tu.} = ri-L'.-l.:- - ':’i 1) + -.-i-.:—li.
where ¢; refers to process noise. To account for the effect

~ of measurement noise, we have a more complex model:

¥ (t+1) = ¥, (£41) + e (t+1)
i'{ ) t[ iy )

Z.(t41) = ¥ (t+1) + & (t+1),
1 1 A

where a; refers to measurement noise. As part of our
reported work, we found new methods—perfectly “effi-
- cient” methods, in statistical and numerical senses—for
estimating the parameters of such a model; these methods
are related to methods discussed by the statisticians Box
and Jenkins [5], and by the engineer Kashyap (“Vector
ARMAX processes™). We also set this up to allow for the
possibility of cross-correlations between ¢ and ¢j or a; and
*; where i =j.
It was hoped that this strategy would validate the
‘basic philosophy of maximum likelihood statistics. With a
better (but still simplified) model, we hoped to get better
predictions. Measurement error is not purely “random,” as
we assumed, but we hoped that allowing for some
measurement error would make a big difference in a
- situation where measurement error seemed to be the major
source of difficulty in forecasting. Perhaps we could urge
political scientists to use this kind of model, instead of the
regression model, in political analysis.

However, this approach also failed. It led to a
reduction in long-range prediction errors by 10% or less of
ﬂiz original error, from regression: the errors were large in
the same countries; the slight improvement appeared to be
a random result due to the addition of more parameters in
the model. Furthermore, when the comparison against
regression was also tried in a study of more sophisticated
models of nationalism, tested against a high-grade dataset
with more than 1000 observations across approximately
@years (from the various provinces of Norway), again,
the new methods did little to improve long-range predic-

Early in 1977 we extended our analysis to consider
e long-range *‘econometric” models developed by CACI,
for the Joint Long-Range Strategic Survey. Here, as
__the Deutsch model, we found the parameter estimates
be highly unreliable [3], despite the quality of the data
the substantive complexity of the updated world
odel. In our previous work, we also noted similar
fficulties faced by economists; standard econometric
ling is not an unqualified success, even when
s fudging is artfully used.
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Il-¢. The Success of a Robust Method
A successful method was found, almost by accident,
in this model:

T (t41) = T [t+41)
1 1

Z [t+#1) = ¥ (t+1) + = (t¥1}

It is identical to our more complex model, except that the
possibility of “‘process noise” has been removed; i.e., it
assumes that the real world is govemned by deterministic
laws; all appearances of prediction error are due to
incorrect measurements of the data. We called this the
“measurement-noise-only” model. This method led to
median long-range prediction errors of 4% in predicting the
Deutsch variables—less than half that of the other meth-
ods. In predicting the percentage of population assimilated
to the dominant nationality, it was off by 2% or more in
only four of the twenty-odd cases, in long range predic-
tion.

To check our conclusions about the new method, we
set up twelve different sample “processes” to be studied
by three statistical methods: regression, complex classical,
and measurement-noise-only; for each process, we simu-
lated ten different sample time series of length 100 and
evaluated each of our statistical methods in two ways: (i)
if we look at the average estimate across all ten examples,
how close is it to the true value of the parameter (bias)?:
(i) how close are the individual estimates, in each
example, to the average estimate to which they would
converge if more data were available (statistical effi-
ciency)? These processes generally involved random proc-
ess noise, measurement noise, and occasional outliers. The
measurement-noise-only method was distinctly superior
(less bias and more efficiency) for all processes but two: in
these, the three methods were approximately equal.
(Again, see [2] for details. “Distinctly superior’” meant
that errors in parameter estimates were roughly half as
much, or less.)

To a well-indoctrinated Bayesian, these results would
seem extremely strange. Our simple measurement-noise-
only model is just a special case of the complex model
discussed above in II-b. It cannot be “true” unless the
complex model is also “true.” When we let the computer
pick any form of the complex model, it is certain to come
up with something which has a higher probability of truth
than it would if it has to limit itself to a special case. How,
then, can a model with lower probability of truth
consistently lead to better long-range predictions?

Our explanation is that this is a case of robust
estimation—a relatively new philosophy which Mosteller of
Harvard and Tukey of Princeton have promoted to suggest
that “least square error’” is an inadequate concept. Their
specific suggestions are totally different from what we are
considering in this paper; our “measurement-noise-only”
method can be carried out either in terms of least-squares
error or in terms of the Tukey jack-knife, with equal ease.
Their basic philosophy, however, is essential to under-
standing our results. The fundamental assumption in
robust estimation is this: We really don’t expect any of our
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mathematical models to be “true’ in an absolute sense. At
best, we hope they may be useful representatives of a
whole set of very complex models, one of which is true
but far too complex to handle directly. The true expected
value of a future quantity is not the same as the expected
value given by the most probable model. The true
expected value is computed by averaging the expected
values given by all possible models, weighted by the
models’ probabilities of truth.

In the maximum likelihood approach, we concentrate
on the goal of absolute statistical efficiency; we make total
use of all the data, at the price of assuming that the model
is perfectly “true” in some form. An alternative goal is
that of absolute consistency: we can require that our
estimates will converge to exactly what we want them to
be, as the quantity of data goes to infinity. In the case of
long-range forecasting, what we want are the parameter
estimates which minimize long-range prediction error. In
order to be certain that our estimates will converge to
these values, with infinite data, we may simply minimize
directly what we want to minimize—long-range prediction
error itself.

Looking again at the ‘“‘measurement-noise-only”
model, we can see that fitting this model is really the same
as minimizing long-range errors directly:

In order to “fit™ this model, we must somehow estimate
the true values Y, since we only have data for the
measured values Z. We estimate the true values of Y;(0)
(i.e., for the different variables Y; at the initial time). Then
we calculate the later values simply by calculating
Yi(t+ 1= f(Y;(t)...) over and over again, for values of t
from O to the end of the data. This must be done to make
sure that the upper equation is satisfied exactly, as this
method demands. But this is exactly what we do in making
long-range predictions. The Y;(t) are essentially long-range
predictions, projected forwards from the data at the initial
time 0.

In minimizing the sum of a?, we are minimizing the
difference between the actual measured values Z; and the
long-range predictions; we are minimizing directly the
long-range prediction errors. With regression, however, we
were minimizing errors in predicting time t+ 1 from data
at time t; in other words, minimizing prediction errors over
the shortest possible period of time. It should be no
surprise, then, that the “measurement-noise-only” method
leads to better long-range forecasts. Also, if key “feed-
back™ terms are estimated badly, or other parameters are
grossly misestimated, we would expect very large cumula-
tive errors in long-range prediction; when we minimize the
long-range prediction errors themselves, we may expect
fewer random estimation errors of this type.

The robust method was proposed in 1973 and
reported in 1974. Recent work on “smoothing,” in
engineering, has echoed similar mathematics. Hartley, in
economics, is said to have proposed a similar method, but
with features that make it impractical to estimate. Our

own report discusses new numerical procedures which
make it feasible to estimate these models even in cases of
enormous complexity and nonlinearity.

