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Abstract

Theoretical procedures are developed for comparing the perfor-
mance of arbitrarily selected admissible feedback controls amon,
themselves with that of the optimal solution of a nonlinear optim
stochastic control problem. Iterative design schemes are proposed
for successively improving the performance of a controller until a
satisfactory design is achieved. Specifically, the exact design pro-
cedure is based on the generalized Hamilton-Jacobi-Bellman equa-
tion for the value function of nonlinear stochastic systems, and the
approximate design procedure for nonlinear stochastic regulator
problem with infinite horizon is developed by using the upper and
lower bounds to the value functions. For a given controller, both
the upper and lower bounds to its value function can be obtained
by solving a partial differential inequality. In particular, the up-
per and lower bounds to the optimal value function, which may be
used as measure to evaluate the acceptability of suboptimal con-
trollers, can be constructed without actually knowing the optimal
controller.

1 Introduction

The problem of controlling a stochastic, dynamic system so that
its behavior is optimal with respect to a performance index has
received considerable attention over the past two decades. From
a practical point of view, it is often desirable to obtain a feed-
back solution to the optimal control problem. In situations of
linear stochastic systems with additive white Gaussian noise and
quadratic performance indices (LQG problems), the separation
principle is directly applicable, and the optimal control theory is
well established with a high level of maturity [6]. However, due to
the mathematical difficulties involved with stochastic processes,
only fragmentary results are available for the optimal control of
general especially, nonlinear, stochastic systems. While the opti-
mal control theory for deterministic systems is at a respectable
level of maturity, the corresponding theory for stochastic sys-
tems needs further developments for practical implementation and
meaningful applications.

The ob jective of this paper is to develop an approximation the-
ory that may be used to find some feasible, practical solutions to
the optimal control of nonlinear stochastic systems. To this end,
the problem of stochastic control is addressed from an inverse
point of view: given an arbitrary selected admissible feedback
control, how does it measure with respect to a given performance
index, to other feedback controls, and how can it be successively
improved to converge to the optimal ? This approach toward
optimal control has been widely studied for nonlinear determin-
istic systems [1, 4, 5], and appeared more promising than the
linearization type approximation methods which have met with
limited success for highly nonlinear systems {2, 3].

This paper presents theoretical procedures for developing sub-
optimal feedback controllers for stochastic nonlinear systems as an
extension of the Approximation Theory of Optimal Control devel-
oped by Saridis and Lee [4] for deterministic nonlinear systems.

2 Problem Formulation

For the purpose of obtaining explicit expressions, but without
loss of generality since the results are immediately generalizable,
consider a nonlinear stochastic control system described by the
following stochastic differential equation,

dz = f(t,z)dt + b(t, z)udt + g(t, z)dw, tel=[t,T] (1)
where £ € R™ is a vector of state of the stochastic system, u €
Q, C R™ is a control vector, Q, is a specified compact set of
admissible controls, and w € R* is a separable Wiener process.
f:IxR*— R* b:IxR*— R*™ and g:Ix R* — R"* are
measurable system functions. It is assumed that feedback control
u(t, z) of §, satisfies the following conditions, i) Linear Growth
Condition:
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If(2,2) + b(t. 2 )u(t, 2)|| + Jlg(t, )| < a(l +{l=(])
ii) Unifdrm Lipschitz Condition:
I(f = bu)(t, ) = (F = bu)(&, p)ll + llg(t: =) — 92, w)l| < allz — o]

where (t,z),(t,y) € I x R*, || - || is Euclid normal operator, and
a is some constant. L
For a given initial state z(fp)=zo (deterministic) and feedback

control u(t,z), the performance index of the system (1) is defined
as,

T
J(uito,a0) = B{ [ [G +[[ulPldt + T, 2(T))/e(t0) = 20} (2)

with G : I x R* — R' and h : [ x R®* — R! as non-negative
functions. J is also called the value function of the system (1).

