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THE OPTIMAL CONSUMPTION OF
DEPLETABLE NATURAL RESOURCES *

MirtoN C. WEINSTEIN
RicHARD J. ZECKHAUSER

I. Introduction, 371.—II. The simple model, 372. — III. Market equilib-
rium in the simple model, 375.—1V. The extended model —optimal and
equilibrium allocation with nonzero extraction costs, 377.— V. Equilibrium
with uncertain future demand, 381.— VI. Monopoly behavior, 387.— VII.
Summary and conclusion, 389. — Appendix: proof of the optimality of the N-
period market equilibrium under uncertainty if suppliers are risk-neutral, 390.

I. INTRODUCTION

There is an energy crisis, we are told, facing this nation and the
world. It is widely asserted that our economic system leads to an
excessive consumption rate for coal, oil, and natural gas, and that
something approaching a Malthusian catastrophe may be upon us
within our lifetimes or those of our children. This argument is ex-
tended elsewhere to relate to wide varieties of extractable minerals
and depletable natural resources.! An extreme version of this point
of view was expressed by ardent conservationist Samuel H. Ordway
two decades ago:

... Within foreseeable time increasing consumption of resources can
produce scarcities serious enough to destroy our American Dream. . . .2

* This research was supported in part by the Analytic Methods Seminar,
Kennedy School of Government, Harvard University. We are indebted to
Robert Dorfman, Fred Peterson, Howard Raiffa, Thomas Schelling, and a ref-
eree for helpful comments.

1. They include, for example, helium and other inert gases. The govern-
ment’s helium conservation program is predicated as a policy response to such
arguments.

2. S. Ordway, Resources and the American Dream (New York: Ronald
Press, 1953), p. 8. H. H. Barnett and C. Morse (Economics of Resource Scar-
city; Washington, D.C.: Resources for the Future, 1959) provided this quota-
tion and the rest of the historical background material that complements our
analysis in this paper. They discuss the following authors: J. Ise (“The
Theory of Value as Applied to Natural Resources,” American Economic Re-
view, XV (1925), 284-91), an early analyst who “finds that the time distribu-
tion of the destructive utilization of resources is dangerously biased toward
the present”; H. Hotelling (“The Economics of KExhaustible Resources,”
Journal of Political Economy, XXXIX (April 1931, 137-75), who demon-
strates the efficiency of the competitive market allocation under assumptions
more restrictive than those considered here; and E. O. Heady (“Efficiency
in Public Soil Conservation Programs,” Journal of Political Economy, LIX
(Feb. 1951), 47-60), who presents an empirically based analysis of optimal
programs for soil conservation.
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372 QUARTERLY JOURNAL OF ECONOMICS

In response to these fears the government is enacting an increas-
ing number of policy measures that would slow down the rate of con-
sumption of such natural resources. One example of such a measure
is the provision in the National Environmental Policy Act that
requires all Federal agencies to identify for all proposed projects
“any irreversible and irretrievable commitments of resources which
would be involved.” # The clear implication is that the market prices
of such commodities do not reflect long-run social cost and that the
government must price these commodities de novo in each instance
in order to capture their value to the future.*

Our purpose is to demonstrate that, under certain standard
simplifying assumptions, the consumption stream of a depletable,
nonreclaimable, nonreproducible resource that is produced by com-
petitive market behavior does, in fact, coincide with the socially
efficient consumption stream. We then extend the analysis to cases
where future demand is uncertain and where the costs of extraction
may vary. The latter extension enables us to include as well re-
sources that are reclaimable or reproducible, but at prices sufficiently
high to make conservation questions of interest. In addition, we
examine the behavior of a monopolist seller and demonstrate that in
general the direction and magnitude of the departure from optimal-
ity cannot be predicted.

The present analysis is directed primarily toward resources
whose natural sources can be privately owned. Resources that are
publicly owned are handled by the model if a central authority
makes appropriate charges for removal of the resource.’

II. Tue SimpLE MODEL

We begin with the most restrictive assumptions and then relax
a subset of them one at a time, showing how each produces devia-
tions from the initial result. The simple model deals with a resource

3. Public Law 91-190, Section 102 (2) C (V), 1969.

4. Most environmentalists would assert that the government is doing far
too little to slow rates of resource depletion. Some policies such as mineral
depletion allowances may have the net effect of stepping up resource con-
sumption.

5. In a wide variety of policy relevant cases, insufficient or zero charges
are levied for a publicly owned resource. A problem of congestion of the
commons is the result. See G. Hardin, “Tragedy of the Commons,” Science,
CLXII (1965), 1243-48. In the natural resource context, this leads to over-
consumption. See M. Spence (“A Policy Analysis of International Whaling,”
in Assorted Fall Term Course Materials: Public Policy 210, Kennedy School
of Government, Sept, 1972), for a discussion of how this problem relates to the
multination whaling industry.
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OPTIMAL CONSUMPTION OF RESOURCES 373

that is depletable in the strict sense. There exists a fixed quantity
Q. Once it is used, it is gone forever. It is nonreproducible.® Its
costs of extraction and storage for a supplier are zero.

Consumer demand is assumed to be separable by time period.
The demand functions are represented as

(1) pi=d:(qy),
where ¢ is an index over time periods, g; is the total quantity con-
sumed (not the amount purchased) in period ¢, and p; is the price in
that period. Consumers have no storage capability. This implies
that the between-period cross elasticities of demand are zero.
Finally, there is a perfect capital market with a stable, risk-free in-
terest rate r, which reflects the social rate of discount.”