The forecasting problems cited above have existed for
decades. Therefore, people doing practical studies have
invented dozens of ad hoc fixes for trying to reduce the
problems. Space prevents our discussing here all the
complexities of these many methods. By adhering to the
“robust™ strategy of minimizing directly the long-range
predictions, from the beginning to the end of our dataset,
we may be sure of two key things: (i) the procedure is
general and can be applied to any predictive model, not
just to special cases, such as linear models: (ii) we know
that we are directly minimizing the errors we want to
minimize, instead of something else which has a vague or
muddled relation to these errors.

One ad hoc alternative may come to mind for those
who have relied heavily on regression: “If you want to
predict 30 years in the future, why not simply set up a
model with 30-year time lags in it? What you are doing is
really minimizing the average prediction errors for predic-
tion intervals from the minimum time interval in the data
up to the maximum; you are trying to predict all the
future history of a system from data at the first time
interval, or at least from an estimate at the first time
interval. But to minimize least squares error for a 30-year
prediction, directly, you would use regression with a
30-year time lag.”

Problems in crisis management present a dramatic
example of what is wrong with this approach. Suppose
that we want to have 30-day advance wamings of likely
crises. As noted in Section I, the real world crisis dynamic
is likely to require a knowledge of day-to-day changes in
events in order to achieve such warnings. Thus we are
saying that the crisis evolves dynamically through the
30-day period. McClelland’s work with WEIS indicators
strongly supports this conclusion [6]. If we use one month
lags, there is no way to tap these day-to-day processes. We
would simply bypass any changes (or predicted changes)
which occur between time t, and t;4. If we do not get at
those dynamics, we can only expect to provide reasonable
one month advance warnings under special circumstances.
For example, there might be systematic, real world, one
month time lag between the precipitating circumstances
and the resultant event because of built-in bureaucratic
delays.

The mathematical statistician would consider this an
example of obvious, general limitations of the ad hoc
approach: a low level of statistical efficiency and a
model-specification problem. The robust method, how-
ever, does try to account for the day-to-day fluctuation of
events; it tries to predict tomorrow as a function of roday,
but to do it in such a way that our model is good for
30-day forecasting. (For the present, it is more realistic to
talk about yearly data and 30-year forecasts, but the same
principles apply.) Also, because the usual random errors
in regression estimates lead to large cumulative errors in
long-range prediction, the robust method may even be
more reliable in estimating the parameters appropriate for
short-term prediction. Our simulation studies support this
expectation.
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I-d. The Compromise Method: A Generalization of the

obust Approach R 2 AT Al
R The pure robust method, in its original form, is still

not the right tool to use in crisis management.

Fig. 1

In order to get a better feeling for its strengths and
weaknesses, consider the example shown in Figure 1 on
the left. What we are really doing with the pure robust
method is fitting the curve as close as possible to the dots.
(In Il-c, the dots were called Z, the “measured values”; the
curve represents a set of values for the Y.) With regression,
one also tries to fit a curve to dots, as in the graph on the
right. However, with regression, the dots represent only
the relations between pairs of measured data, at time t
versus time t+ 1; knowledge about longer-range regulari-
ties in the data has simply been thrown away when we plot
these dots. But with the robust method, on the left, we are
plotting against fime, and we retain the whole time
history. This is not the same as simple “trend analysis,”
where we might try to regress population against time; we
are trying to pick the best possible curve from the set of
curves which represent possible histories of the true values
of the variables, assuming that our model is exactly correct
for the true values. We are trying to pick the “‘solution
trajectory” as close as possible to the actual, measured
history (dots) of the process. We pick parameters for our
model which make the solution trajectory as close as
possible to the measured history. (For certain simple
models, it is feasible to find these trajectories by doing a
complex nonlinear regression against time; however, that
approach is unnecessarily difficult, confusing and limited
to special cases.)

In the example of Figure 1, the curve (left) and the
dots stay reasonably close together. This was also possible
in the more complex examples we have studied empiri-
cally. So long as this remains true, the goal of minimizing
square error (the distance between dots and the curve, in
the vertical direction) will involve a real consideration of
the dots as individuals; the ordinary fluctuations between t
and t+ | are significant in size, compared with the average
distance between the dots and the curve, so that they have
not been “drowned out.” In effect, all the data is being
accounted for; we should not be surprised that our
empirical tests have shown a high level of “statistical
efficiency™ in this kind of situation.

There is another way of looking at this: the curve in
Figure 1 has really “captured™ the big shifts, over time, in
the process being studied; the remaining errors in “long-
fange prediction,” between the dots and the curve, are
small enough to be compared with the small fluctuations
and error between one time period and the next. If our

curve and model describe the past history of the process so
well, it is reasonable for us to project this curve ahead into
the future.

On the other hand, consider Figure 2. What if none of
the possible solution trajectories can get close to the
historical data? A flippant answer would be, “If you can't
even explain the past, how can yvou expect to predict the
future? In a case like this, you know that your model is
grossly inadequate. There is no way vou can make good
forecasts with a bad model, no matter how good your
estimation technique.” Still, in Figure 2, we can see that a
simple exponential model for population growth makes
sense most of the time; the model breaks down only in the
middle, where an external factor (World War II) produces
unexpected changes. In such cases, a flippant answer is not
good enough. A perfect model of population growth
should predict such things as World War II; however, in the
real world, as we try to move from ignorance to better
models on our way to far-distant perfection, we need to
have techniques which work well on imperfect models. If
we use the pure robust method on the example in Figure 2
and try to fit an exponential growth model, we would
wind up with the curve C,, which really does not represent
the normal rate of population increase.

Fig. 2

Figure 2 illustrates a basic paradox which our
research has sought to resolve. It is an example of a
situation where “‘process noise”—real random factors in
the real world—are too important to be ignored. The
impact of this noise does not die out with time: it does not
“average out” enough to let us use the pure robust
method. This paradox is vital to long-range strategic
planning [7], where we need models which meet two tests
at once: (i) they must allow for real-world uncertainties
and assess the probabilities involved: (ii) they must *hold
up” over time so that they will be valid for both long-range
forecasting and planning. We have noted that classical
methods do not hold up well enough over time. On the
other hand, the pure “robust” method does not account
for real uncertainties; in situations such as in Figure 2, it
loses its statistical efficiency, because the gap between the
curve and the dots is very large and depends only on gross
characteristics of past history. When both methods are
inadequate, what do we do?

