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Abstract 
Theoretical procedures are developed for comparing the perfor- 
mance of arbitrarily selected admissible feedback controls amon 
themselves with that of the optimal solution of anonlinear o p t i m j  
stochastic control problem. Iterative design schemes are proposed 
for successively improving the performance of a controller until a 
satisfactory design is achieved. Specifically, the exact design pro- 
cedure is based on the generalized Hamilton-Jacobi-Bellman equa- 
tion for the value function of nonlinear stochastic systems, and the 
approximate design procedure for nonlinear stochastic regulator 
problem with infinite horizon is developed by using the upper and 
lower bounds to the value functions. For a given controller, both 
the upper and lower bounds to its value function can be obtained 
by solving a partial differential inequality. In particular, the up- 
per and lower bounds to  the optimal value function, which may be 
used as measure to  evaluate the acceptability of suboptimal con- 
trollers, can be constructed without actually knowing the optimal 
controller. 

1 Introduction 
The problem of controlling a stochastic, dynamic system so that 
its behavior is optimal with respect to a performance index has 
received considerable attention over the past two decades. From 
a practical point of view, it is often desirable to  obtain a feed- 
back solution to  the optimal control problem. In situations of 
linear stochastic systems with additive white Gaussian noise and 
quadratic performance indices (LQG problems), the separation 
principle is directly applicable, and the optimal control theory is 
well established with a high level of maturity [6]. However, due to  
the mathematical difficulties involved with stochastic processes, 
only fragmentary results are available for the optimal control of 
general especially, nonlinear, stochastic systems. While the opti- 
mal control theory for deterministic systems is a t  a respectable 
level of maturity, the corresponding theory for stochastic sys- 
tems needs further developments for practical implementation and 
meaningful applications. 

The objective of this paper is to develop an approximation the- 
ory that  may be used to find some feasible, practical solutions to  
the optimal control of nonlinear stochastic systems. To this end, 
the problem of stochastic control is addressed from an inverse 
point of view: given an arbitrary selected admissible feedback 
control, how does it measure with respect t o  a given performance 
index, to other feedback controls, and how can it be successively 
improved to  converge to the optimal 1 This approach toward 
optimal control has been widely studied for nonlinear determin- 
istic systems [l, 4, 51, and appeared more promising than the 
linearization type approximation methods which have met with 
limited success for highly nonlinear systems [2, 31. 

This paper presents theoretical procedures for developing sub- 
optimal feedback controllers for stochastic nonlinear systems as an 
extension of the Approximation Theory of Optimal Control devel- 
oped by Saridis and Lee [4] for deterministic nonlinear systrms. 
2 Problem Formulation 
For the purpose of obtaining explicit expressions, but without 
loss of generality since the results are immediately generalizable, 
consider a nonlinear stochastic control system described by the 
following stochastic differential equation, 

dz = f ( t , z ) d t + b ( t , z ) ~ d t + g ( t , 2 ) d ~ ,  t E I [ to ,T]  (1) 

where z E R" is a vector of state of the stochastic system, U E 
R, c R" is a control vector, R, is a specified compact set of 
admissible controls, and w E Rk is a separable Wiener process. 
f :  I x  R" -f R", b :  I x  Rn -+ R n x m , a n d g :  I x  R"- Rnxk are 
measurable system functions. It is assumed that feedback control 
u(t ,  2) of R, satisfies the following conditions, i) Linear Growth 
Condition: 
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where [ t , x ) , ( t , v )  E I x Rn, 11 . 1 1  is Euclid normal operator, and .. . 
a is some constant. 

For a given initial state z(to)=zo (deterministic) and feedback 
control u(t, z), the performance index of the system (1) is defined 
as, 

J(u; to,zo) = E { J T [ G +  Ilul121dt + h[T,z(T)l/z(to) = 20) (2) 

with G : I x R" --$ RI and h : I x R" -f R' as non-negative 
functions. J is also called the value function of the system (1). 