The yardstick by which we shall measure the optimality of
a consumption stream is the discounted sum of consumer-plus-
producer surplus. (To keep units comparable, we must assume that
the marginal utility of income is essentially constant.) Represent
this sum & by

@ 8= 3 (14n- fae)de

The optimal consumption stream is therefore given by the sequence
{q*:}, which maximizes S, subject to the condition,

(3) 3 .<Q.
t=0

Adjoining (3) to (2) by a multiplier A and differentiating with re-
spect to each q;, we get the optimality conditions,

(4) di(q*:) = (147)A (t=0,1,2,...),
which is equivalent to
(5) p*tz (I‘H')tp*o (t=0y 1) 2; e e )v

since A=dy(q*) from substitution of t=0 into (4) and since p*;=

6. This model excludes diamonds because their use does not depreciate
or consume them. Heavy metals are excluded because they are reclaimable;
timber is excluded because it is reproducible. Of course, if one returns to the
atomic level, all resources are reproducible at a price. If the price of repro-
duction is high enough, the resource fits this simple model. Our initial examples
of oil, coal, and natural gas are splendid in this regard.

7. That the market and social rates of discount coincide implies a cor-
respondence between individual and societal valuations of future generations.
Society-at-large must have the same trade-off rate as producers and investors
between their income and the income of their heirs.

8. The consumer surplus integral will be finite as long as the real income
of all individuals is bounded. Even if coal or oil are “necessities,” there is a
limit to how much people will pay for them. If there are expensive, but feas-
ible, alternative technologies, then the existence of this upper bound becomes
more apparent.
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374 QUARTERLY JOURNAL OF ECONOMICS

d:(g*:) by definition. Thus, (5) specifies that the optimal prices
must grow geometrically at the rate ».2 The initial price is deter-
mined by the constraint (3), which, when binding, is written as

(6) 3 di-1(py) =Q.
t=0

Note that if the demand curves intersect the vertical axis, then it
is possible that ¢*; vanishes after p*; rises sufficiently high. In this
case it may turn out that the optimal consumption stream is a
finite stream, terminating at some period T. This case is consistent
with the results of (5) and (6), where d;,~(p;) vanishes for ¢t>T.!

Equation (6) suggests a graphical interpretation of this result
that will be useful in describing the market equilibrium conditions.
Interpret the left-hand side of (6) as a long-run inverse demand
function based on the price at t=0,

(1) D-1(p,) = Eodt—l{po(lw)‘},

where p;=p,(1+47)* has been substituted from (5). Figure I displays
the condition that long-run demand must equal long-run supply (the
latter being completely inelastic at @). The optimal initial price
p*o is thus determined as the price at which the supply is just ex-
hausted.2

9. The analogy between this result and the behavior of von Neumann’s
model of balanced growth is interesting. In the classical von Neumann model
equilibrium prices remain constant over time, while here the price of the
fixed-supply resource increases geometrically. The interpretation is that a non-
replenishable resource cannot be part of a “golden age” equilibrium in the von
Neumann sense. As the stock of the depletable resource diminishes, it becomes
eliminated from the system; the geometric price increase is but a transient
phenomenon associated with a transient good. If there are no substitutes for
the depletable good, then continued production is impossible, and the only
long-run equilibrium will be one of extinction.

1. This situation would occur, for example, if there were substitutes for
the good. Suppose, for example, that there exists a perfect substitute that can
be produced at a constant marginal cost =. Then the demand curves for the
depletable good must intersect the vertical axis at p:=m for all t&. The optimal
consumption stream in this case would involve utilizing the free but depletable
good until it is exhausted (which occurs when its price reaches the price of its
substitute =) and then switching to the substitute. If, however, the cost of ex-
tracting the depletable resource were nonzero, then it may be optimal to switch
partially or totally to the substitute prior to exhaustion of the fixed supply.
We see this latter behavior, for example, in the switch from coal to nuclear
power.

2. Notice that, in principle, the long-run demand curve in Figure I could
intersect the horizontal axis before @, thus implying that it is optimal not to
use up all of the resource. This can happen, of course, only if the total demand
for the resource at zero price does not add up to @ — an unlikely possibility
that we rule out.

This content downloaded from 206.253.207.235 on Wed, 27 May 2020 21:10:26 UTC
All use subject to https://about.jstor.org/terms



OPTIMAL CONSUMPTION OF RESOURCES 375

Pof————

q=0"'(p,) =*§d}'(po(l+r)')

Q q

Ficure 1
Long-Run Optimality Condition

ITI. MarRKET EQUILIBRIUM IN THE SIMPLE MODEL

The main result is that, in equilibrium, a competitive market
will result in the optimal consumption stream described by (5) and
(6). Equivalently, the market price will rise by exactly the factor
(147) each year, and in the limit the supply will be just exhausted.?

Suppose for now that the suppliers have perfect foresight of the
consumer demand functions, and further assume that consumers can
store the resource at zero cost (so that they could purchase a life-
time supply of the resource now if they chose to do so). These two
assumptions will be relaxed presently. The effect of these assump-
tions is to allow the market to be resolved immediately. On the
supply side, consider individual inverse supply functions Sif=
f#(QF, Do, p1, . . . ) for the ¢ supplier in the time period ¢, where
Q= EOS{'. Since to the supplier a dollar today is always worth

t=
(147) dollars next period, this function displays infinite cross elas-

ticities along the rays defined by pi=po(1+47)t. In other words,
nothing will be marketed in periods when

(8) pt(1+r)"<mftx p(147) —

3. It should be noted that the optimality and equilibrium results hold
even if there are several depletable resources that serve related purposes in the
economy (e.g., oil and coal). In particular, it is clear that for any time stream
of prices for good A the optimal —and equilibrium — prices for good B will
rise at the period rate 7. The other good is treated essentially like any other
good in the economy. (The strong interdependence between the two will be re-
flected in starting price levels.) This implies that in equilibrium the prices for
each of the two goods will rise at this constant exponential rate.
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376 QUARTERLY JOURNAL OF ECONOMICS

On the demand side, since it costs nothing to buy in advance, the
individual demand functions Dy =h(po, p1, . . . ) will display a
similar property. Nothing will be bought in any period t for which
there exists an earlier period ¢ <t such that p;>p, (14r)t-#4

At equilibrium, prices must rise at exactly the rate r. The long-
run demand function (7) becomes operational, due to the zero
storage costs to the consumers. The equilibrium is determined as in
Figure I. The resulting consumption stream is efficient since it
satisfies the optimality conditions (5) and (6).