In 1974 we suggested a “compromise method” to
generate forecasts in this kind of situation. The “compro-
mise method” is based on the concept of filtering. In
ordinary regression, we tried to generate “good” predic-
tions of the measured values Z;(t = 1) by minimizing:

(t+1) = 2 (1) = £ (t+ z (41
e (t+l) = 2 _(t+1) - 2 1) = 2 (%
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her words, we plugged in the measured values at time
rder to generate predictions. On the other hand, with
ure robust method we minimized:

ei':»f:'. =Z,(t41) - ix t4) = !.ile-if- - ":"? (t)...M (t)).

her words, we plugged in the Y;, long-range predic-
of the values at time t, in order to generate new
‘tions. These two methods can be considered as two
of estimating what the frue values (X;(t)) were at
t. The measured value is one clue to the true value,
e can also get a clue from what we would predict at
t from our estimates of the true values at earlier
Instead of choosing one clue or the other, we can
‘e a synthesis by accounting for both sources of
nation:

X () = (1er)z;(t) + rz (k).

1er words, we can estimate the true value at time t by
> a weighted sum of Z (what we predict from
yus information) and of Z (what we measure at time

> can expect that the X; will be a better estimate of

ue values at time t than either Y or Z, because they
nt for more information. We may go on to estimate
arameters in our model by trying to minimize the
> of errors defined as

ey {tel) = 2y (6+1) - 2, (892) = Zy(102) - By (X (£) o M (1)),

that we can estimate probabilities by assuming that
represent random normal noise.) If the constant ris
small, this will be close to the pure robust method.
ver, the curves we fit to the data are the curves of X;:
he curve C, in Figure 2, these curves will move back
ds the measured data Z whenever the predicted
 start to be far away from the actual values for a
rately long period of time. The constant r may be
ht of as a “relaxation constant,” which represents
ar we are willing to “relax” the curve.
Another way of interpreting the “‘compromise
»d™ is that we are trying to figure out what to do
we are forced to abandon our goal of deterministic
ange forecasting. In the pure robust method, we were
ing up errors for prediction errors across all time-
als t; each time interval contributed equally. Here we
ffectively discounting the importance of prediction
over longer intervals of time; we are applying a kind
erest rate, r, to reduce the emphasis on more distant
because the errors over longer time intervals have
too large and erratic to cope with. (Note that r may
ferent for different variables.)
3ut how do we decide what value of *r” to pick?
s a basic problem considered in our research. There
ozens of ad hoc methods one might think of. For
ole, our filtering equation above is exactly like the
in filtering equation [8] for the case of one variable.
nnot use the Kalman equation to tell us what the
ng constant should be until we alreadv have esti-
| a white-noise model of the process under study;
rer, we might try to fit such a model, then filter, then
etc. Unfortunately, that strategy takes us directly
to the white-noise maximumd-likelihood approach,

discussed in II-b; we already know that that strategy
“relaxes” too much and fails to be robust. Thus, to pick
“r” correctly, is a difficult problem. Somehow, we want to
make sure that we reduce the impact of longer time
intervals to the point where shorter time intervals are not
totally drowned out; also, in improving the quality of our
model, we want to reduce prediction errors, but we also
want to be able to live with lower values for r; the level of
foresight is a measure of the success of the model.

I1I. NEW METHODS

Il-a. A New Context for Estimation

At the start, we knew that we had only one method in
hand—the “compromise method” or “filtering method™
capable of meeting the basic demands of crisis manage-
ment. Yet, even this method was not rigorously complete,
because there was no explicit procedure for choosing the
filtering constant, r. Moreover, from a previous work in
artificial intelligence, we strongly suspected that one could
do better than the “compromise method™ itself in any
form. Even though these forecasting problems are practi-
cal, empricial problems, we felt that we should avoid
approaching them with a naive “fishing expedition™;
therefore, we began the project with a thorough review of
the theoretical possibilities and vicissitudes of robust
estimation and we considered a wide number of questions:

1. Can we come up with a procedure for picking r which
makes general intuitive sense?

2. How can we extend the notion of “robustness’ here to
involve wrility in decision-making instead of just accuracy in
forecasts?

3. How can we be sure these procedures give us good
probabilities instead of just forecasts?

4. How do we cope with the interdependences among
the “error™ terms in a complex nonlinear situation?

5. How should our computers deal with the old problem
of “symmetry”: whether to treat different nations as different
processes, or as different examples of the same general process,
or something in-between? (This is related to the old problems

LT : = % " = ¥

6. How can we imagine the human brain copes with
these problems? (Recall that the “minimum time unit” with
the human brain is a tenth of a second, at most, and yet the
human brain can easily and naturally think hours into the
future without being deterministic. If it weren’t for this
example, we might have given up this research, at certain

times, as an impossible task.)

— 7. Can our forecastng abiities be improved 1T we 1y 10
mimic the human faculty of “syncretism,” of prediction by
analogy to individual past experiences of a similar nature?

8. How can we maximize the reliability of the numerical
convergence methods we use, in estimating the parameters?

9. What is necessary to translate all this into practical
computer software, either for general use or to carry out
further empirical special studies?

10. Can we use the concept of “entropy” (i.e., “informa-
tion content™) to help us “drain” from the available databank
all the information of interest to us?

11. Does it help to conceive of forecasting as the
problem of trying to predict an entire future history (or
calculate probabilities for possible future histories) conditional
upon a given past history?

Some of these questions clearly cannot be answered if we
think of “forecasting’ as a problem in isolation, independ-
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of how we plan to use the forecasts and independent
'hel’e we get our data. For example, we cannot talk
't.“utﬂity” without expanding our problem definition.

e human brain provides us with an example to show
these forecasting problems basically can be solved. It

s not matter whether the forecasts are generated by
sebraic “models,” by (neuron) network circuits which
bﬁmem the same mathematics, or even by networks of
uman beings in a political institution: the problem of
srecasting requires a reliable way to set up correct
relations between our past input (independent variables)
ﬁﬂ p'redictions, which are output somewhere in the
wstem. Nevertheless, the human brain performs forecast-
wm the context of pursuing external goals and recogniz-
ing patterns. We have no assurance that forecasting can be

his well in isolafion.

In trying to organize the different strands of thought
concerned with robust forecasting, it became clear that we
would have to establish a more general context before

sing further. Our goal in “‘forecasting”™ is really just
“estimation™”: to estimate the parameters of models and to
choose models in such a way that they are useful in
@ﬁs&on making. “Estimation” may be thought of as one
element or subsystem of the more general problem of
Wﬁgvem decision making. A decision-making system
needs three interrelated subsystems:

T. a patiern recogmiiion system, 10 sefect the vartapies

which will be available to the models;

2. an estimation system, to make models of the world
and forecasts:

3. an optimization subsystem, which wuses these
models to help it calculate the best choice of actions to
maximize some utility function provided from elsewhere.
(Often, we subdivide this into two smaller subsystems, one
to choose a measure of strategic utility and one to pick
actions to maximize that.)

- In the beginning of this research, we developed two
new techniques to help define the context for forecasting:
“pattern analysis,”” to perform pattern recognition; and
“dual heuristic programming,” to help perform optimiza-
: in a complex, nonlinear stochastic environment. Also,
we documented ‘“‘heuristic dynamic programming,” a
Ttelated optimization method.