The infinitesimal generator of the stochastic process specified 
by (1) is defined to be, 

1 
2 Lid E -tr[sT(t, z)#zzg(t, 211 + dZ[f(t, 2) + b(t, 214 (3) 

where 6 : I x R" + R' has compact support and is continu- 
ous upon to all its second order derivatives, and (.)T and IT(. )  
are transpose and trace operators, respectively. The differential 
operators are defined as, 

The pre-Hamiltonian function of the system with respect t o  
the given performance index (4) and a control law u(t, z) is defined 
as > 

"2, dz, dzz, U, t )  = G(t ,  2) + 11u1I2 + L d  (4) 

The optimal control of stochastic systems now can be stated 
ah the following: 

Optimal Stochastic Control Problem: For a given 
initial condition ( t o ,  20) E I x R " ,  and the performance 
index (4), find I* E R, such that 

If it is assumed that the optimal control law, u*(z,t), exists 
and if the corresponding value function, V'(z, t ) ,  is sufficiently 
smooth, then U* and V' may be found by solving the well-known 
Hamilton-Jacobi-Bellman equation, 

V: + min{&V* + G(t ,  z) + ~ ~ u * ~ ~ ~ }  = 0, 
V [ T ,  4T)I = w, 4T)I (6) 

Unfortunately, except in the case of linear quadratic Gaussian 
controls, where the problem has been well solved [6], a closed- 
loop form solution of the Hamilton-Jacobi-Bellman for solving the 
optimal stochastic control problem cannot be obtained in general 
when the system of (1) is nonlinear. 

Therefore, one may instead consider the optimal control prob- 
lem relaxed to that of finding an admissible feedback control law, 
u(z, t ) ,  that has an acceptable (not necessarily optima4 valuefunc- 
tion. This gives rise to a suboptimal stochastic control problem 
that could conceivably be solved with less difficulty than the orig- 
inal optimal stochastic control problem. The exact conditions for 
acceptability of a given value function are, of course, t o  be deter- 
mined from practical considerations for the specific problem. 
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3 An Approximation Theory of Optimal 
Stochastic Control 

This section contains the main results of the approximation theory 
for the solution of nonlinear stochastic control problems. Two 
theorems, one for the evaluation of performance of control laws 
and the other for the construction of lower and upper bounds of 
value functions, are established first. Then theoretical procedures 
which can lead to  the iterative design of suboptimal controls are 
developed based on those two theorems. 

Theorem 1 Assume V : I x R" -+ RI be an arbitrary function 
with continuous V ,  V,, L;, and dI;r a n d  satisfy the condition: 

IlVll f IlVtll t l l ~ l l l l ~ ~ l l  + 1 1 ~ 1 1 2 1 1 ~ ~ ~ 1 1  < b(1  t 1Iz1l2) (7) 

wherc 6 is (1 suitable constant. T /wn  the necessary and sufirient 
conditions for V ( t , r )  to be the oaluc function of an admissible 
fized feedback control law u ( t , z )  E R,, i .e . ,  

are: 

V, t LUV + C 2 t . s )  t /11LI12 = 0 (9) 
V [ T , T ( T ) ]  = /L[T,T(T)]  (10)  

Proof: From ( i ) ,  it follows from It6.s integration formula that ,  

V ( t , z )  = E{V[T.z(T)]  - 

i T I L u V ( T , I ( T ) )  t v~(T,%(T))]dT/z(t) = z} . t  E 

Therefore, 

J ( u ;  t :  z) - V ( t ,  z) = E{h[T ,  d T ) ]  - C'JT, 4771 t 

Ilu(.,z)l121dT/4t) = z> , t  E I 

~ T ; L " V ( T ' " : ( T ) )  t V 7 ( T , Z ( f ) )  t G(T.Z) + 

the sufficient condition can be seen from the above equation im- 
mediately. 

Then 
from above equation, for t = T ,  

For necessary condition, assume V ( t ,  z)  = J ( u ;  t ?  I). 

V [ T ,  4T)I = h[T,  4 T ) I  

Therefore, 

E {  [ L ' V ( T 9 4 T ) )  t V T ( T ? Z ( T ) )  t 1' 
G ( r , z )  t Ilu(r,z)II2]dr/z(t)  = I} = 0 

has to be true for all (t,z) E I x R", hence, 

Vt + C,V + G ( t , z )  t I ~ U ( [ ~  = 0 

which proves the necessary condition. 
Q.E.D. 