The infinitesimal generator of the stochastic process specified
by (1) is defined to be,

Lo E%tr[yT(t,a:)¢,,y(t,a:)]+¢Z[f(t,z)+b(t,z)u] 3)

where ¢ : I x R® — R! has compact support and is continu-
ous upon to all its second order derivatives, and (-)7 and tr(-)

are transpose and trace operators, respectively. The differential
operators are defined as,

20 . _%0 _20
0= 0n=34

The pre-Hamiltonian function of the system with respect to
the given performance index (4) and a control law u(t, z) is defined
as,

Oc= 20

H(z, be, Brzr u,t) = Gt 2) + ||ul + Lud (4)

The optimal control of stochastic systems now can be stated
as the following:
Optimal Stochastic Control Problem: For a given
initial condition (%o, o) € I x R™, and the performance
index (4), find u* € Q, such that

V*(to, zo) = J(u*;to, z0) = 1;1[{ J(u;to, o)

(5)

If it is assumed that the optimal control law, u*(z,t), exists
and if the corresponding value function, V*(z,t), is sufficiently
smooth, then «* and V* may be found by solving the well-known
Hamilton-Jacobi-Bellman equation,

V7 4+ min{Ly.V* + G(t,2) + ||u"|*} = 0,

V[T7 x(T)] = h[T7 .'L'(T)] (6)
Unfortunately, except in the case of linear quadratic Gaussian
controls, where the problem has been well solved [6], a closed-
loop form solution of the Hamilton-Jacobi-Bellman for solving the
optimal stochastic control problem cannot be obtained in general
when the system of (1) is nonlinear.

Therefore, one may instead consider the optimal control prob-
lem relaxed to that of finding an admissible feedback control law,
u(z, t), that has an acceptable (not necessarily optimal) value func-
tion. This gives rise to a suboptimal stochastic control problem
that could conceivably be solved with less difficulty than the orig-
inal optimal stochastic control problem. The exact conditions for
acceptability of a given value function are, of course, to be deter-
mined from practical considerations for the specific problem.
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3 An Approximation Theory of Optimal
Stochastic Control

This section contains the main results of the approximation theory
for the solution of nonlinear stochastic control problems. Two
theorems, one for the evaluation of performance of control laws
and the other for the construction of lower and upper bounds of
value functions, are established first. Then theoretical procedures
which can lead to the iterative design of suboptimal controls are
developed based on those two theorems.

Theorem 1 Assume V : [ x R* — R' be an arbitrary function

with continuous V', V;, Vi, and V., and satisfy the condition:

IVIL+ DVall + il Valt + T2l Vaelh < 600+ (1) M

where b is a suitable constant. Then the necessary and sufficient
conditions for V(t,z) to be the value function of an admissible
fized feedback control law u(t,z) € Q,, i.e.,

Vi) = B[ [60) )+ (D20 = 2}, (9

Vi+ L,V +Glt.x) + 1|u“2
VT, 2(T)] = (T, z(T)]

9)
(10)

Proof: From (7), it follows from /t6’s integration formula that,
V(t,z) = E{V[T.2(T)] -
/tT[LHV(T,x(r))Jr Ve(r,2(r)dr/=(t) =z}t € [
Therefore,
J(u;t,z) = V(t,2) = E{h{T,2(T)] - V[T, 2(T)] +
/tT[ﬁuV(ﬂ #(1)) + Vo7, 2(r)) + G(r,z) +
ffulr, z)||*)dr/2(t) = 2}t € 1

the sufficient condition can be seen from the above equation im-
mediately.