~ By “pattern recognition,” we do not refer to the
g;yﬁad things this word sometimes means in artificial
intelligence. Our goal is simply to provide variables for use
the “forecasting” or “estimation” system, which in tum
Will be useful to the optimization system. In ordinary
regression analysis, for example, one often finds that the
data are unsuitable as inputs to one’s model. Usually,

are simply too many variables available and they

N to be somewhat redundant. A separate body of
hods—““factor analysis” or “principal components
/sis”—is used to reduce the number of variables, prior
Tecasting proper. We interpret this as a way of
nting for the interdependence of the different
riables for which we have data; in other words, it is a
Ay of answering question 4 above. “Pattern analysis” is a
general way of accounting for such interdependence,
the context of ordinary econometric forecasting
aches. It allows us to merge the pattern recognition

fto

and estimation tasks into a single analytic procedure. In
particular, it allows for the possibility of nonlinear
relations between the raw data and the processed variables.
It may sometimes increase the number of variables, in the
nonlinear case, but decrease the apparent information
content, by singling out variables which equal zero
(“pattern not present” or ‘“‘pattern not changed”) about
90% of the time.

The mathematics of pattern analysis is summarized in
Appendix A. Applications of the two optimization
methods in strategic planning are discussed in [7].
Appendix B reviews only the mathematics.

I11-b. Three Strategies for Robustness in the New Context

This new context provided a dramatic change in our
approach to robust estimation. Estimation, like pattern
recognition, is now subordinated to pattern analysis, a
single overarching technique. But pattern analysis in its
original form is strictly an econometric-style, maximum
likelihood method. It pays very close attention to proba-
bilities and entropy scores. This makes it easy to get good
probabilities out of pattern analysis, but it takes us back to
the old problems of robustness: how can it be brought
back, in the context of pattern analysis? Most approaches
to improving forecasts here have turned out to be either
invalid or secondary to more powerful approaches. Al-
though we could hope that a better choice of higherlevel
variables, as in pattern analysis, would itself increase
“robustness,” we have singled out only three strategies
which are appropriate to achieving robustness in the
general context. From a formal point of view, these are
not really alternative, but complementary, strategies; we
would expect that a complex, well-rounded forecasting
system (like that in the human brain) would use all three
together.

1. Bias: weighing the importance of different target
variables in prediction according to their relevance and
their actual variance instead of the variance in prediction
error. Maximum likelihood tells us to weigh them accord-
ing to the variance of current prediction errors. However,
the reasoning above (Il-c) pushes us towards minimizing
errors as weighted by our interest in the variables or by
their dynamic importance, if we want to achieve robust-
ness.

Within pattem analysis, the filtered version of a
measured variable is itself another variable in our system.
With “*bias,” we may shift attention to the filtered variable
instead of the original variable. This produces an effect as
if trying to minimize the sum of the squares of the original
prediction errors (as in the robust “‘compromise method™)
multiplied by the square of the filtering constant, r.
Strictly speaking, we may multiply by r* + 1/T?, where T
is the length of the average time-series in our data; this
keeps us away from the rather anomalous minimum at
r=0, except in cases where the pure robust method is
strongly favored. Thus we deduce one possible strategy for
picking r in our original compromise method: pick r, and
all other model parameters, to minimize this product. This
will be the standard version of the “robust method” for
our next round of empirical tests. A conservative strategy
along the same lines is to multiply error by r itself, not r?,
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as a kind of 50-50 compromise between an r* multiplica-
tion and no multiplication. Note that these procedures
would lead to the same estimates for the other parameters
in our model as we would have had before, for a given
value of r; the novelty is that we now know how to pick r.

Minimizing (r* + 1/T?)-times-long-range-prediction-
error also has a more intuitive argument in its favor. If we
picked r so as to minimize prediction error itself, we would
in effect be penalizing more ambitious models. For
example, if model A predicts romorrow with an error rate
of 10%, while model B predicts the next century with an
error rate of 12%, model B would probably be a better
model on all counts; it is unfair to compare 10% against
12% unless we can find a way to weight these numbers to
indicate how much more difficult is the task attempted by
model B. (Recall that a different choice of r gives us a
different effective definition of what long-range-predic-
tionerror to pick. A standard definition, a priori, is
equivalent to picking r a priori, without regard to the
properties of the system being studied.)

How then can we find a fair way to weight these
numbers? How can we measure the “ambitiousness”™ of a
model? The constant r is supposed to measure the
rate of decay of the value of past information; if the
value of past information decays by a factor of (1 - r) per
time period, then, over all future times, the sum of the
value of past information should be proportional to
1+(1-+(1-r?+...=1/r, a measure of how much
our model is trying to do. (Again, it is assumed that the
time-series is long enough for the sum fo converge
normally; if not, with r= 0, the sum comes out to T, and it
can be seen why we add a factor of 1/T. Fancier
procedures are possible for the r = 0 limit, but they require
a different kind of analysis to fine-tune them and are
probably not worth the effort.) We can evaluate the
significance of the standard deviation of the long-range
prediction error by asking how large it is as a fraction of
“potential error,”” assumed to equal 1/r times some
constant. This leads us to r-times-error-variance as a
weighted measure of relative error variance. Again, this
“derivation” is purely intuitive, but it helps to assure that
the more formal *‘bias™ concepts with pattern analysis
make sense.

Put in the terminology of 1I-d, we will pick r and all
the parameters of our model by minimizing:

2
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in the univariate case. In the multivariate case, we will
initially try to use the same r for all variables and
minimize:
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This differs from the standard “multinormal™ approach.
but it better reflects the “bias” approach suggested above.

A more general measure of the relevance of a target
variable in pattern analysis is the mean square of the
derivative of error with respect to that variable, plus the
mean square of the derivative (lambda) of “‘strategic
utility”” with respect to that variable (see Appendix B and

[71), plus the usual reciprocal of the error variance if the
variable represents raw data. This has the right dimensional
properties for a measure to multiply square error; dimen-
sional analysis indicates that there are few alternatives.

