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A Heuristic  Approach  to  Reinforcement 
Learning  Control Systems 

Absfract-This paper  describes  a  learning  control  system  using 
a  reinforcement  technique.  The  controller is capable of controlling  a 
plant that  may  be  nonlinear  and  nonstationary.  The  only  a  priori in- 
formation  required  by the controller is the  order of the plant. The ap- 
proach  is  to  design a controller  which  partitions the control  measure- 
ment  space  into  sets  called  controI  situations  and  then  learns  the 
best control  choice  for  each  control  situation.  The  control  measure- 
ments  are  those  indicating  the  state of the plant and environment. 
The  learning  is  accomplished by reinforcement of the probability of 
choosing  a  particular  control  choice for a given  control  situation. The 
system  was  stimulated on an IJ3M 1710-GEDA hybrid  computer 
facility. Experimental  results  obtained  from  the  simulation  are  pre- 
sented. 

I 
I. ISTRODUCTION 

N RECENT \-EARS, the  application of learning  to 
automatic  control  systems  has  become  an  impor- 
tant  area of research [1]-[SI. The  system  described 

in this  paper is a  learning  control  system in the  sense 
that  i t  is capable of developing  and  improving a control 
law  in the  case  where  there  is  very  little a priori  in- 
formation  about  the  plant  and  environment  available. 
I t   has  a greater  capability  than a conventional  adaptive 
s>-stem  due  to  the  fact  that  it recognizes  similar  recur- 
ring  situations  and  uses  and  improves  the  best  previ- 
ously  obtained  control  lan- for this  control  situation.  In 
addition,  the  identification of the  plant  characteristics is 
not  required. 

Consider  a  plant  which  is  disturbed by the  environ- 
ment  and  obeys  a  differential  equation of the  form 

where 

X=(x1,  . . . , x,&) is the  state  vector defined in state 
space Qz, 

Z L  =is the  control  signal  here  called  the  “control 
choice,” 

V =  ( P ~ ,  . . . , v,) is  the  environment  vector  defined 
in space Q u ,  and 
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N = ( n l ,  . . . , n,) is the  output  disturbance  vector 
including  output  measurement  noise,  defined  in 
space CL. 

The index of performance of the s)-stem  is of the  form 
n 

IP = .(I Xl(.T) I )“ (2) 
7=1 

where “a” is  a  constant  selected  by  the  designer. The  
block  diagram of the  system  is  shon-n  in  Fig. 1. The 
environment  vector  is  obtained  from  the  measurements 
of the  environmental  parameters  which  affect  the  plant 
dynamics.  Thus  the  complete  state of the  plant  at   any 
particular  instant can be specified by a measurement 
vector M =  (XI, . . , x,, 01, . . , zlm) in  space Q.v. 
zlcQu, xhere Q ,  is a set  with  a  finite  number of admis- 
sible  control  signals. I t  is assumed that N is  insignificant 
( i \N: ;  <e)  during  most of the  operating  time.  The  occur- 
rence of any  significant  disturbance n-ill cause  a  signal 
N’ to  be  detected  by  the  controller. I) is  an  unknown 
function  which  may  be  nonlinear. -1 measurement  vec- 
tor M is obtained  and a nevi control  choice u is deter- 
mined  every T seconds. T ,  the  sampling  period,  must  be 
long  enough to  allow for  a  significant  change in X for 
a  typical 1 4 .  The  value of T may  be  preset (if the  approxi- 
mate  system  response  time  is  knon-n) or learned by a 
trial  and error procedure. 

The controller  learns  to  drive  the  state  vector X from 
an>-  set of initial  conditions  to  the  vicinity of the  origin 
in the  state  space in a may  which  approaches  the  opti- 
mum as defined  by  the  sl-stem IP.  The  learning  is  ac- 
conlplished  by  establishing a stimulus-response  type 
relationship  or  mapping  between  elements of the  space 

$ 4 % - ] 4 +  
Environrnenl 

T x 
Fig. 1. Simplified  block  diagram  for  sJ-stem. 
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931 and  elements of the  space Q,. The first  step  is  to 
partition  the  space Q.I~ into classes  or  sets  called  control 
situations.  The  best  control  choice  from  the  set Qu is 
considered  the  same  for  all  members  in  one  class  or  one 
control  situation.  The  next  step  is  to  determine which 
control  choice  is  the  best  for  each  control  situation.  This 
is  done  through a reinforcement  procedure  which will be 
described  in  detail  later. 