For necessary condition, assume V(¢,x) = J{u;t,z). Then
from above equation, for t = T,

VIT,z(T)] = h[T,x(T)]

Therefore,

B[ 16V (r5(r) + Vet a(r) +
G(r,z)+ lu(r,2)||*ldr /z(t) = 2} = 0
has to be true for all (¢,z) € I X R™, hence,
Vit LoV +G(t,a) + |[ul* = 0

which proves the necessary condition.
Q.E.D.
Since it is generally difficult to find the exact value functions
satisfying (9) and (10) of Theorem 1, the following theorem in-
troduces a method of constructing the lower and upper bounds
of value functions. This method can be used for the design of
simpler suboptimal controllers based only on the upper bounds
to value functions.

Theorem 2 (Lower and upper bounds of value function)
For an admissible fixed feedback control law u(t,z) € Q, and
a continuous function s(t,z) with |s{t,z)| < oo for all (t,z) €
I x R™. If function V(t,z) satisfies (7) with continuous V, V,,
Vi, and Vyy, and

s(t,z) < 0(> s(t,z) > 0){11)

Vit L,V + G(t,z) + ||[ul)* = VV
2 h[T,2(T)] (< AT, 2(T)])(12)

<
V[T, z(T)] > h

then V(t,z) is an upper (or a lower) bound to the value function
of system (1). That is,
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Vit.z) > J(uit.z) (< J(ust,x)), Y(t,z)e I x R* (13)

Proof: By the similar procedure used in the proof of Theorem 1,
it can be shown that

J(u;t,z) = V(t,z) = E{R[T,2(T)] - V[T, z(T)] +

J T 271 4 Vot 200) 4 G2 4t )Pl ) = )
E{h[T,J?(T)] - V[T, z(T)] + /;T VV(r,z(r))dr/z(t) = z}
Therefore, from equations (11)-(12), it follows that,
J(uit,z) - Vit,z) < (Z)E{/;TVV(T,:E(T))dT/:(t) =z}
SB[ s/ =2 <0 (20)

for all (t,z) € I x R, which completes the proof.
Q.E.D.
Having established the two theorems for the evaluation of per-
formance of a given feedback control law, now it is necessary to
develop algorithms to improve the control law. In the followings
Theorems 3-5 provide a theoretical procedure for designing the
suboptimal feedback controllers based on the Theorem 1, while
Theorem 6 presents a result for constructing upper and lower
bounds to the optimal value function, which can be used to eval-
uate the acceptability of suboptimal controllers.

Theorem 3 Given admissible controls uw; € Q, and uy € Q,,
with Vi(t,z) and Va(t, z) be the corresponding functions satisfying

(7) and (8) for uy and uy, respectively, define the Hamiltonian
Sfunctions for i = 1 and 2:

Himen = H(2, Vi, Views 05, 1) = Gt 0) + i [ + L Vi (14)
where
. 1
w(tz) = =57 (1 2)Vielt,2) (15)
It can be shown that
Vi> 1 (16)
when
Vit + Himin < Var + Homin (17)
Proof: Let

AV =V = Vi, AV, = Vo = Vi, AV = Vg = Vi, AV = Vo = Vi
then,

, —_ 1
Var + Hanun = Vie + AV + Gt z) + Etr[gT(t,z)Vlug(t, )]+

1 . )
Etr[y (t,2)AVeeg(t, )] +

V() + AVI F(t,2) = MV - JI8TAVLP - GVBT AV,
= Vi + Hipmin — %lleAVrn" + AV + %lr[gT(i.r)AVmg(t,z)] N
AV f(t,2) - AV,Tb(%bTVh)
= Vit + Himin — %lIbTAVrlI’ AV + LAV

Therefore,
AV + Ly AV = (Voo Hamin) = (Vie+ Himin) + %HbTAVzllz(lB)

which implies, from the assumption (18), that,
AVy+ LAV 20

In addition, from (10) of Theorem 1,
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AV(T,z) = Vo(T,x) - Vi(T, ) = 0

However, applying Ité’s integration formula to AV (t,z) along the
trajectory generated by control uj, it follows that,

AV = —E{ ftT[AVAr,z(T)) + Lus AV (7, 2(r))]dr/a(t) = 2} <O

Hence,

Vg(t,l) < Vl(t,z), V(t,z) el xR"
Q.E.D.
A combination of Theorems 1 and 3, in which case a'V(t,z)
represents the value function of the system (1) when driven by
control u(t, ), yields an inequality as a basis of suboptimal control
algorithms, to iteratively reduce the value of the performance of
the system. This is summarized in the following theorem.