Since it is generally difficult to find the exact value functions 
satisfying (9) and (10) of Theorem 1, the following theorem in- 
troduces a method of constructing the lower and upper bounds 
of value functions. This method can be used for the design of 
simpler suboptimal controllers based only on the upper bounds 
to value functions. 

Theorem 2 (Lower and upper bounds of value function) 
For an admissible fixed feedback control law u ( t , x )  E R, and 
a continuous function s ( t , z )  with Is(t,i)l < 'M for all ( t , z )  E 
I x R". If function L'(t,z) satisfies (7) with continuous V ,  Vt, 
V,, and V,,, and 

Vt t CuV t G ( ~ , z )  t 1 1 ~ 1 1 ~  E VV 5 s ( ~ , I )  5 0(> s ( ~ , I )  2 0)(11) 
W,Z(T)I  2 W,+(T)I ( 5  h[T,z(T)1)(12) 

then V ( t , z )  is an upper (or a lower) bound to the value function 
of system (I). That is, 

Proof: By the similar proredure used in  the proof of Theorem 1, 
it can be shown that 

J ( q t . 2 ) -  V ( t ; z )  = E { h [ T , I ( T ) ] -  V [ T , z ( T ) ] t  

[ [ L , , v ( T . ~ ( T ) )  t L; ( r , z (T ) )  t ~ ( 7 , z )  + ilu(T.z)l/']dr/z(t) = z) 

E{h[T,.r(T)] - V [ T , I ( T ) ]  + p ( T , z ( T ) ) d T / r ( t )  = I} 

J ( u ; t , s )  - V(t ,z)  5 (L)E{JTVV(r,z(T))dr,z(c) = z}  

I (>jt{~Ts(r:T(T))dT/l(ti = 2) IO (2 0) 

Therefore, from equations (11)-( 12), it follows that, 

for all ( t , z )  E I x R", which completes the proof. 
Q.E.D. 

Having established the two theorems for the evaluation of per- 
formance of a given feedback control law, now it is necessary to  
develop algorithms to improve the control law. In the followings 
Theorems 3-5 provide a theoretical procedure for designing the 
suboptimal feedback controllers based on the Theorem 1, while 
Theorem 6 presents a result for constructing upper and lower 
bounds to the optimal value function. which can be used to eval- 
uate the arceptability of suboptimal controllers. 

Theorem 3 Given admissible controls U', E 0, and u2 E R,, 
with VI ( t ,  I )  and L'2(t, z) be the correspondzngfu7zctior~s satisfying 
(7) and ( 8 )  for U I  and u2, respectively, define the Hamiltonian 
functzons for i = 1 and 2: 

1-1tmm = 1-1(z. Vtz, Krz,  1) = G(tt z) t IIufI12 + L: V,  (14) 

where 

1 
u ; ( t , z )  = - - b T ( t , ~ ) V 4 t , z )  2 (15) 

It can be shown that 

VI 2 l i  (16) 

whtn 

VI1 t 1-11,,,,, I V2t t 1 - 1 h n  (17) 

Proof: Let 

A V  = V2 - VI,AV~ = bit  - Vl,,AVz = V,, - Vl,,AV,, = V,,, - \'I,, 

then, 

1 
2 

Vz, + H,,,,, = VI[ + AV( + W t , z )  + ;tr[gT(t,.)1/1,,q(t,s)] t 

; tr[gV,z)AVz,g(t ,  1 .)I t 

which irnplies, fronl the assumption (18), that, 

AVt f L,;hV 2 0 

In addition. from (10) of Theorem 1. 
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AV(", 2) = Vz(T, 2) - Vl(T, Z) = 0 

However, applying It6's integration formula to  AV(t, z) along the 
trajectory generated by control U;, it follows that, 

AV = -E{ 6' [ A V , ( T , Z ( T ) ) + L ~ ; A V ( T , ~ ( T ) ) ] ~ ~ / X ( ~ )  = Z} I 0 

Hence, 

V z ( t , ~ )  5 & ( t , z ) ,  V(t,z) E I x R" 

Q.E.D. 
A combination of Theorems 1 and 3, in which case a V( t ,z )  

represents the value function of the system (1) when driven by 
control u(t,  z), yields an inequality as a basis of suboptimal control 
algorithms, t o  iteratively reduce the value of the performance of 
the system. This is summarized in the following theorem. 