It is more difficult, but nevertheless possible, to see that the same
equilibrium holds if either one of the assumptions about perfect in-
formation or zero storage cost is not satisfied. If suppliers have
perfect foresight of demand, but consumers must use what they
purchase in the period of purchase (the most stringent case where
their storage costs are effectively infinite), then the individual
supply functions remain the same, while the demand functions be-
come the consumption demand functions (1). In this case, the
behavior of the suppliers will be sufficient to insure that the price
rises at the rate r. Given their perfect foresight of demand, if the
quantity supplied in any period were such that the prices could not
stay in the fixed geometric growth sequence, suppliers would sell
nothing in periods when (8) holds. Such a situation cannot be in
equilibrium (unless demand at zero price vanishes in those periods).
Thus, the quantities supplied must be such that price rises at the
rate 7. (This result will be demonstrated more rigorously as a special
case of the situation where future demand is uncertain.)

As for the case where producers do not have perfect informa-
tion, but where consumers can store the commodity at zero cost,
we would expect the market to be resolved immediately through the
long-run demand function shown in Figure I. Given the free storage,
consumers become equivalent to producers in every way, and prices
must rise at the rate r in equilibrium. In the case where producers
do not have perfect information, and where consumers face effec-
tively infinite storage costs, the functioning of a futures market will
insure the same equilibrium. However, if future demand is genuinely
unknown (even to consumers), then we are in the case of uncertain
demand to be treated in Section V.

4. A property of these demand functions is as follows. If prices rise at a
rate greater than r, consumers will purchase everything in period zero. If
prices rise at a rate smaller than r, however, the actual demand function will
coincide with the consumption demand functions (1).
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OPTIMAL CONSUMPTION OF RESOURCES 377

IV. Tue EXTENDED MODEL — OQPTIMAL AND EQUILIBRIUM
AvLocAaTioN WITH NONzZERO EXTrACTION COSTS

The first major assumption to be relaxed is that the cost of ex-
tracting the resource is zero or negligible.> We consider first the case
where the marginal cost of extraction is constant and then turn to the
more realistic case where the marginal cost of extraction increases
as the supply diminishes. It will be shown in both cases that the
socially optimal consumption stream still coincides with the market
equilibrium.

A. Constant Marginal Cost

Let the marginal cost of extraction be constant at m. Then the
optimal time stream {g*;} is the one that maximizes

@ 8= 3 (140~ [ (d(e) —mde,

subject to the supply constraint (3). Adjoining (3) to (9) by a mul-
tiplier A, we get the result that

dt(q*t)_,’n: (1_}_7)!/\ (t:()y ly 2y [ )!
which is equivalent to
(10) P*t—m=(1+7')t(?*o—m) (t:07 1121 v )

Thus, (10), in a manner analogous to (5), specifies that price minus
marginal cost should grow at the rate ». Note that this implies that
price itself grows more slowly, but that the rate of price rise ap-
proaches r in the limit.

It is clear that this is exactly what happens in equilibrium.
Suppliers are indifferent between a dollar of profit now and 147
dollars in the next period, so that the amount supplied will be non-
zero only if price minus marginal cost grows at the rate r. On the
demand side it is irrelevant whether the commodity can be stored.
Since the price rises more slowly than r, consumers will purchase the
amount they wish to consume in each period. The long-run inverse
demand curve is then given by

(1) Dipo) = 3 dii(po),

5. It is worth noting here that there is an analytical analogy between this
extended model and another model that would take into account the possibility
of recycling, where the cost of recycling plays the role of the cost of extraction.
The relationship between market outcomes and optimal allocations when there
is a possibility for recycling is discussed in M. Weinstein and R. Zeckhauser,
“Use Patterns for Depletable and Recycleable Resources,” Review of Eco-
nomac Studies, Symposium, XLII (1974), 67-88.
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378 QUARTERLY JOURNAL OF ECONOMICS

where p; satisfies (p;—m) = (po—m) (147)t. The equilibrium is
shown in Figure II. The equilibrium initial price p*, is determined

Po

Po
q=0"(py)

m

!

[

[

l >

Q q

Ficuge 11
Long-Run Optimality Condition with Constant Marginal Extraction Cost

by (6) with p, appropriately redefined, so that p;—m, not p;, grows
at the rate 7. Note that it is possible that the long-run demand curve
may cut the marginal cost curve at some ¢’ <@ as in Figure III. In
this case the initial price is set equal to marginal cost, and through
(10) this implies that the price always remains at marginal cost.
What is happening here is that the supply constraint is not binding;
the shadow price A=py—m is zero. Intuitively, this reflects a situation
where the cost of extraction runs ahead of demand so that it does
not pay to use the total supply. In reality such a situation may
exist for such resources as sand and gravel, and possibly coal, but
it is unlikely for oil and natural gas. Indeed, for resources like
sand, the cost of extraction and delivery may be so great that the

effective value of the resource in its natural state may be essentially
zero.$

6. Consider, for example, the value of an acre of sand under the ocean or
of an acre of unexplored wilderness during the Gold Rush.
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OPTIMAL CONSUMPTION OF RESOURCES 379

ox
u
3

Ol
O — = —
Y

Ficure III
Incomplete Utilization of the Resource with Constant Marginal Cost

B. Increasing Marginal Cost

Now suppose that the total cost of extracting the first ¢ units
is given by c(q), regardless of when the extraction takes place.” The
marginal cost of removing a unit is ¢’(g) for 0=q=Q. Each pro-
ducer has his own marginal cost curve ¢’;(q*) that depends only on
the amount g* that he has extracted to date. The aggregate mar-
ginal cost curve is derived as the horizontal sum of these individual
curves.