Theorem 4 Assume that there ezist a control u; € Q, and a
corresponding function V1(t,z) satisfying (7) and (8) of Theprem
1. If there ezists a function Va(t, z) satisfying the same conditions
of Theorem 1, of which the associated control uy € U, has been
selected to satisfy

1
lug + 67Vl < flus + 567 Vasl) (19)
2 2

then,
izwva (20)

Proof: Since control u; and the corresponding value function V;
must satisfy (9) and (10), according to Theorem 1, it follows that
for every (t,z) € I x R",

1
Vi + G(t,2) + ViE(S + bua) + 5tr(g” Vizag) + lwall? =0

This can be rewritten as,

1
Vit + Himin + [lu1 + §bTVI=HZ =0,

that is,

Vic+ Hugmin =~ + 7 Vil @)
Similarly, one can find,

Vae+ Hamie =~ + 367 Vacl? (22

Since
1.7 L7
|Iu2 + Eb VZ:" < "ul + Eb Vlw”v

it follows from equations (22) and (23) that,
Vat + Hamin 2 Vit + Himin
Hence, according to Theorem 2,

Va(t,z) < Viltie),  W(t,x) € Ix R

which proves the theorem.

Based on Theorems 3 and 4, the following theorem establishes
a sequence of feedback controls which are successively improved
and converge to the optimal feedback control.

Theorem 5 Let a sequence of pairs {u;,V;} satisfy (7)-(8) of
Theorem 1, and u; be obtained by minimizing the pre- Hamiltonian
Junction corresponding to the previous vaelue function V;_,, thai
is,

w= = Vi, i=1,2,.. (23)

then the corresponding value functions V; satisfy the inequality,

Vi 2 Vi, i=12,.. (24)

1858

Thus by selecting the pairs {u;,V;} in the above manner sequen-
tially. the resulting sequence {u;} converges to the optimal control
u*, and the corresponding sequence {V;} converges monotonically
to the optimal value function V* associated with u*.

Proof: Since control u; of (24) and the corresponding value func-

tion V; satisfy (9) and (10) of Theorem 1, it follows from (22) of
Theorem 4 that,

Vit + Himin

1
Ml + 567 Viel?

SN

where AV; = V; - V;_;.
Therefore, application of (19) of Theorem 2 leads to,

AVie+ Loy AV = (Vie + Himin) — Vit + Hicimin]) +
FIAVESI = ~ZIAVIb + LIAVE b7 +
SIAVEbE = LavZ, b2 2 0
From (10),
AVi(T,2) = Vi(T,z) - Vio(T, 2} = 0,
hence, Ité’s integration formula applied to AV; along the trajec-

tory generated by u¥_, leads to the inequality,

AV

T
—E{ft [AVi, + Ly AVildr/z(t) = 2} <0
that is,

Viaa 2 V;

which proves (25).

To show the convergence of the sequence, note that {V;} is a
non-negative and monotonically decreasing sequence and satisfies
(7), therefore, the following limits exist,

111210 Vi(t,z) = V°(t,z), and (25)
11_1'120 Vie(t,z) = V2(t,2) (26)

for all ¢t and z, where V° is the limit of value functions.
The corresponding limit of control sequence {u;} can be iden-
tified from (24) as,

o . . 1
w(tz) = lim w = lim (~567Viors) = (5 7V2)(t,2)

(27)

Clearly, v° and V° thus obtained still satisfy (9) and (10)
of Theorem 1. However, from the construction of control se-
quence {u;}, 4° minimizes the pre-Hamiltonian function associ-
ated with the value function V°. In other words, u° and V° satisfy
the Hamilton-Jacobi-Bellman equation for the optimal control of
stochastic system (1),

Vet min{Ly0 + G(t,2) + [|u]|?} = 0 (28)

Hence,

w(t,z) = u*(t,2), V°(t,z)=V*(t,z),¥(t,z) € I x R (29)
are the optimal control and the optimal value function of the
stochastic control problem (5).