Theorem 4 Assume that there exist a control u1 E R, and a 
corresponding function Vl(t, x) satisfying (7) and (8) of Theorem 
1. If there ezists a function Vz(t, z) satisfying the same conditions 
of Theorem 1, of which the associated control u2 E Ru has been 
selected to satisfy 

then, 

VI L v2 

Proof: Since control u1 and the corresponding value function VI 
must satisfy (9) and (lo),  according to Theorem 1, it follows that 
for every (t,  z) E I x R", 

This can be rewritten as, 

1 
VI, + Himttt + l l ~ i  + -bTViZ1l2 2 = 0, 

that is, 

1 
VI, + H l m m  = -IIU1 + sbTV1zIIZ 

Similarly, one can find, 

1 
VZ, + "Pmm = --JIuz + ?bTI/zz11' 

Since 

1 1 
1 1 ~ 2  + fvzZII I (lux + sbTV1,II, 

it follows from equations (22) and (23) that ,  

Vzt + Hzmin 2 VI, + Hlmm 

Hence, according to  Theorem 2, 

Vz(t,z) I V l ( t , ~ ) ,  V(t,z) E I x R" 

which proves the theorem. 
Q.E.D. 

Based on Theorems 3 and 4, the following theorem establ~shes 
a sequence of feedback controls which are successively improved 
and converge to  the optimal feedback control. 

Theorem 5 Let a sequence of pairs {ui,V,} satisfy (7)-(8) OJ 

Theorem 1, and U; be obtained by minimizing the pre-Hamiltonian 
function comsponding to the previous value function Vi-1, thai 
is, 

(23) 
1 

U .  - --bTV,-l,, 
2 

i = 1,2  ,... * -  

then the corresponding value functions V,  satisfy the inequality. 

K-1 2 c;, i =  1,2 ,... (24)  

Thus by selecting the pairs {U,, V,}  in the above manner sequen- 
tially, the resulting sequence {U,}  converges to the optimal control 
U* ~ and the corresponding sequence {K} converges monotonically 
to the optimal value function V' associated with U'. 

Proof: Since control U, of (24) and the corresponding value func- 
tion V,  satisfy (9) and (10) of Theorem 1, it follows from (22) of 
Theorem 4 that, 

1 
Kt + H t m m  = -1Iut + TbTV,z(l2 

1 
= -11~6~AV, , (1~  

where AV, = V,  - K-1. 
Therefore, application of (19) of Theorem 2 leads to, 

A k  + Lu:-, AK = ( K t  + 'Himin) - (K-1, + Hi-~min]) + 
zllAK:bllz 1 = --~llAK:bIl2 + ~llAK?~zb112 1 + 

,llAvzb112 1 = ~ ~ [ A l $ ? l z b ~ ~ 2  2 0 

From ( lo ) ,  

AV,(T,s)  = V;(T,z) - V,-l(T,z) = 0, 

hence, It6's integration formula applied to AV, along the trajec- 
tory generated by u:-~ leads to the inequality, 

AK = -E{LT[AKT + Lu:-lAV,]d~/z(t)  = z} I 0 

that is, 

6 - 1  2 K 
which proves (25). 

To show the convergence of the sequence, note that {V,}  is a 
non-negative and monotonically decreasing sequence and satisfies 
(7) ,  therefore, the following limits exist, 

(25) 

(26) 

lirn K ( t , z )  = V"(t,z),  and 

lim V,,(t,z) = Vz(t,z) 
t-U3 

1 - 0 3  

for all t and I, where V" is the limit of value functions. 

tified from (24) as, 
The corresponding limit of control sequence { U ; }  can be iden- 

uO( t , z )  = lim U; = lim(--6TK-l,) 1 = (--bTV,")(t,z) 1 
2 I-m *-CO 2 

(27) 
Clearly, U' and V" thus obtained still satisfy (9) and (10) 

of Theorem 1. However, from the construction of control se- 
quence { u i } ,  U" minimizes the pre-Hamiltonian function associ- 
ated with the value function V". In other words, U" and V" satisfy 
the Hamilton-Jacobi-Bellman equation for the optimal control of 
stochastic system ( l ) ,  

(28) V, + $<{Cuv + G(t,  2) + 11.112} = 0 

Hence. 

u"( t ,z)  = u*(t ,z) ,  V0(t,X) = V*(t,X),V(t,Z) E I x R" (29) 
are the optimal control and the optimal value function of the 
stochastic control problem ( 5 ) .  