The socially optimal sequence {q;} is the one that maximizes

t—1

0 t
Szf (147) [ f dy(&)dé—c( _20 qi)+c(,_20 @)1,

subject to the supply constraint (3). Adjoining the constraint and
differentiating, we get the optimality conditions,

(12) di(g*) —c/( *3)

¢ ( 1+t)]= (1+T)1)\,
where, by substltutlon of t=0,

8

S (14r) [ .120 Q*it1)

j

¢
3 q
=0
j—1
2
7. Note that under these assumptions, it is always optimal for suppliers

with perfect information to postpone extraction until the period of sale.
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© J
(12a)  A=do(g*o) —¢’(g%0) — 3 (14r) —7[c( .qu*i)

j= i=

j1
_C’( _qu*i) ]

The interpretation of the left-hand side of (12) is as follows. The
first term d;(q*;) =p*; is the price. The remaining terms represent
the discounted total of increased costs entailed by supplying an addi-
tional unit in period ¢. The second term gives the within-period
marginal cost, as it is conventionally understood, of supplying this
unit. But given that the cost-of-extraction curve is rising, supply-
ing this unit will increase all future extraction costs as well. Thus,
the third term gives the discounted sum of these increments to cost in
all future periods. The two terms together give the true, for all
time, marginal cost of supplying an additional unit in this period.8
Thus, (12) and (12a) express essentially the same condition we saw
in (10) : price minus marginal cost grows at the rate r.

The market equilibrium yields the same allocation as the social
optimum. Suppliers will set price minus “marginal cost” equal to
the shadow price A, and the market will clear only when the initial
price p*, is set so that

D-1(p*) = tzodt_l(p*t) =Q.
Again it is possible that behavior analogous to that shown in Figure
IIT may occur, in which case A=0, and price equals marginal cost
(in the extended sense defined by (12)) both in equilibrium and at
the optimum.

The efficiency of the market allocation can be seen as follows.
Recall that the aggregate marginal cost function ¢’(q) is the hori-
zontal sum of the individual marginal cost functions ¢’;(q*). Now
the individual supplier faced with a sequence of price {p;} and a

fixed supply Q* will clearly allocate his resources to satisfy
(13)

~.

t © . J
pe—cu( = q*) — 51 (147r) =[x ( .20 Q¥ipe) — (3 qFige) ]

=0 = i=0

= (141,

8. Most discussions of marginal cost need not be concerned with incre-
ments to future costs because they assume that marginal cost curves in in-
dividual periods are independent of one another.

Parking fine structures in many cities reflect the interdependent cost
structure of the example in the text, at least over a one-year period. The first
violation costs zero dollars, the next is five, then ten, and so on. A friend bor-
rows your car at the beginning of the year and secures you your first ticket.
Clearly, although his violation carries no fine, he is imposing on you an in-
creased cost for all future violations (until your slate is wiped clean). If his
compensation to you is to “make you whole,” it must equal the discounted
total of these increments to fines.
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OPTIMAL CONSUMPTION OF RESOURCES 381

Note that this equation is identical to (12) with ¢’ replaced by ',
and the ¢*; replaced by ¢:*. But since ¢’ is merely the horizontal sum
of the ¢/,

t t t
(32 q)=c(3 3 q*)=ci( = qP),
i=0 i=0 & i=0
where ¢;= 3 ¢;* by definition. Thus, the market equilibrium con-
k

dition (13) reduces to the optimizing conditions (12), and the allo-
cation is seen to be efficient.?

V. EqQuiLiBriUM WITH UNCERTAIN FUTURE DEMAND

Let us return to the situation where extraction costs are zero,
but now suppose that the demand functions in future periods are
unknown and are revealed at the start of each period. We now ex-
amine the properties of the equilibrium consumption stream (or the
equilibrium probability distribution on consumption streams) when
future demand is uncertain. We begin with a two-period model,
which illustrates some of the characteristics of the general result,
and then turn to a three-period model, which generalizes easily to
N periods. The generalization to infinite horizon is not given here.

A. Two-Period Model

Let @ be the total quantity owned by the ith producer. Let Q
be the total quantity supplied in period ¢, and let gi: be the quantity
supplied in period ¢ by the th producer. Let the demand functions in
the two periods be given by

Po=do(Qo)
and

P1=d1(Qq, 1),

where z;, is a random variable of arbitrary dimension. Suppose
that the #th producer has a von Neumann-Morgenstern utility func-

9. In an interesting but anomalous second model of production, each sup-
plier owns his own stock of resource, but they all collectively face a joint cost
function ¢(q), which measures the cost of extracting the first ¢ units, regardless
of which supplier extracts them. Under these circumstances, we might expect
that suppliers would prematurely extract the resource, rushing to pass the
“externality” of higher future extraction costs on to others. In fact, this does
not happen. The market equilibrium satisfies (12), even though (13) no longer
applies. The intuitive reason for this surprising result is that the “externality”
of passing higher costs on to other suppliers is not a physical or technological
externality for the industry as a whole; the real cost of extracting the first ¢
units remains c(q) no matter how extraction occurs. Since there is no real
externality, it is not surprising after all to find that the market allocates the
resource efficiently.
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382 QUARTERLY JOURNAL OF ECONOMICS

tion u; on discounted assets. Then the ¢t producer will select g;o to
maximize Eu;(pogio+p1(147) ~1qi) subject to gio+qi=Q* Since
p1 depends only on z; and on @Q; =@ —Q,, this maximization defines
a function f; such that

(14) Qio=fi(Po,Qo), all 4.