I I. SANPLE SET CONSTRUCTION 
The  partitioning of the  measurement  space Q.t{ into 

sets  called  control  situations will be  discussed  in  this 
section.  First  consider  the  partitioning of the  state 
space a,, assuming no environmental  effects (V=O). 
This  space is partitioned  by  the  establishment of hyper- 
spherical  sets SI‘ as  the  measurements  are  made.  Let 
Si‘ be the  “set  vector”  locating  the  center of the  ith  set 
which has  been  established in the  state  space.  Initially 
there  are  no  sets.  Let SI’ =XI, the  first  measured  state 
vector,  then 

where 

X,* k, 
SWITCHING BOUNDARY t 

and D is a prespecified distance. If 

This process  is  continued  until  the  entire  space  in  which 
actual  state  vector  measurements  occur,  denoted  by 
a i ,  is  covered  with  overlapping  sets.  (This  process is 
similar  to  that  described  by  Sebestyen in the  recognition 
of speakers [9].) If a measured Xi falls  within  distance 
D of two  or  more  set  vectors  it is considered  a  member 
of the closest  set.  This  scheme  does  not  waste  memory 
by  establishing  sets in regions  where  measurements 
never  occur.  This  is  a  significant  advantage  o~7er a pre- 
gridded  type  partitioning  especially if the  space Qz is 
significantly  greater  than  the  space Qi. A typical  exam- 
ple of the  set  construction  for a second-order  system 
with  two  control  choices is shown  in  Fig. 2. The  set 
radius D was  made  large so that  a relatively  small  num- 
ber of sets would  cover the  space 9:. Due  to  this  large 
radius  (and,  therefore,  large  quantization),  the  resulting 
switching  boundary  bet\-een two control  choices will 
be  a  crude  approximation  to  the  optimum  one. 

In  order  to  improve  the  effective  quantization  in  the 
measurement  space,  subsets  are  established in the  sets 
that  lie on the  switching  boundary.  The  subsets  with 
radius D’<D are  established in the  same  way  and  with 

Fig. 2. Distribution of sets and subsets in the measurement  space. 
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the  same  characteristics  as  the  primary  sets.  This  gives 
the  system  the  advantage of fine  quantization  near  the 
switching  boundary  where i t  is  needed u-ithout  the ex- 
cessive memory  requirements of fine quantization  for 
the  entire  space.  The  range of each  parameter viEV is 
quantized  into a number of discrete  levels qi .  The  quan- 
tization  levels  need  not  be  uniform.  They  map  be  either 
preassigned or self-adjusted so as to  maintain  a  balance 
between the  frequency of occurrence of measurements 
in each  quantization level and  the  similarity of switch- 
ing  boundaries. Thus  a specific measurement MJ is con- 
sidered  a  member of the  set SI if XJESI’ and VJ fall in 
quantization  levels Q I  = { q t ,  . . . , q m l }  lvhere 4.’ are 
the specific quantization  levels  for  the  parameters z’i in 
set SI. If the  set Si has  no  subsets, all the  members of Si 
constitute  a  control  situation. 

I I I .  REINFORCEMEXT SCHEME 
Once the  sample  sets  (control  situations)  are  estab- 

lished it is  necessary to  determine which control choice 
from  the  class Q u  is the  best  for  each  control  situation. 
The  system IP tha t  is usually  given is of integral  form 
where  the  integration  is  over  a  number of sampling 
periods. In  this case i t  is difficult to  determine which of 
the series of control  choices  is  most  responsible  for an 
improvement  in  performance. A similar  problem  n-as a t  
least  partialls-  solved  b>-  Samuel [IO] in his  checker pia>-- 
ing  machine  through  the  establishment of subgoals 
which are  related  to  the  main goal. -4 similar  approach 
\\-as  used here. 