Q.E.D.

Finally, the following theorem presents a method for the con-
struction of an upper (or a lower) bound of the optimal value
function V*(¢,z). Since the optimal value function itself is ex-
tremely difficult to be found, its upper (or lower) bounds there-

fore can provide a practical measure to evaluate the effectiveness
of suboptimal controllers.
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Theorem 6 Assume that there erists a function V°(t,r) satis-
fying the condition (7) of Theorem I, for which the associated
control

ut = —%bTV;(t,z) (30)

is an admissible one. Then V*(t,z) is an upper (or a lower) bound
to the optimal value function V*(t,z) of system (1) if it satisfies
the following conditions,

VP 4 LoV + Gt z) + ||e°]* = s(t,z) <0 (>0) (31)
VT, 2(T)] > &[T, 2(T)] (< MT,2(T)]) (32)

where s(t, ) ts continuous and |s| < oo, for all (t,z).
Proof: From Theorem 5 and the Hamilton-Jacobi-Bellman equa-

tion, it is obviously that for the optimal control and the optimal
value function,

Vit Mo = V7 + Gl )+ [0 + LoV =0, (33)
and similarly, for «® and V*,
Ve Mo = VS 4+ Gt 2) + [ + Lo V? = s(t2)
(34)

For s(t.z) < 0, subtraction of (35) from (36) leads to,
1 .
AV, + LAV = —s(t,z) + Zua%v;n"' >0

where AV = V*(t,z) — V*(¢,z). From assumption {34),

AVIT,2(T)] = V* = V* = BT, o(T)] - V[T, 2(T)] < 0
Therefore, application of [t6’s integration formula to AV (t,z)
along the trajectory generated by control u® obtains,

AV(t,z) < —E{/T[AVT + Lo AVdr/z(t) = 2} <0
t

So V3(t,z) is an upper bound to the optimal value function V*(t,z;
For s(t,z) > 0, subtraction of {36) from {353) leads to,

1 .
AV + LAV = s(tor)+ <[IBTAVA* 2 0

where AV = V*(t,z) — V*(t,z). In the same way, one can show
by using condition (34) and [té’s integration formula that,

AV(t,z) < —E{/T[Av, + Lo AV]dr/z(t) = 2} < 0
t

So in this case V*(t,z) is a lower bound to the optimal value
function V*(t,z).
Q.E.D.
Theorems which can lead to the design of simpler suboptimal
controllers based on the upper and lower Eounds to value functions
can also be constructed.

4 Stochastic Regulator Problem with In-
finite Horizon

The stochastic regulator problem with infinite horizon is defined
as a control problem for nonlinear stochastic system (1) with the
(infinite-time) terminal state manifold taken as zero state, i.e.,

z(t) — 0, ast — oo
and all state trajectories generated by admissible controls in Q,
must be bounded uniformly in [ x R™.

For the stochastic regulator problem with infinite horizon, the
performance index of the system is defined to be,

Juitorzo) = E{ [ (G(2) + [ulPdt/alto) = 20} (35)
0
and [té’s integration formula applied to this case becomes,
Vit,z) =

—E{-/!w[CuV+V,]dr/z(t):1}, tel  (36)
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where V (¢, r) satisfies V'(¢,0) = 0 and () of Theorem 1 for all the
possible state trajectories (which is true for all u € Q).