Market equilibrium is determined by (14) together with the condi-
tions,

(15) Qo= 3 Quo

and

(16) Po=do (Qo).
If there are I producers, then (14)—(16) form I42 equations in the
I+42 unknowns {qie}, Qo, and p,.

Consider now some special cases. If p; is known (i.e., if z; has

zero variance), then the supplier’s maximization yields a function
fi such that

[ @ itm<p(l+n)
Qio= 0 if p1>po(147)
indeterminate if p;=po(147).

In order for demand in both periods to be met, (i.e., in order for a
nonzero quantity to be supplied in both periods), it must be the case
that py=p¢(14r). This was the result presented for the certainty
case in Section III, and this is the efficient allocation.

Suppose now that z; is unknown but has probability distribu-
tion that all producers agree upon. Suppose further that producers
are risk-neutral. Then producers will choose g;p to maximize

J=E (pogio+p1(147) ~1qu)
=poQio+ (Ep1) (147) ~1qi.
Suppliers will therefore select
Qf if Epy<po(1+47)
Qio= 4 0 if Epy>po(1+47)
L indeterminate if Ep; =po(14-7),
so that at equilibrium, we must have
(17) Epi=po(1+1).
In other words, if suppliers are risk-neutral, the initial (¢=0) allo-
cation is such that the expected price rises at the rate 7.

It is easy to show that if society wishes to maximize expected
discounted surplus,

(18)  E[S]=E] Of"do(so)dso+ qu‘dl(gh ) da],
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OPTIMAL CONSUMPTION OF RESOURCES 383

then the optimal allocation is such that (17) holds, where

p1=d1(q1, 61)
and

Po=do(qo).
Thus, if suppliers are risk-neutral, the market equilibrium is optimal
in terms of E[S]. This is demonstrated more generally for the multi-
period case in the Appendix.

Suppose finally that suppliers are risk-averse. In this case the
market equilibrium will result in an expected price rise by a factor
larger than (14r). Thus, risk-averse suppliers will underconserve
the resource, relative to the numeraire E[S].! To see this, consider
the supplier who selects g to maximize

J = Eui(poqio+p1(147) ~*qu1),
subject to qi+qi1 = Q. Suppose that

E (p1) =p1* and Var (p:) =p,*.
Now if pi#=po(147) exactly, then the supplier will set g = Q¢ and
qi1=0 because he can never achieve a higher expected value than
Do’ but can minimize his variance by selling all of his supply at the
certain price po. This situation cannot be in equilibrium, since
nothing would be left for period 1. In equilibrium we must have
(19) D1#po(1+7)
in order for suppliers to save any of their stock for the future.

As an illustration, suppose a supplier has a constant risk aver-
sion utility function for discounted revenue r given by

ui(r) = —e—cv.
Suppose further that p; is distributed normally with mean ps# and

variance p1”. Then, if the supplier allocates gi to period 0 and g
to period 1, his certainty equivalent 2 is given by

CE =ci(cipoqio+p1* (147) =1 (Q —qio) — cip1? (QF— qio) 2/2(14-7)2).

1. Strictly speaking, it is not appropriate to put a cardinal utility func-
tion on unknown future streams of increments to consumption (i.e., incomes),
as distinguished from streams of pure consumption. This is because decisions
concerning interperiod transfers (i.e., borrowing and lending) must occur
before resolution of uncertainty in the future. The proper evaluation of un-
certain income streams requires the solution of a complex dynamic program-
ming problem in which future decisions are considered. See M. Spence and R.
Zeckhauser, “The Effect of the Timing of Consumption Decisions and the Res-
olution of Lotteries on the Choice of Lotteries,” Econometrica, XL (March
1972), 401-03. Nevertheless, it is a common and convenient practice to use
utility of discounted income as a surrogate for utility for consumption.

2. Using moment-generating functions, it is straightforward to show that
a gamble with mean x and variance ¢* has a certainty equivalent cu—c%*®/2,
whe§e ¢ is the parameter of the exponential utility function (i.e., the risk aver-
sion).
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This is maximized when 3

Q' —qio= (p1#—po(14-1)) (147) /cpy?.

Thus, if p1#=pe(147), then gio=@Q¢, and all is sold in period O. In
equilibrium, the (p:#, p1¥) pair must be such that the market just
clears in period 0. This can happen only if p;#>po(14-7). Note that,
unlike the case where suppliers are risk-neutral, there is no clear-
cut value of pi* below which all is sold in the first period and above
which all is sold in the second period. Here, there is a range of values
of pi* (for given p,*) for which nonzero quantities are supplied in
both periods. There is generally, however, a unique (pi*, p1*) com-
bination at which the two-period market equilibrates.

In summary, the results of the two-period market under un-
certainty are the following. If suppliers are risk-neutral, then ex-
pected price rises by a factor of (147), which is optimal in terms of
expected discounted surplus. If suppliers are risk-averse, then ex-
pected price rises by a factor greater than (14-r), which results in
underconservation of the resource relative to the social optimum in
terms of expected discounted surplus.