2. “Multiple filtering': the use of two or more
filtered versions of the same variable, to sort out long-term
versus short-term fluctuations. Within the context of
pattern analysis, or the human brain, it is not natural to
think of our simple filtering procedure (the “‘compromise
method’) as a built-in special system. Rather, it is natural
to think of the filtered version of a variable as a new,
abstract variable, whose value is calculated as a weighted
sum of the present value of the raw data and of some
function of the past values of the filtered variable and
others. “Filtering” is just one application of our ability to
set up recursive models, in which internal variables may be
affected by their own past values. Filtering constants may
be treated like any other parameters in our model itself;
we may pick them to minimize some measure of global
error, so long as we pick a global measure which leads us in
the direction of “robustness.” (If we did not pick a
“biased” measure of global error, then our “‘compromise
method™ would lead us back to the maximum likelihood
white-noise model, which failed our empirical tests. The
calculations to show this explicitly are straightforward but
tedious.) If we are allowed to pick any recursive model, we
can just as easily have two filtered versions of any variable,
or three, or more. Even without any bias factor in our
global error measure, we can hope that this procedure will
lead to greater and greater effective foresight; with luck,
our time horizon may grow exponentially with the number
of filters. We are not talking about classical filters as in
electronics, which are designed to respond to predeter-
mined frequencies; all the filtering constants are to be
estimated by econometric-style procedures. Also note that
our earlier work [2] already shows how to compute the
derivatives needed in estimating the parameters of a
recursive model. Strictly speaking, multiple filtering is not
a new mathematical method, but a secondary strategy, a
natural corollary of pattern analysis.

3. Syncretism: a special system to exploit memory of
unique events. Questions 5 and 6 above are extremely
subtle and difficult, but we have concluded that a system
of “syncretism” is enough to close the major gap in our
system of methods, as a kind of theory of intelligence. In
principle, a system of syncretism is necessary (if we wish
to achieve maximal “statistical efficiency’) to exploit all
the relevant information from our historical databank. The
system which finally emerges, for computer forecasting, is
much simpler than the logic which points towards it.

In artificial intelligence, it is common to try to
predict a dependent variable (“pattern classification™) by
comparing the present values of the independent variables
against past sets of values: one’s prediction is simply a
weighted sum of what the dependent variable turned out
to be in the past, weighted according to the closeness of
the sets of values for the independent variables [9]. In
effect, this carries our notion of “absolute consistency”
even further than was done with the pure robust method.
Here, we do not even assume the truth of the predictive
part of a model; instead of producing a curve or
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predictions from a model, we produce it by smoothing off
the curve of actual recorded data. Thus we may hope to
achieve an even higher level of robustness than before.
However, as with the pure robust method, this method
used in pure form would create a serious problem with
efficiency.

There is an obvious compromise between the pure
syncretic method (as above) and the modelling approach.
;i.!'.'cr we fit our model, we can keep our original data

available and add a record of what the prediction error of

the model was in each case. When encountering a new
situation, we can make our prediction by calculating the
prediction of our model and then adding a prediction for
the error of the model, as based on the syncretic method
with model-error as the dependent variable. This can be
done for every dependent variable in our system, both raw
data and abstract “pattern’’ variables. This means that we
think of our historical records as forming separate datasets,
one set for each dependent variable and the independent
variables used in predicting that dependent variable.!
Before we can use “‘syncretism” to predict model
errors, we need to figure out what weight to place on a
given past experience. The choice of weights is usually
fairly arbitrary in artificial intelligence. Here, if we have a

measure of “distance’ between the past and present sets of

values for the independent variables, we can start out by
saying that the weight will equal e k4, where d is the
distance and k is some constant; then we can adjust the
weights by dividing each one by the sum of all the weights,
so that they add up to one. Initially, we can pick k so that,
on the average, we expect a constant, small handful of
other experiences with initial weights larger than e '.
“Distance” is measured, formally, by taking the square
root of the sum of squares of the differences between the
two situations along each independent variable. However,
here we may weight each independent variable according
to the square of the regression coefficient, if our predic-
tion is made on a linear basis; if it is not linear, we can use,
instead. the mean square of the derivative of the prediction
of the model with respect to the independent variable.
These procedures work fairly well when there is little past
experience available to choose k and the weights of the
components of d; with more experience, the obvious
procedure is to adjust these constants as if they were
model paramete ie.. to minimize the overall error in
predicting the dependent variable we are concerned with.
Note that this general procedure introduces a new func-
tional relation, at every time, between the independent
variables and the overall prediction; therefore, when we

1. The generalized predictive model here may be compared with
influence may be compared with the “id”. In econometric analysis, we
over complete, global records of the past. When such records do not exist,
data, which essentially reconstructs the past, generated by the ego

evaluate the derivative of the prediction with respect to
the independent variables, theory tells us to account for all
these aspects of our prediction procedure.

This kind of procedure may be a bit too expensive, at
present, in its original form. Certainly, in a device like the
human brain, one would expect severe approximations
(such as clustering chemical records of past expe rience into
cells which represent the entire cluster as if it were one
experience) to reduce costs; we may be forced to use
approximations in order to use syncretism. Another
problem is that, in pattern analysis, we do not just predict
the expected value of the dependent variables; we also
create a measure of uncertainty in its value. Certainly, if a
new event reminds us of an unexpected past trauma, it
may increase our feeling of uncertainty, not just our
expectations of what is most likely to happen.

For each past record of dependent variable and
independent variables, we may define the primary error as
the actual value of the dependent variable minus the value
which would have been predicted by our general model in
its current form. We may define the secondary error as the
primary error, minus the value for the primary error which
we would have predicted by syncretism, if we used our
other data records in making this prediction. The second-
ary error corresponds to the actual error in predicting the
dependent variable, when the model and the past records
are both used, as they normally would be. The variance in
the actual error may be predicted as the sum of (i) the
mean variance of the secondary error, historically: (ii) the
weighted sum of the square of the secondary error minus
the mean variance of the secondary error, across similar
past cases, using the same weights as before. The existence
of arbitrary parameters in this Kind of procedure may be
related to the existence of interpersonal differences in the
operation of human brains.

To reduce the cost of such a system, one may simply
throw out past data-records which meet two tests: they
involve relatively little primary error: they are not very
similar to other records which involve a high level of
primary error. In such case, one would then normalize the
weights above by accounting for both the explicit weights
and the weights one might have expected for the “silent
majority” of experiences which have been virtually assimi-
lated into the ego.>

Ill-c. Research Strategy in Using the New Methods

If our theoretical analysis is as complete as we like to
believe, the application and refinement of the tools
described here should be sufficient for as long as we are

the “ego” of Freudian psychology: the specific records and their
try to fit our general model better and better to the data, by going

or even when they do, one might try to fit the “ego” to simulated

and id together in the absence of external stimuli, This could be done as

part of the simulations which we need anyway as part of optimization (see Appendix B). The analogy to dreaming should be obvious.

2. Analogies with the human brain go further than one might imagine. It would be inappropriate to discuss the details here, but a few
points may be of interest. The state of “deep sleep” could be interpreted as a time when clusters of many experience-records are updated and
even transferred between nearby cells; on the other hand. it could be interpreted as a time when individual prediction functions are updated
to reflect their own local records, without reference to the global consistency of these adjustments. The specifically human “trance state”
could be interpreted as a state in which social stimuli are joined with an individual’s memory to produce simulated experience which is then

remembered as if it were real (e.g., tribal dances after the hunt).