Q.E.D. 

Finally, the following theorem presents a method for the con- 
struction of an upper (or a lower) bound of the optimal value 
function V*(t, z). Since the optimal value function itself is ex- 
tremely difficult to be found, its upper (or lower) bounds there- 
fore can provide a practical measure to evaluate the effectiveness 
of suboptimal controllers. 
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Theorem 6 Assume that there exists a Junction V " ( t , x )  satis- 
f y i n g  the condition (7) of Theorem 1. for which the associated 
control 

(30) 
1 
2 

us = - - b T V i ( t , x )  

as an admissible one. Then V s ( t ,  x) is an upper (or a lower) bound 
to the optimal value Junction V*( t ,  Z)  of system (1) if it satisJes 
the following conditions, 

V," t CusV3 t G ' ( t , Z )  + l l ~ ~ l l '  = s ( t , ~ )  5 0 (2 0) (31) 
[ y T ,  Z ( T ) ]  2 h[T, 4 T ) ]  (I h[T, r(T)1)  (32) 

wherc s ( t , z )  is continuous a n d  Is/  < 00, for all ( t , z ) .  

Proof: From Theorem 5 and the Hamilton-Jacobi-Bellman equa- 
tion, it is obviously that for the optimal control and the optimal 
value function, 

V,. + H,," = v;* t G ( t , Z )  + ~ ~ 7 L * ~ ~ 2  + C,.V* = 0, 

V,s t E:,,,,, = V,s t G ( t , x )  + 11uS1I2 + C,..V" = s ( t , z )  

(33) 

and similarly. for us and V ' ,  

(34) 

For s ( t . ~ )  5 0, subtraction of (35) from (36) leads to, 

AVt + &..AV = - s ( t + x )  + -JJbTAV,J)2 2 0 
1 
4 

where Ab. = V'( t .2)  - V s ( t , x ) .  From assumption (34). 

h V [ T ,  z ( T ) ]  = V' - V "  = h[T, z ( T ) ]  - VS[T, Z(T)]  5 0 

Therefore, application of It6's integration formula to AV(t ,  x )  
along the trajectory generated by control us obtains, 

Av( t ,Z )  -E{/'[AV: t Lu3AV]dT/Z( t )  = 2) I 0 
t 

So V"( t ,  x )  is an upper bound to  the optimal value funrtion V * ( t ,  z; 
For s ( t , z )  2 0, subtraction of (36) from (33) leads to, 

AV, + C,-AV = s ( t . x )  + ~\lbrA\~',ll' 2 0 
1 

where AV = V ' ( ~ , Z )  - V * ( t , x ) .  In the same way, one can show 
by using condition (34) and It6.s integration formula that ,  

AV( t , z )  I -E{ lT[*VT t L , p A V ] d ~ / z ( t )  = x }  I 0 

So in this case V " ( t , z )  is a lower bound to the optimal value 
function V'( t ,  z). 

Q.E.D. 
Theorems which can lead to  the desi n of simpler suboptimal 

controllers based on the upper and lower Eounds to value functions 
can also be constructed. 

4 Stochastic Regulator Problem with In- 
finite Horizon 

The stochastic regulator problem *ith infinite horizon is defined 
as a control problem for nonlinear stochastic system (1) with the 
(infinite-time) terminal state manifold taken as zero state, i.e., 

x ( t )  - 0,  as t - 00 
and all state trajectories generated by admissible rontrols in R,, 
must be bounded uniformly in I x R". 

For the stochastic regulator probleni with infinite horizon, the 
performance index of the system is defined to be, 

J(u;to,xo) = E { l o m [ G ( t , z . )  t I 1 4 1 2 ] d t / ~ ( t ~ )  = ZO}, (3.5) 

and It6's zntegratzon formula applied to this case becomes, 

where V ( t , s )  satisfies I ' ( t ,O)  = 0 and (8) of Theorem 1 for all the 
possible state trajectories (which is true for all U E nu). 