All the theorems developed in the previous section are still
valid for the stochastic regulator problem with infinite horizon,
except that all the terminal conditions at ¢t = T in those theo-
rems are no longer required. However, in this case, theorems can
be constructed which can lead to the iterative design of simpler
suboptimal controls based only on the upper and lower bounds to
value functions. Since in general the upper and lower bounds can
be obtained without solving the partial differential equation (9) of
Theorem 1, those theorems have a great potential for application.
Corresponding to Theorems 3 and 4, two of such theorems are
given in the sequel.

Theorem 7 Given admissible controls uy and ug € Q,, with J1(t, z)
and Jo(t,z) be their corresponding value functions defined by (37),
if there ezist function pairs {Vi(t,z),s1(¢,z) > 0} and {Va,s; <
0} satisfying (11) of Theorem 2 of uy and uy, respectively, then

S 2 (37)
when

Viet+ Hymm <

Var + Hamane (38)
Proof: Following the same procedure used in the proof for The-
orem 3, one can show that

. 1
AVi+ Ly AV = (Vae + Hamin) =~ (Vie + Himin) + 7167V > 0
where AV =V, — V;. Thus It6’s integration formula (38) yields,
50
AV(t,z) = —E{j AV, + EH;AV]dT/x(t] =z} <0,
t

hence,

Va(t,z) < W(t, z), V(t,z) € I x R*

which implies that

Ja(t.z) < Vo(t,z) < Vit z) < Jq(t, 2).

Q.E.D.
The next theorem is a counterpart of Theorem 4 and its proof
can be carried out by the same procedure used in Theorem 4.

Theorem 8 Assume that there ezist a control uy € Q, and a
function pair {Vi(t,z),(t,z) > 0} satisfying (11) of Theorem
2. {f there exists a function pair {Va(t,z),s2(t,z) < 0} satisfying
the same condition of Theorem 2, of which the associated control
uy € 1y, has been selected to satisfy

1 1
fluz + §bTV2z|| <flu+ EbTVnH (39)

then,

S22 (40)

Jy and J, are the value functions of i and u,, respectively.

5 Design of Suboptimal Controllers

The optimal feedback control u*(¢,z) and its associated V*(t,z)
satisfying the Hamilton-Jacobi-Bellman equation equation (6),
obviously satisfy all the theorems developed in Section 3. How-
ever, in most of cases of nonlinear stochastic control systems, the
optimal solution is very difficult, if not impossible, to implement
either because the solution is unavailable or because some of the
states are not available for measure. In both cases the theory
developed in Section 3 may serve to obtain controllers which can
make the system stable, and then be successively modified to ap-
proximate the optimal solution. Upper and lower bounds of the
value function of the nonlinear stochastic system may be used to
evaluate the effectiveness of the approximation.
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5.1 Exact Design Procedure

This approach, based on the assumption that the value function
V(t,z) for a control u(t, z) can be found to satisfy (9) and (10) of
Theorem 1, may be implemented according to Theorems 3-4 by
the following procedure to control system (1).

1. Select a feedback control law ug(t,z) for system (1), set
i=0.

2. Find a V;(¢, 2) to satisfy Theorem 1 for u;.

3. Obtain a ui41(t,z) and a Viya(8,2) to satisfy Theorem 1,
and Theorems 3 or 4 for u; and V;. u;4; is an improved
controller.

4. From Theorem 6, find a lower bound Vi (¢, z) to the optimal
value function V*(¢,z), and then use V;4; — V}, as a measure
to evaluate u;41(¢,x) as an approximation to the optimal
control u*(t,z). If acceptable, stop.

5. If the approximation is not acceptable, repeat Step 2 by
increasing index 7 by one and continue

Ezample 1 (Linear stochastic systems): As the first example,
the design procedure is applied to a linear stochastic system de-
scribed by,

de = A(t)zdt + B(t)udt + E(t)dw.