This would allow the transfer of experience from individual to individual,

more than would be possible if other individuals were perceived solely as noise-producing objects. The human brain may not yet be fully

adapted to further possibilities in this direction.
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interested in any kind of forecasting, by machine or by
mind. For the time being, the key fact is that we have a
method (r* bias) for picking our filtering constant with the
compromise robust method. This gives us something
immediately useable to re-evaluate conflict models, like
the CACI model [3], with a better methodology. As in
working with the Deutsch model, we may fit the para-
meters of various models to the first half of our time-
series, using classical and robust methods, and then see
which does better in predicting the second half. At
present, we have set up a 20-year databank covering most
nations of the world, suitable for interactive computer
analysis,

Our own numerical methods could perform these
analyses efficiently, in theory [2]. However, because of
the difficulties and development costs involved in trying to
write general software in a university department, we
borrowed from existing nonlinear programming [10].
According to the authors, this program works better on
dynamic control problems than do the complex Riccati
equation and matrix methods which dominate most of the
literature. It can be used to fit parameters to minimize our
“robust” measure of model error if it is generalized in
certain ways: (i) a “‘model compiling” routine is needed to
translate a simple, user-specified model into an object
subroutine which calculates model error as a function of
parameter values; (ii) there must be provision for “multiple
sector” estimation, to allow estimating the material values
for endogenous variables in different countries, without
waiting for computer time; (iii) certain contingencies must
be planned for which the NASA routine did not consider.
We have now reprogrammed most of the NASA routine in
ANSI PL/1, with their additional features, so that it can

run interactively on the MIT Multics, which we are using
over the ARPANET. These routines, like the whole of our
project, are in the “government-related public domain.”

Unfortunately, this routine uses only the Fletcher-
Powell method for convergence: a similar method, the
“Broyden method,” would have allowed the use of a
“sparse information matrix,”” which in turn would allow
the use of more puramelcrs.3 In the present situation, we
will have to use human labor, to pick groups of about
twenty parameters in the model, fine-tune them, then pick
another group, and so on, until all the parameters are
optimized. Regression analysis should provide adequate
initial values for these parameters. (The “r? bias” method
should eliminate the convergency problems one might
otherwise expect with these initial values, if we set r
initially to 1, which corresponds with regression.)

After initial work with the r* bias method, we intend
to investigate the r bias method, multiple filtering, and
then perhaps other possibilities suggested above. The
choice between alternatives suggested here cannot be
sorted out on a purely theoretical basis, because “‘robust-
ness” is essentially an empirical issue, as is the choice of
models. When more empirical examples are available,
and when we have an idea of what an adequate theory
would show, perhaps than we can start to figure out how
we might have guessed our results before doing any tests.
At this stage, however, it would be dangerous to make too
many a prori assumptions about what works and what
doesn’t. Indeed, the specific combination of filters and
models which works best in crisis warning may turn out to
be unique to that subject. A long period of strictly
experimental work lies ahead.

APPENDIX A

PATTERN ANALYSIS AS A MAXIMUM LIKELIHOOD METHOD

In Chapter Il of Bevond Regression |2], “pattern analysis”
was suggested as a new approach to the problem of pattemn
recognition. In this approach, pattern recognition is treated as a
system to help support prediction and optimization. “Pattern
analysis™ attempts to extricate the key variables which underly the
dynamics of the environment one is trying to analyze: it is necessary,
as part of effective forecasting, because the original raw data
contains nonlinear interdependence which cannot be analyzed
efficiently or explicitly by conventional direct methods. Figure 3
indicates the difference between conventional econometric ap-
proaches and pattern analysis. In pattern analysis, we construct three
systems of formulas, each of which looks like an econometric model.

decoding model
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Underlying Patterns

1. The “prediction model™ gives probablistic forecasts of the
underlying patterns in the future, as a function of past and present
conditions.

2. The “interpretation model™ gives a probabilistic description
of what the underlying patterms are in the present, as a function of
direct observations in the present and of general conditions in the
past.

3. The “decoding model™ gives a probabilistic description of
what direct observations to expect at any time, as a function of the
underlying patterns at that time, and also as a function of
observations or patterns for earlier times.

This technique is oriented towards dynamic systems; however,
depending on how the model is specified, and depending on what
we call “past” information (e.g., nothing?), it can be applied in
situations with a different dimensional structure.

Our hope was to blend the advantages of control theory,
nonlinear regression, and maximum likelihood factor analysis into a
single technique, which would contain none of the arbitrary aspects
of classical artificial intelligence methods. In particular, all of the
parameters of the three models (the three subsystems) were to be
estimated by maximum likelihood methods, with perfect “statistical
efficiency”: no information from our past experience would be

3. We have carefully studied the possiblity of more advanced convergence methods, building on those we have already suggested [2], as
they would be plugged into a Broyden-style “front-end.” However, major changes would come only by allowing explicit models of the
convergence process itself, models with internal estimation and convergence requirements. It would seem better just to alter Broyden's methods in
minor, ad hoc ways (e.g., size cutoffs in responsiveness changes and fractional powers of the changes recommended by Broyden), while stating
that an intelligent system may attempt to treat some of its internally-generated derivatives as explicit variables for explicit study. This is like
Deutsch’s idea of “self-consciousness.”




‘wasted. Our “‘dynamic feedback™ method would make all of this
feasible, numerically. .

Between 1972-1976, however, this was merely an “‘approach,”
not a technique. In 1976, we found need for a more definite
technique of pattern analysis to help us reconcile the requirements
of robustness and explicit probabilities in forecasting. At writing
' 1977], a technique was found which met the basic
-equirements of our approach.

First, let us define some notation. Let x(t) be the vector of
raw observations at time t. Let R(t) be the vector of hidden variables
(underlying patterns) at time T. Let p(x) be the actual probability of
x, as a function of past information. Let p(x) be the probability
Mct:d by our model. There are three formulations of “entropy,”
ie., information content, of interest to us here:

(standard) Absolute Entropy: E, = - fp{x) log pix) a"x
folative Entropy: E, = -  rplx) log plx) 4%
Correction Entropy: E, = - mplx) (1og pix) - log pix)) 4P

“Absolute entropy”” tells us the true information content of what we
are observing in the real world. We can discuss the absolute entropy,
‘mathematically, but we can't measure it directly in this context; if
we already knew the true values of p(x)—the true probabilities—we
wouldn’t need analysis to find a model. The relative entropy is
essentially the same as “log likelihood” in maximum likelihood
theory; e.g., it will equal one-half the sum of the squares of
prediction errors, for a classical regression model in the more
common interpretation; by minimizing this, we are in agreement
‘with the maximum likelihood approach. (Here, of course, we use the
empirical data as a measure of p(x).) The “correction entropy™ tells
us how much information we need to go from what our model says
to the probabilities present in the real world; it is a somewhat better
measure of error.

Qur technique involves an overall model made up of three sets

of equations:
Ryleer) = £,( AlTe), x(Tet)) + eir‘-‘l-_.‘ (predictive model)
(1)
Rla) = g ( RiTs), x(Tate1)) + eii".‘.',' (interpretation model)

4!