All the theorems developed in the previous section are still 
valid for the stochastic regulator problem with infinite horizon, 
except that all the terminal conditions a t  t = T in those theo- 
rems are no longer required. However, in this case, theorems can 
be constructed which can lead t o  the iterative design of simpler 
suboptimal controls based only on the upper and lower bounds to  
value functions. Since in general the upper and lower bounds can 
he obtained without solving the partial differential equation (9) of 
Theorem 1,  those theorems have a great potential for application. 
Corresponding to Theorems 3 and 4, two of such theorems are 
given in the sequel. 

Theorem 7 Given admissible controls u1 and U* E R, with J l ( t ,  Z) 
and JZ(t ,  x )  be their corresponding value Junctions defined by (37), 
if there exist Junction pairs { V l ( t , z ) , s l ( t , z )  2 0) and (V2,sz 5 
0) satisfying (If) of Theorem 2 o fu l  and u2, respectively, then 

JI 2 5 2  (37) 

( 3 8 )  

when 

VI L + , " 1 7 7 l l l r  I L2, + H21nt7: 

Proof: Following the same procedure used in the proof for The- 
orem 3 ,  one can show that 

hence, 

Vl ( t ,  Z )  I \ ' i(t,  z), V ( t ,  Z) E I x R" 

which implies that 

Q.E.D. 
The next theorem is a counterpart of Theorem 4 and its proof 

can be rarried out by the same procedure used in Theorem 4 .  

Theorem 8 Assume that there exist a control u1 E 0, and a 
function pair {VI( t ,  z), s1 ( t ,  x) 2 0) satisfying (If) of Theorem 
2. I f  there exists a Junction pair { V 2 ( t , z ) , s z ( t , x )  5 0 }  satisfying 
the same condition of Theorem 2, of whrch the assocaated control 
u2 E R, has been selected to satisfy 

(39) 

then, 

J1 and J L  are the value functions oJ.1 and U J ,  respectively. 

5 Design of Suboptimal Controllers 
The optimal feedback control u * ( t , z )  and its associated V * ( t , x )  
satisfying the Hamilton-Jacobi-Bellman equation equation (6),  
obviously satisfy all the theorems developed in Section 3 .  How- 
ever, in most of cases of nonlinear stochastic control systems, the 
optimal solution IS very difficult, if not impossible, to implement 
either because the solution is unavailable or because some of the 
states are not available for measure. In both cases the theory 
developed in Section 3 may serve to  obtain controllers which can 
make the system stable, and then be successively modified to ap- 
proximate the optimal solution. Upper and lower bounds of the 
value function of the nonlinear stochastic system may be used to  
evaluate the effectiveness of the approximation. 

V ( t , x )  = - E { J - [ L , V +  V T ] d ~ / ~ ( t )  = x } ,  t E I (36)  
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5.1 Exact Design Procedure 
This approach, based on the assumption that the value function 
V ( t , z )  for a control u( t ,z)  can be found to  satisfy (9) and (10) of 
Theorem 1, may be implemented according to  Theorems 3-4 by 
the following procedure to  control system (1). 

1. Select a feedback control law uo(t,x) for system ( l ) ,  set 

2. Find a X ( t , z )  to  satisfy Theorem 1 for U ; .  

3. Obtain a u,+1(t,x) and a K + l ( t , x )  to  satisfy Theorem 1 ,  
and Theorems 3 or 4 for U, and K. uj+1 is an improved 
controller. 

4. From Theorem 6, find alower bound V L ( t , z )  to  the optimal 
value function V * ( t ,  I), and then use Vi+l- VL as a measure 
to  evaluate ui+l ( t ,  z) as an approximation to  the optimal 
control u*(t,  2). If acceptable, stop. 

5. If the approximation is not acceptable, repeat Step 2 by 
increasing index i by one and continue 

Ezample 1 (Linear stochastic systems): As the first example, 
the design procedure is applied to a linear stochastic system de- 
scribed by, 

i = 0. 

dx = A( t ) xd t  + B( t )ud t  + E(t)dw.  