B. Multiperiod Model

In extending the results obtained in the two-period case to
three periods and more, we encounter a qualitative difference in
the decision making that underlies the market equilibrium. Where
demand is uncertain at least two periods into the future, fully ra-
tional suppliers will be forced to turn to closed-loop, or

dynamic programming, rather than simple open-loop optimization
where allocations in all periods would be determined at the start.t

- - PN
- ~N I’ ~
-
!

s \ pad \
[/Qo Po Gioy ZI}/QI Py L %2- Q2 Pz£Qi2

Ficure IV

Three-Period Decision Tree

3. We ignore boundary solutions, since the market equilibrium must
generally involve nonzero sales in both periods.

4. In the two-period case, of course, the two methods are identical be-
cause there is only one free decision variable. See R. E. Bellman and S. C.
Dreyfus, Applied Dynamic Programming (Princeton, N.J.: Princeton Uni-
versity Press, 1962).
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OPTIMAL CONSUMPTION OF RESOURCES 385

Each supplier faces a decision tree as in Figure IV. We assume that
the probability distributions for the z;(¢=1, 2) are independent,
The sequence of events is as follows. Given full information
about the market in period 0, the ith supplier chooses to sell i at
the market price p,. After all suppliers have chosen their {qi}
values, the market will be in equilibrium only if Qo= 2qio (indicated

by the dashed line in Figure IV). In the next period tile uncertainty
about demand in period 1 (z;) is resolved. Then the process repeats
itself, and equilibrium is reached in period 1. Finally, the uncertainty
about period 2 (2») is resolved, and the remaining events are pre-
determined since the rest of the supply (Q—Qo—Q:) must be sold
at the revealed market price p..

The above producer-optimization cum equilibrium system re-
sults in a probability distribution over the space of possible alloca-
tions of the supply Q. Fortunately, it is possible to say a great deal
about the resulting distribution. These results are now demonstrated
in the three-period case, only because the notation gets out of hand
as the number of periods grows. The same results hold in the N-
period case.

Consider the situation at the start of period 1 (i.e., the second
period) after 2y is revealed. Given z; (and Q,), the resulting equi-
librium consisting of {gi;}, @1, and p; is known (since it is no more
than the resultant of a two-period process starting with supply
Q—Qo=3(Q'—qi)). Thus, the functions,

(20) P1(21,Q0), Q1 (21, Qo), and {qu1 (21, qio) },
are known at the start of period 0. Furthermore, the probability
distribution for

(21) pe=ds (22, Qz) =ds (s, Q—Qo—Q1[z1, Qo])
1s also known at the outset by (20). The individual supplier will
choose his initial g, to maximize

(22) J =Ez1,25u:[DoQio+ (147) ~1p1 [21, Qo] qir [21, o]
+ (147) ~2d, [22, @ —Qo—Q1[21, Qo] ] (Q — qio—qir [21, qio]) ],
where the dependence of all prices and quantities on z; and z, is
shown explicitly. The expression (22) is a function of gio, Qo, and
Do, S0 that the optimal g is a function of Qo and po:
Qio=i(Qo, o).

The equilibrium is completed by the conditions,
Qo= 2qio

and
Po=do(Qo).
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Consider the properties of this equilibrium in some important
special cases. In the case where 6; and 6, are known, the maximand
(22) reduces to

J =poqio+ (14-7) ~1d1[Qo] qu .
+ (147) =2d2[Q — Qo— Q1] (@ — Gio—qi1) .
We know in advance, however, that pa=p;(1+7r), so this reduces
further to

J =poGio+ (147) ~1d1[Qo] (@' — o) .
As in the two-period case, the supplier will choose

f Q' if p1<po(14-7)
Qio= 0 if p1>po(147)
indeterminate if py=po(1+47),

and market equilibrium holds, in general, only if p;=p(1+7).
Therefore, as claimed in Section III, the market equilibrium yields
Pi=Dpo(147)
in the certainty case.
If the z; are uncertain, but suppliers are risk-neutral, then it is

an easy matter to deduce the result that the expected price rises
at the rate r; that is,

(23) By egpo= (14-7)Ey p1= (14-7)%po.

To see this, note that the two-period equilibrium at the start of
period 1 must satisfy the left-hand equality in (23). Therefore, by
“folding back” one more step using (22), it is clear that either all or
none will be sold in period 0 unless the right-hand equality in (23)

also holds. This result extends easily to N periods, the general re-
sult being that

(24)  Epi= (141)'po.

It turns out that this market equilibrium is socially optimal in
terms of expected discounted surplus,

Q, ® 9,
(25) E[S]=E] o‘f do (&) déo+ ;fl (147)—? of di(&, 2 d&],

where society solves its own closed-loop (adaptive) dynamic pro-
gramming problem. This result is given in the Appendix.

Finally, it is worth noting that, as in the two-period case, if
suppliers are risk-averse, the expected price will rise at a (not
necessarily constant) rate higher than r, so that, judged by the
numeraire E[S] in (25), the resource is being used up too quickly.
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OPTIMAL CONSUMPTION OF RESOURCES 387

VI. MoNoroLYy BEHAVIOR

When Progressivism and Conservationism were flourishing side
by side in the early part of this century, it was generally believed
that monopolies were the enemies of conservation. Monopolists,
the common wisdom went, would exploit our natural resources for
their own profits at a rate too fast for the good of society.

A closer examination of the economics of monopoly, however,
leads one to suspect that the tendency of a monopolist to restrict
supply below optimal levels would mean that the resource, if monop-
olized, would actually be overconserved.® If the truth be known,
depending upon circumstances a monopolist may underconserve,
overconserve, or optimally conserve a resource. For expected sets
of circumstances, however, the tendency is toward overconserva-
tion.