The cost function of the system has the quadratic form,
7= B[ (7 M)z + [Pt + =(77 Q(T) 2(10) = 20}
The infinitesimal generator of the linear stochastic process is,
LuV(t,2) = Sl B@ Ve B(O)] + VIIA() + B0

Assume first a linear control,

’U.](t, fC) = —K’l(t)m

where K(1) is a feedback matrix. The corresponding value func-
tion is assumed to be

Vi(t, ) = pi(t) + 27 Pi(1)s,

where p; and Py can be found by solving (9) and (10) of Theorem
1, te.,

dp
and,

T
pl(t)=[ tr[E(s)T Py (s)E(s))ds

The feedback law can be improved by using Theorem 5. From
equation (24),

1
w(t, z) = —iBT(t)V‘_lz =-BTP_i(t)a = -Ki(t)s, i>2
and the corresponding value function is still assumed to be

Vi(t,z) = pi(t) + 2T Pi(t)z, 22

where p; and P; are determined by solving

dp; )
— + (A~ BE) P+ PT(A- BK) + M + KT K, =0, P(T) = Q,

and,
T
pilt) = /t tr[E(s)T Py(s) E(s))ds

As ¢ — oo, P(t) approaches P, the solution of the matrix
Riccati equation, i.e.,

dpP
(A= BE)"P+ PT(A-BK)+ M + KTK =0,k = BTp

- 4= BE\) P, + PT(A- BK1)+ M + KT K, = 0, P(T) = Q,

and correspondingly, the control approaches to,
u(t,z) = —BT(t)P(t)z = —K(t)z
which is the optimal control for the linear stochastic systems with
quadratic performance criterion [6].
Ezample 2: The second example illustrates the design method
by the following nonlinear first-order stochastic system,
dz = —zdt + udt + %dw,
with a cost function,
00
J(u;to, zp) = E{/ [10z% + z* + w?]dt/2(to) = zc}-
to
The infinitesimal generator of the stochastic process becomes,
22
L,V(t,z)= TVM +(—z+u)V,
First assume a linear control law,
ui(z) = —az, a>0
the corresponding value function is assumed to be,
Vi(z) = p12° + paz.

Equation (9) of Theorem 1 leads to,

(10 4 a? - py(2a + %)]m2 +{1 - palda + g)]x“ -0

which is true for

40 + 4a2 2
8at+7' 1?7 Bats

Next, select a higher order control law,

n= a>0

u(z) = —az — bz, > 0
the corresponding value function is assumed to be,

Va(z) = qlzz + q2:c4.
To satisfy (9) in this case, it must have:
7
[10+a2—q1(2a+Z)]zz+[l+2ab—2bq1 (41)
5

—q(4a+ '2')]1'74 + (b — 4bgy)2® = 0

which is true for

40 4 4a? 16a + 14 675
- b=4g,0< a< —— = 42.1875
Sat7 T e 160 TS T6

To satisfy Theorem 4, controllers u; and u; must satisfy

Q=

luz + @1z + 2022%|) < llu1 + P12 + 2p2a®||
which yields

= 2.4061

0<ag___*/68:—7

Their corresponding value functions can be compared as,

40 + 4a? o2 2 24
8a+7 8a+5"
40+4a® , 16at14 ,
8a+7 675 — 162" ’
32(4a® + Ta — 40)
AV(z) = Viy(z)-Wi(z)= ———__(Sa T5)(675= 16a)z > 0.