The cost function of the system has the quadratic form, 

J = E{  [ x T M ( t ) x  + IlulJ2]dt + z (T)TQx(T) /s ( to)  = 20) loT 
The infinitesimal generator of the linear stochastic process is, 

L , V ( t , x )  = , t ~ [ E ( t ) ~ v , = E ( t ) ]  + V,T[A(t)  + E(~)u] 1 

Assume first a linear control, 

U 1 ( t , Z )  = -K1(t)x 

where K l ( t )  is a feedback matrix. The corresponding value func- 
tion is assumed to  be 

VI(t,.) = Pl(t) + xTP1(t)z, 

where pl and PI can be found by solving (9) and (10) of Theorem 
1, i.e., 

dP1 dt + ( A  - B A ' I ) ~ P I  + P T ( A  - B K I )  + M + KTKI = 0 ,  P l ( T )  = Q, 

and, 

Pl(t) = ~TtIIE(S)TP1(d)El)]d~ 

The feedback law can be improved by using Theorem ,5. From 
equation (24), 

1 
2 

u,(t,z) = --BT(t)V;-Iz = -BTP,-1(t)x = -h;.(t)z, 

K(t,z) = p ; ( t )  + zTP;( t )z ,  

2 2 2 

and the corresponding value function is still assumed to  be 

i 2 2 
where pi  and Pi are determined by solving 

dt t ( A  - BKiITPi i P T ( A  - B K , )  + M + K T K ;  = 0, Pi(T) = Q, 

and, 

dP; 

p i (  t )  = 6' IT[ E( s ) ~ P ~ (  s) E( s)]ds  

As i -+ 00, P;(t) approaches P ,  the solution of the matrix 
Riccati equation, i.e., 

dP 
dt - + ( A  - B K ) = P  + P T ( A  - B K )  + M + K T K  = 0, Ii = RTI' 

and correspondingly, the control approaches to, 

u ( t , x )  = - B T ( t ) P ( t ) z  = - K ( t ) z  

which is the optimal control for the linear stochastic systems with 
quadratic performance criterion [6]. 

Ezample 2 The second example illustrates the design method 
by the following nonlinear first-order stochastic system, 

dx = -xdt + udt + c d w ,  
2 

with a cost function, 

J ( u ;  to , xo )  = E{  [10z2 + x4 + ~ ~ ] d t / x ( t ~ )  = IO}. 1: 
The infinitesimal generator of the stochastic process becomes, 

5 2  
L , V ( t , x )  = ,v,, + (-2 + U)V, 

First assume a linear control law, 

q ( x )  = -ax, 

the corresponding value function is assumed to be, 

a > 0 

V l ( z )  = p1z2 + p2z4. 

Equation (9) of Theorem 1 leads to, 

7 5 
4 2 

[ I O  + a* - p1(2a + -)I.* + [ I  - p2(4a + 7)]z4 = o 

which is true for 

a > O  40 + 4a2 
PI = - 8 a + 7 '  p z = -  8 a + 5 '  

Next, select a higher order control law, 

u ~ ( z )  = -ax - bx3, b > 0 

the corresponding value function is assumed to  be, 

vZ(z) = qlzz + w4. 
To satisfy (9) in this case, it must have: 

which is true for 
16a + 14 675 

675 - 16a' 16 
40 + 4a2, q2 = - b = 4qz, 0 < a < - = 42.1875 91 = ~ 8 a + 7  

To satisfy Theorem 4, controllers u1 and 212 must satisfy 

IIW + ql+ + 2 ~ ~ 1 1  5 ib1 + P ~ Z  + 2 ~ ~ ~ ~ 1 1  
which yields 

Their corresponding value functions can be compared as, 
40 + 4a2 2 

V;(x) = -z2+ - 
8 a + 7  8a+Sz4'  

40 + 4aZ 
8a + 7 

16a + 14 
V;(z) = -x2+ - 675 - 16az4' 

32(4a2 + 7a - 40) z4 o. 
AV(z) = V Z ( Z )  - VI(.) = (Sa + 5)(675 - 16a) 

If Theorem 5 is to  be used for the above u1 and V I ,  u2 must 
be selected according to,  

VIZ u 2 ( z )  = -- = -plz - 2p2z3 ,  

v,(z) = q1x2 + q2x4, 

2 
and a Vz satisfying (9) of Theorem 1 exists if 
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a = 0.2723, pl = 4.3904. 
Comparing the values functions, one finds that 

VI(+) = 4 . 3 9 0 4 ~ ~  + 0.2786~*,  
V*(+) 1 2.78002’ t 0.139:3.r4. 