(
11‘:&4‘1) = hi‘.' R{T<t+l), x{T<t]) + e; (t), (decoding model)

where el(i”(t) is the error in prediction, :,In(l] is the error in
interpretation, and e{d}(t} is the error in decoding. We assume that
these errors are independent of each other; in other words, our
‘model will be required to try to sort out the interdependences which
existed in the raw data, by finding a representation in which
independence is more successful in describing reality.

~ This issue of independence is the fundamental motivation
behind our technique. In trying to analyze complex, nonlinear
systems, the interdependencies may be so complex that one might
profitably list more underlying patterns than raw data variables.
Indeed, the human brain appears to contain billions of cells which
respond to patterns, but only millions of fibers which represent raw
inputs to the cerebrum.

For our purpose, it will be assumed that a model is given,
along with an initial estimate of the parameters of the model. Our
hﬁk is to improve these estimates, and to converge to the correct
estimates, by a process of successive approximation. In each step of
Approximation, we must try to find out how a change in the value of
€ach parameter leads to an improvement or a loss in the quality of
our model. In other words, we need to compute the derivative of
entropy with respect to each parameter, in each step; we follow the
Same strategy used in nonlinear regression and in maximum

ood factor analysis.

key question is how to compute the derivative. In
e regression, the derivative of likelihood can be computed,
h_fo&l, by going through all the observations, t, one after the other.
FOr each observation, we calculate the derivative of square error
m respect to the parameter in question, and then, looking at all
the observations, we add up all those derivatives to get the overall
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derivative. Here we need to go through our dataset in several passes,
at least in theory. (A real-time system, like the human brain, can
only experience the complete dataset once. This would not prevent
the use of our procedures, given below, but it would mean that the
value of some real experience would be lost.)

The functions fj, g and h; all contain parameters to be
estimated. Let us call these Fj, G;j and H;. At each time t and each
pass through the data, we wish to compute an estimate of some kind
of

3E
B

=

.

(t).

|

J

such that we can average these estimates over time and get a valid
estimate.

Our procedure is only slightly more complex than that of
nonlinear regression, For each time period t, we first use our existing
estimates of the parameters to compute g; and f, for all i; ie., we
“predict” Rj(t+ 1) in two different ways. We assume that ef!) and
EI[P’ are usually like the “errors” of regression: generated by
independent normal distributions, of zero mean, and of constant
variance, a variance which we estimate empirically. (A variable
variance, based on supplementary equations, can be added easily
enough, although the human brain does not appear to incorporate
this option. It would be interesting to see what capabilities would
be lost thereby. Below, we will use the assumption of variable
variance, for the sake of generality.) Then, for each underlying
variable R;, we simulate a value Q; by computing g; pl us| ag times a
random number. (A random number of unit variance, mean zero.)
We plug in the simulated value of Ri(t + 1), plus the real values of
previous direct observations, into the decoding model. This gives us
predictions of the x;(t + 1). Overall, we try to minimize the sum of
two error terms:

(i) the sum over all raw observation variables of the decoding
error after our simulation; we compute this essentially as

2
Lleg Elx, - & (@))%
i Rtinh

(ii) the sum, over all underlying variables, of the prediction
error, defined as the correction entropy from the predicted
distribution to the interpreted distribution. We compute this integral
as:

(1)°
-1 o,
(») (1) o i O OO, |
ey - log 6‘3’ + ]J?[—u-gﬂ - 1/201 - —“:?.}L
g
ey

{10g o

The general case of variable variance may allow some non-uniqueness
in the final solution but may upgrade the quality of solutions over
what we would expect with fixed-variance models.

For the decoding parameters Hj, the first of these two error
terms is the only one which is operational. The simulation process
described above is a valid Monte Carlo procedure for estimating the
expected value of

for the following reasons. Let p;j(x|R) be the probability distribution
for x(t+1), given R(t +1), implied by the decoding model. Let
pz2(R) be the probability distribution for R(t+1), given past
information, as per the prediction model. Let p;(R|x) be the
interpretation model. From our definition above,

-ZH = Jpix) log i;fx? dx,
and by basic probability theory,

plxl = nl(u;a]na{nlda.
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Thus
e
3—:‘":' = fplz) 2 og plx)) dx
] "y
(x) e
g Iﬁl_:J o (Blx)) ax

By Bayes’ law, the consistency of our model requin?s4 that the
middle term drop out, and our integral reduces to

i By, (p(x) p.(R]x) 4R dx)

;‘. a“l .
We may now perform this integral by an efficient approximation
technique. We can use p(x)dx as the probability distribution for
picking values of x in Monte Carlo integration (i.e., just let the data
come in as they do anyway). We can use our interpretation model
ps to simulate values for R. Thus we may calculate the value of this

integral simply by looking at the time average of

where p; | is the probability estimated for the measured value of
xk(t+ 1), the probability estimated by use of hy and oé‘]i'. This
derivative is easy to compute, even for very complex models, by use
of the dynamic feedback method discussed in [2]. In adjusting the
parameters Fj, simulation is not necessary, and we may simply look

at the derivatives of the correction entropy formula cited above at
each time. With the parameters Gj, we sum the two effects. The
effect related to the correction entropy (ie., the derivative of
correction entropy with respect to G;) is straightforward enough to
compute. For the other effect, we compute

-

¥

3G

P, J

by recalling that

where w is the random number we used in our simulation. Having
used dynamic feedback to calculate

1

L5

we can deduce that

3”1.-; ;

1
pl

e
P
=

and we can feed back these values to compute the derivatives for
parameters involved in generating gy or of.;().

In the human brain, we would hypothesize that the giant
pyramid cells of the cerebral cortex perform the general kind of
analysis described above; the “apical dendrites” may compute fj,
while the pyramid base may compute g. ( The dynamic feedback
may be passed back in the “retrograde” system of chemical flow
along microfilaments or microtubules.) However, the small pyramid
cells appear to perform a totally different kind of analysis, which
also needs to be explored for its implications in crisis mangement:
prediction by the direct use of similarity with past experience, not
mediated entirely through the creation of a model. In other words,
these cells may be implementing the possibilities for “syncretism
as discussed in I11-b.

APPENDIX B

HEURISTIC OPTIMIZATION METHODS

Long range planning under conditions of uncertainty can be
done, in theory, by use of dynamic programming. This method
works by allowing us to translate our intrinsic utility function U into
a kind of strategic utility function J, which we try to maximize in
the immediate future (see section 4.2 of [8],and [7]). However, as
a numerical technique, dynamic programming requires us to continu-
ally update an estimate of J for every possible contingency which
might occur. In a complex world, there are simply too many
contingencies; for this reason, dynamic programming is not feasible
for systems which involve more than a handful of continuous
variables. Bayesian decision analysis, which is a variant of dynamic
programming, suffers from the same liability; contingencies multiply
quickly when one tries to be realistic, and, as the Bayesians say, “the
tree becomes a bushy mess.” This does not totally invalidate the use
of Bayesian analysis in long range planning. One can still draw up
trees which represent different facets of the long range strategic
situation and hope that human intelligence will allow us to string
together a set of such trees into a coherent analysis. After all, thisis

not too different from the common belief that we can arrive at a
coherent analysis by stringing together a series of English sentences.
Nevertheless. it would be reassuring if we could generalize dynamic
programming somehow, so that it can be applied to complex
multivariate problems. This we have done.