If Theorem 5 is to be used for the above u; and V7, uz must
be selected according to,

W(z) =

Va(z)

V;
uz(z) = —-%i = —piz — 2ppa°,

and a V; satisfying (9) of Theorem 1 exists if
2

Vo(z) = quz° + qlzda
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40 + 4p?
=2 7800, g it t
"= e T 2= 575~ 16m

a = 02723, P = 4.3904.
Comparing the values functions, one finds that
Vi(z) = 4.3904z% + 0.2786z",
Vy(z) = 2.7800z% + 0.1393z",
AV(zr) = Wylz) - Vi(z) = - 1.6104z% = 0.1393.%

T6py + 14
Pt 1393,

5.2 Approximate Design Procedure for Regulator
Problems

In many cases the selection of a V'(t,z) to satisfy (9) and (10) of
Theorem 1 is a very difficult task. In such a case approximate
design procedures, which use the upper and lower bounds of the
value function obtained through Theorem 2 can be constructed.
For the infinite time stochastic regulator problem, the following
d_esigil procedure is proposed based on Theorems 7 and 8 in Sec-
tion 4.

1. Select a feedback control law wug(f,z) for system (1), set
1=0.

2. For a s;(t,z) > 0, find a Vj(t, ) for u; to satisfy Theorem 2
for a lower bound.

3. Obtain a u41(¢,z), and for a s;41 < 0, find a Vig(t.z)
for w4, to satisfy Theorem 2 for a upper bound. w4 (t,2),
$it1, and Viy (¢, z) found should also satisfy conditions (40)
of Theorem 7 or (41) of Theorem 8 for the improvement of
performance.

4. Using a lower bound to the optimal value function, which is
determined according to Theorem 6, the approximation of
the optimal control can be measured. If acceptable, stop.

5. If the approximation is not acceptable, repeat Step 2 by
increasing index ¢ by one and continue.

Ezample 3: The design method is illustrated with the following
nonlinear first-order stochastic regulator problem,

de = z°dt + udt + -;idw,
with a value function,
00 E
J(u;to, zo) = E{/ [1022 4 z* + u?]dt/z(to) = 0}
to
The infinitesimal generator of the stochastic process is,
; a? 3
L V(t,z)= TVH + (27 + u)Vy
For a linear control law,
ui(z) = —ayz, a; >0
the lower bound to its value function is assumed to be,
Vi(z) = pra? + pa®.
And application of (11) of Theorem 2 leads to,
1
[10 + a? - p1(2a; - Z)]an2 +[1+

3
21 = paldan = )lat 4 4pae® 2 0,

which is satisfied by

_ 40(1 — ¢q) +4a¥

_2(0-e) +4p 3
mn= 8a; — 1 »P2 =

Bai—3 7R

for any 1 > ¢1,¢2 > 0.
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For a higher order control law,

up(z) = —ayr — by®, a; >0, b >0,
the upper bound to its value function is assumed to be,
Vy(z) = qie® + gzt

And application of (11) yields in this case,
. 1.
[10+ a} - qi(2as - Z)]IZ +{1+2q1 - 2(q1 —
3 p
a2)bz ~ ga(daz = )l + [b) = dgz(b — 1)]a® <0,

which is true for

g ) s dap (14 o)t}
b 8az — 1 T T, T

3 3
1+ 2q1 ~ 2(q1 — a2)bs — q2(4ay — 5) <0,a; > gybz > 1

where dy,ds > 0 are arbitrary.
Improvement of performance AV < 0 occurs if (40) or (41) is
satisfied, which leads to

1:40(1—c1)+4a'{" _40(1+d1)+4a%

8aq — 1 = 4= 8a; — 1

2l —eg)+ 4 1 2
pp= Aoctdn (L d)b
8a; — 3 4by — 4

which, with the rest of the inequalities, produce acceptable values
for ay, az and by. For example, one can show that

3
61210, ﬂg:E, b2=2. 01=C2:d1:d2:(].1

is a set of the acceptable values. The lower and upper bounds of
the value functions in this case are found as,

Vi(z) = 5.5190z% 4+ 0.3101z*,
Vi(z) = 4.81822% + 0.06882%,
AV(x) Viy(z) - Vi(z) = ~0.7008z% — 0.2413z*.

Note that in this case the actual value function of control u,
cannot be found by using the method applied in Example 2.
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