The simple model illustrates the possibilities. Extraction costs
are zero; there is perfect foresight of demand. The monopolist must
choose the sequence {Q;} to maximize revenue,

(26) R:t§0<1+r>—tdt<Qt>Qt,

subject to the constraint,

27) Q= EOQt.

Adjoining (27) to (26) by a multiplier A and differentiating with
respect to the {Q:}, we see that the monopolist’s constrained opti-
mum occurs when

(28)  di(Qo) +d":(Q) Qe= (1+7)%A.

Recognizing the left-hand side of (28) as marginal revenue in
period ¢t (MR;) and solving for the initial condition at t=0, we get
the condition,

(29)  MR;= (14-r)'MR,,

so that marginal revenue, not price, grows at the rate r. If the con-
straint (27) is not binding (an unlikely occurrence in reality), then
A=0, and the monopolist will sell in each period up to the point where
marginal revenue is zero.

5. T. Schelling (“Monopolistic Restriction and the Production of Bads,”
mimeograph, Kennedy School of Government, Harvard University, 1972)
makes a similar observation in suggesting that a monopolistic industry may
produce fewer public bads (i.e., pollution) than it would if it were competitively
organized.

6. If this occurred, then at least in the long run the monopolist would
overconserve, since it 1s never socially optimal to fail to meet (27) with
equality.
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Growth of marginal revenue at rate r implies nothing about
social optimality. The key factor is the growth rate of price. Con-
sider cases where the monopolist exhausts his stock (A>0). If price
grows less swiftly than r, he is overconserving. If it grows at the
rate 7, his allocation is socially optimal. If price rises faster than 7,
he is underconserving. In cases where he does not exhaust his
stock (A=0), the result is ambiguous if price rises faster than r,
otherwise he is definitely overconserving.

Suppose first that the demand curve in period ¢ is given by

Pi=0a;—biQs,
so that the marginal revenue is given by
Mme=0as— 2tht-

Hence,
pe=(as+my) /2,
independent of the slope b;. Suppose that m; is growing at the rate
r per period, according to the monopolist’s optimum. Then
at(14-7) +m; (14-7) _ Giprtme(14r)

]_ -— =
Pi(147) —Pi g1 2 5

_a(147) —as g
=——

Therefore, if the intercept a; is growing at a rate less than r,
then price also grows at a rate less than 7, and the resource is over-
conserved. Otherwise, both society and the monopolist would seek to
preserve the resource from consumption indefinitely. In practice, it
seems unlikely that the intercept (i.e., the price above which none
of the good is demanded) will grow as rapidly as the interest rate.
It is more likely that demand would shift horizontally by a factor
representing population growth, this having no effect on the inter-
cept. Therefore, in the linear case we are inclined to conclude that
a monopolist will overconserve the resource.

Now consider the case of constant elasticity demand:

Pe=A:qs % (0<a;<).
In this case, marginal revenue is proportional to price:
me=(1—az) .

Now if the inverse elasticity o is constant over time, then a geo-
metric increase in m, at the rate r implies a geometric increase in
price at the same rate. Therefore, with constant and stable elasticity
of demand, the monopolist’s allocation coincides with the market
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equilibrium and is socially optimal.” If the inverse elasticities a;
increase (decrease) (remain constant) with time, then price in-
creases at a rate greater than (less than) (equal to) r if marginal
revenue increases at the rate . In this case the monopolist under-
conserves (overconserves) (conserves optimally).

Only empirical study can determine what set of assumptions
about demand for a monopolized resource is satisfied in a particular
instance. Once that is known, as these examples illustrate, it can be
determined whether a monopolist is guilty of overprotecting or
underprotecting the resource under his control. It is just possible
that he is behaving optimally in this respect.

VII. SuMMARY AND CONCLUSION

It has been shown that a perfectly competitive market for a
depletable natural resource will, under certain conditions, result in
efficient intertemporal allocation. This allocation pattern is char-
acterized by an exponential price increase at the marginal rate of
time preference in the society. Where there is a positive extraction
cost, exponential growth will be in the difference between price and
the marginal extraction cost, appropriately measured.

The conditions specified include that the participants have ac-
cess to perfect capital markets, that the resource can be privately
owned, and that there are no unpriced externalities. If these condi-
tions are not satisfied, there may be an argument for government
participation, for example, to encourage mineral production that
provides an externality for national security, to license a fishing
area that would otherwise be overharvested, or to impose a variety
of conservation measures because an excess in suppliers’ effective
interest rates over the marginal rate of time preference leads them
to deplete the resource too rapidly.

Uncertainty about future demand has no adverse effect on op-
timality if suppliers are risk-neutral. If suppliers are risk-averse,
but society is risk-neutral, then the resource will tend to be under-
conserved. The presence of monopoly may produce either under-
or overconservation, though overconservation would be the expected
result.

In general, despite the presence of factors that prevent us from

7. Provided that the supply constraint (27) is binding. We would expect
the constraint to be binding in general, since if it were not then the monopolist
would sell up to the point where marginal revenue is zero in each period and

never use up his supply. In the constant elasticity case this is impossible since
marginal revenue never reaches zero.
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fully generalizing our efficiency findings, we feel that it is appropri-
ate to conclude on a note of cautious optimism and to point out
that some recent doomsday predictions about our inevitable bare
cupboards seem overdrawn.® It is powerful solace to know that
underlying market forces will work to produce appropriate rates of
resource consumption. Fisher and Potter conclude that

There will, indeed, be supply problems for particular resources at par-
ticular times and places; but technological and economic progress, building
upon an ample and diversified resource and industrial base, gives assurance
that supply problems can be met.?