The chief difficulty in dynamic programming is the representa-
tion of the J function. If we assume a priori that J can be any
function, we must treat its value for eachr set of values for the
arguments as a unique quantity. We allow an infinite number of such
degrees of freedom if the arguments are continuous. This is
reminiscent of one-way analysis of variance in statistics, where we
have separate, unrelated predictions of our dependent variables for
each possible state of the independent variable(s). This sort of
approach has turned out to be very inappropriate for predicting
complex political systems; instead, statisticians and econometricians
prefer to formulate explicit algebraic models which contain a
moderate number of parameters but which yield predictions for
what might happen over a very broad range of contingencies. This

4. It may appear unorthodox to allow even the possibility of internal inconsistency in the overall model. Still, it is impractical to try to do
without either decoding or interpretation models when there are hidden variables. We hope that our procedures maintain maximum consistency
and validity in a stable equilibrium, for the optimal model which emerges from this estimation procedure. In theory, one could make do with a
“consistent” system, made up of prediction and decoding subsystems without an interpretation system; however, due to the small size of p,
relative to ps in most cases, this is extremely inefficient numerically and impractical. Also, the applications of the model in optimization and

forecasting require all three subsystems.
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requires human effort in formulating, comparing, and upgrading
alternative models. Still, it |qs much h_etter. Ih:qt treating each
contingency as totally unique.® It is Pusmhle in principle, to allow
computers to scan a wide variety of algebraic forms as possible
models. This may be worse than human quality control, but it is
probably a lot better than treating each contingency as unique.

We can follow a similar procedure in dealing with dynamic
programming. We construct a “model™ of J. More preuisel)_', we can
set up computer programs designed to input a model of J as an
algebraic expression with certain parameters in it identified as
requiring estimation. As in nonlinear regression, we can allow the
user to put in his or her own initial values as a matter of choice.
Also, we can print out the “degree of fit” for the final model, as in
regression. (Here, the “degree of fit” is measured as the expected
value of U across future time which would result from trying to
maximize the user’s version of J.)

In Howard’s version of dynamic programming [11], we
generate | by successive approximations. In each step, we reset
J(x(1)) to equal U(x(t)) + MaxE(J(x(t + 1))) - U, where the latter
value of J is determined by the old estimate of J. In each step, we
also pick a new set of actions, to maximize the expected value of
J(x(t + 1)). This procedure can be adapted easily to our purpose. We
can fit the parameters of J(x(1)), as in statistics, to be as close as
possible to our previous estimate of U(x(1)) + MaxE(J(x(t + 1))) - U.
In theory, we could attempt to find the optimal set of actions in
each step for each x(t) tried out or simulated. In practice, we would
probably derive the actions from an “‘action model,” whose
parameters may also be estimated as part of this process. With the
latter strategy, we can afford to use simple simulation to give us the
equivalent of a carefully-computed expectation value. (Note that the
constant U is not too critical here. In each iteration, scale factors for
J can be stored, both additive and multiplicative, to make sure that
nothing diverges. This will handle the kind of crossroads problems
discussed in [7].)

In theory, this system can only look ahead one extra unit of
time per iteration. However, if we estimate these parameters by
computing the gradient in each iteration and plug it into a
conservative version of Broyden’s sparse quasilinear numerical
method, convergence will be much faster in practice, yet still
practical in cases with many parameters in one problem. To compute
this gradient inexpensively, with a complex network model, we
recommend the use of the “dynamic feedback™ algorithm, discussed
in [2. Ch.1I]. The above method we would call “heuristic dynamic
programming.”

Let us suggest another method, which is more efficient for
highly complex situations. It is similar in some respects to
differential dynamic programming, developed by Jacobson and
Mayne [12]. Instead of estimating J(x) for a raw input vector x, we
first derive a vector y which is a function of x. We also make sure
that U itself is included as one of the components of y. Then, for
each component of y, y;, we estimate Aj(x) as a function. Aj(x)
represents the derivative of J with respect to y;. In effect, it
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represents the “shadow price” of y;. Since there are many y;, this
would mean many functions to estimate, and it could mean many
parameters. However, since these A; are really interdependent, we
could formulate “network™ models in which different A; share many
parameters and terms.

In each time cycle, our method proceeds as follows. From a
given situation x(t), we carry out a simulation of x(t + 1) by first
simulating the set of random numbers wi(t) required by our
stochastic model of reality. Then, for those values of w(t), we geta
sample value of the gradient of likelihood with respect to the
parameters of A;(t) by trying to fit each function Aj(t) to match our
estimate of

¥ f \
'y, (t+l)
¥ wy ey Ayl

(pius 1 4f ",-1" refers to "U")

This computation can be done inexpensively, with complex network
models, by the dynamic feedback method mentioned above. Note
that we added a plus sign in the derivative, to indicate that we wish
to measure influence forward in time, as formalized by our concept
of “ordered derivative,” the mathematical basis of the dynamic
feedback method. Once again, we can update or optimize action
strategies, and use a variant of Broyden's method to estimate all the

ar lers

This method, which we call **dual heuristic programming,” is
particularly suited to complex dispersed systems like the human
brain; also, it is capable of supporting action models which are
slightly faster to react than those with heuristic dynamic program-
ming, at least for a real-time system, because one does not have to
wait for feedback to trickle down from the highest levels.

It is extremely important that y; may be a very complex
function, itself to be estimated in this process. In principle, y; itself
could equal J, if this estimate were highly successful. In the human
brain, we would speculate that the “dynamic feedback” calculations
are performed by the well-known “retrograde™ chemical trans-
missions, flowing back from cell to cell along small tubes inside the
brain cells.

Note that two competing strategic models can be weighted in
either of these schemes by plugging in a weighted sum of the two J
candidates (with the weight itself a parameter to be estimated) into
the computer. In this respect, “heuristic dynamic programming” and
“dual heuristic programming™ are again comparable to regression
methods in modelling.

The practical use of these methods [7] requires the prior
availability of stochastic predictive models of the global environ-
ment. Such models could come either from statistics or from
“judgmental models”” on Bayesian lines. However, the development
of good judgmental models will require the development of Bayesian
techniques to a higher level than has been considered in the past.
This will require careful studies of the effectiveness of variants of
these techniques in cases where the measures of performance have a
high variance.
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