AV(T)  = C ; ( T )  - L ” ~ ( x )  = - ! .6IO4.T‘-  o.1:j9xr4. 

5.2 Approximate Design Procedure for Regulator 
Problems 

In many cases the selection of a V ( t . r )  to satisfy (9)  and (10) of 
Theorem 1 is a very difficult task. In such a case approximate 
design procedures, which use the upper and lower bounds of the 
value function obtained through Theorem 2 can be ronstructed. 
For the infinite time stochastir regulator problem, the following 
design procedure is proposed based on Theorems 7 and 8 i n  Sec- 
tion 4. 

1 .  Select a feedback control law u o ( f . r )  for system ( I ) ,  set 
i = 0. 

2. For a s,(t ,  I )  2 0 ,  find a V, ( t , r )  for U, to satisfy Theorem 2 
for a lower bound. 

3. Obtain a u;+l( t ,a ) ,  and for a s,+1 5 0 ,  find a kT;+i(t,z) 
for u,+1 to satisfy Theorem 2 for a upper bound. u ,+l( t ,+) ,  
si+], and v+l(t,+) found should also satisfy conditions (40) 
of Theorem 7 or (41) of Theorem 8 for the iniproveinent of 
performance. 

4. Using a lower bound to the optinial value function, which is 
determined according to Theorem 6, the approxiination of 
the optimal control can be measured. If arceptable, stop. 

5 .  If the approximation is not acreptable, repeat Step 2 by 
increasing index i by one and continue. 

Ezainple 3: The design method is illustrated with the following 
nonlinear first-order stochastic regulator problem, 

dx  = z3dt t udt + t d w ,  2 

with a value function, 

J ( ? L ; ~ , , , Q )  = E{  [ i o 2  t z4  t u2]dt /+( to)  = U). lorn 
The infinitesimal generator of the stochastic process is, 

52 
L V ( t , Z )  = -Vzz 4 t ( I 3  t U ) V z  

For a linear control law, 

211(2)  = -a1z, a1 > 0 

the lower bound to  its value function is assumed to he, 

Vl(5) = P I 2  t p2x4 

And application of (1 1) of Theorem 2 leads to, 

which is satisfied by 

For a higher order rontrol Iau. 

u z ( z )  = -u’r - b2x3. U L  > 0, b’ > 0. 

the upper bound to its value function I S  assumed to be, 

C’>(Z) = q l x J  + q2x“ 

And application of ( 1 1 )  yields in this case. 

which is true for 

40(1 t d i ) + 4 a :  ( 1  t d z ) b i  
391 = ~ 8 a l -  1 4 b l - 4  ’ 91 = 

where dl,d2 > 0 are arbitrary. 

satisfied, which leads to 
Improvement of performance A V  5 0 occurs if (40) or (41) is 

40(1 - ~ 1 )  + 4 ~ :  40( 1 t dl ) + 4a4 
8a, - 1 2 Q1 = 8az - 1 Pl = 

which, with the rest of the inequalities, produce acceptable values 
for al .  a2 and 62. For example, one can show that 

U I  = 10, 

is a set of the acceptable values. The lower and upper bonnds of 
the value functions i n  this case are found as, 

3 
a2 = - 

2 ,  b2 = 2. ~1 = cz = dl = dz = 0.1 

v,(z) = s . 5 1 ~ 0 1 ~  t 0 . 3 1 0 1 ~ ~ .  
C ’ ~ ( Z )  = 4.X182z2 + 0 . 0 6 8 8 ~ ~ .  

n v ( ~ )  = c ; ( ~ )  - v i (+ )  = - 0 . i o o ~ 2  - 0 . 2 3 1 3 ~ ~ .  

Note that in  this rase the actual value function of control u2 
rannot he found hv nsing the method applied in Example 2. 
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