Finally, we can think of no more appropriate oracle than John von
Neumann himself, who, confronted with the dawn of the nuclear age,
wrote that

It is likely that we shall gradually develop procedures more naturally
and effectively adjusted to the new sources of energy, abandoning the con-
ventional kinks and detours inherited from chemical-fuel processes. Conse-
quently, a few decades hence energy may be free — just like the unmetered
air —with coal and oil used mainly as raw materials for organic chemical
synthesis, to which, as experience has shown, their properties are best suited.

APPENDIX: PROOF OF THE OPTIMALITY OF THE N-PErRiop MARKET

EquiriBrtuMm UNDER UNCERTAINTY IF SUPPLIERS ARE
Risk-NEUTRAL

It was shown in Section VI that the market equilibrium in the
case where future demand is uncertain but where suppliers are risk-
neutral is characterized by the property that the expected price rises
at the interest rate 7:

(1) Po= (14r)~Ep;.
It was claimed then, and is proven here, that such an allocation

strategy is optimal from the point of view of maximizing expected
discounted surplus:

Q,
(ii) E[S]=E] Of do (&) déo
0 Q,
+t§1 (I4r) -t Of di(é,20) d&i],

8. A good gloomy example is provided by D. Meadows et al., The Limits
of Growth: A Report of the Club of Rome’s Project on the Predicament of
Mankind (New York: Universe, 1972).

9. J. L. Fisher and N. Potter, “The Effects of Population Growth on
Resource Adequacy and Quality,” in Rapid Population Growth: Consequences
and Policy I'mplications, Vol. 2 (Baltimore: National Academy of Sciences,
1971), p. 224.

1. J. von Neumann, “Can We Survive Technology?” in The Fabulous
Future, (New York: E. P. Dutton and Co., 1955), p. 37.
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subject, of course, to the constraint that
N
(ii1) Q= 20 Q.
t=
The proof given here is by induction. The result is first proved
in the case N=1 and then generalized to N=K by assuming the
result to be true for N=K—1. It will be useful for notational pur-
poses to suppress the expectation operator and to express the inte-
gration over the parameter spaces 6; explicitly.
The two-period proof is straightforward, since there is only

one decision variable @y and no possibility for adaptive control. We
want to choose @ to maximize

Q, 0-0Q,
E[S]= of do(fo)dfo-i-(l-l-r)'lzf o‘[ dy(&1,21) dérdzs.

Taking the derivative with respect to Q, and setting it equal to zero
yields

(iv) do(Qo) — (1+7) =1 f di(Q1,21) d2:=0,

where Q;=Q—Q,. Rewriting (iv) in terms of expected values and
prices, we see that

(v) Po= (1+7)"'E[p],
which completes the proof for the case N=1.

Now suppose that the result is true for N=K—1. Then the in-
duction hypothesis may be written in terms of the last K periods of
the case N=K as follows:

(vi) p1= (147)1~E (p;) (t=1, ..., K).
We wish to show that this extends backwards to period 0, i.e., that
(vii) po= (1+47) ~*E (ps) (t=1, ..., K).

Before embarking on this proof, it must be noted that in this
closed-loop optimization, only @, must be chosen. The remaining
Q: may be chosen in the future, conditionally on information received

up to that time.2 Thus, Q; is actually a function of Qo, . . . , Qs—y
and 2y, . . ., 2:
(viii) Qi=Q:(Qo, . . ., Qi—1; 21, . . ., 20).

In the maximization procedure it will be necessary to differentiate
Q: with respect to Qo. We shall use the notation dQ;/dQ, to denote
the total derivative of (viil) with respect to Qo (including the de-
pendency through Qq, . . ., @:—;1) and not just the partial deriv-
ative with respect to the first argument. Thus for example,

dQ. _an+an Q1
dQo Qo  2Q:1 Qo

2. The optimal open-loop allocation (which is suboptimal in general) will
generally be different from the optimal closed-loop solution. In general, the
open-loop solution will be characterized by too much early consumption and
not enough conservation. It is interesting to note that although the open-loop
solution is still characterized by expected price rises at the rate r, the solu-
tions do differ.
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We are now ready to proceed. The maximand is

(ix)
Q 0,
E[S]= Of do (&) déo+ (1+7')_1zf of di(&,21)dédz+ . ..

Ok
+(A4nt-Kf.. . f 6f dr—1(€x—1,2x 1) Aéx_1dzx_1 . . . dz

N 0-Qp— ... —0g,
+(1+7‘)—K j e f of dK(fK,ZK)dedZK e dzl,

where the Q; are actually functions as in (viii). Differentiating (ix)
completely with respect to Qo and setting the derivative equal to
zero, we get

(x)

d
do(Q0) + (147~ § dy(@uz) gt . ..
21 dQO
+A4+r)-K f . f dr—1(Qr—1, 2K-1)§(%Ko——ldzx—1 .. . dz
— 4D F f o de(@=Qo— . Qs
dQ, dQx 1
(1+TQ0—+ e+ on )dZK e le

=0.
By the induction hypothesis, however,
(x1) d1(Q1)21) = (1+47) =1 [ d2(Q2)22) dza= .

=(1+T)1_K f e f dK(QK,ZK)dZK e de.

Substituting (xi) into (x) and noticing that most of (x) cancels and
that Qeg=Q—Qo— . .. —Qr_1, We get

(xii)  po= (1+47) ~XE (px).

By combining (xii) with the induction hypothesis (vi), the proof
of (vii) is completed.

HARvARD UNIVERSITY
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