The  subgoal \vas to  choose zr(uT) so as  to maxi- 
mize 

- 
A(Y + IT) 

IPS(7T) - IPS(r  + IT) - htt?(rT) 

max of [ I P S ( ~  + IT), I P S ( ~ T ) ]  + ~(za,)? 

x 2 0. (5) 

- - 

IPS(uT) is  defined as 

IPS(rT)  = X‘(rT)GX(rT)  (6)  

\-,-here G is a positive  definite  diagonal  matrix  with ele- 
ments (gll, . . . , grin). In ( S ) ,  X is a  cost of control 
weighting  term  and zl,, equals  the  maximum  value of 

,Although the selection of the  subgoal is rather  heu- 
ristic  it is  felt  the  selected  form  is  a  reasonable choice. 
The  system \vas able  to select the  best  one  from  a  set of 
possible subgoals  through a trial process. Of the  various 
subgoals  that were tried,  the  one previously  mentioned 
yields  the  best  results.  Consider  the  case  where  the  cost 
of control  term is zero  (such as  for  a  bang-bang  system). 
In  this case (5) reduces  to 

I Z L i I  . 

The  maximization of (7) is  equivalent  to  choosing uEQ,  
a t  time Y T  so as   to  maximize the  percent  decrease  in 
I P S  in the  time  interval  from rT to  m T .  IPS(rT)  
represents  a  weighted  vector  distance of the  state of the 
system a t  time rT from  the  origin of the  state space. 
The  best  value for G depends  upon  the  plant  as well as 
the  system IP. One  method  to  determine G is to use a 
“secondary  learning  loop”  to  learn  the  value of G that  
results in the  control  law \yhich most  nearly  minimizes 
the  sJ-stem IP .  This  “secondary  learning loop” would 
consist of a  multidimensional  search  scheme.  One of the 
elements of G may  be  arbitrarilJ-  selected  as 1. First,  an 
initial  value  for G is  assigned,  the  corresponding  control 
lau-  is learned,  and  the  system I P  is evaluated.  Kext, G 
is  incremented  and  a  new  control  law  is  learned  and 
evaluated  by  the  sJ-stem IP.  This  procedure  is  con- 
tinued  until  the G corresponding  to  the  control  law 
giving  the  lowest  system I P  is  found.  Although  this  ap- 
proach  is  time  consuming, it  does give  satisfactory  re- 
sults [12], and also  makes  the  stated goal of (2) more 
meaningful. 

The problem  now  is  reduced to   that  of matching  to 
each  control  situation S j  the  best  control  choice  from 
the  set a,. This is not  a  straight  fonvard  deterministic 
problem  since the  control  choice a t  time Y T is dependent 
on the  system  state  at  time Y + 1 T.  Let P i j  be  the  proba- 
bility  that  the  ith  element z l i  of the class 2, is the  best 
control choice for members of the  control  situation Si. 
Initially  (assuming  no a priori  knowledge)  all Pij= Ilk, 

proceeds, Pij approaches 1 for one ui and  each Sj (with 
the possible  exception of those  sets  located  on  the 
switching  boundary). -4 control choice ui is  used  for 
control  situation Si with  probability Pij unless  some 
Pij ,  exceeds  a  preset  threshold Tp. In  this  case  the ui 
for  which Pi j  is maximum  is  used as the  control choice 
for Si. 

This  system uses what  are called the  linear reinforce- 
ment  learning  operators L+ and L- to adjust  the Pij’s 
in  order to  improve  system  performance.  The  positive 
reinforcement  operator L+ is  used to increase the  proba- 
bility of a particular  control  choice ui being  used  for a 
given  control  situation Sj. 

~ 

; = I ,  * . . , k ;  j = 1 , .  . . , p .  As the  learning process 

P,~(=T) = L + [ P ~ ~ ( Y T ) ]  = BPij(rT) + (I - e) (8) 

o < e < 1 .  

The  negative  reinforcement  operator L- is  used to pro- 
portionally  decrease  the  probability of all other  control 
choices ZL,, q =  1, . . . , K ;  q#i,  being  used  for the  given 
control  situation Sj. 

pii (r  + I T )  = L - [ P ~ ~ ( ~ T ) ]  = e P , , ( c )  o < e < I. (9) 

0 is the  learning  parameter.  The  larger 8 is, the slower 
the  probabilities Pij change,  which  results  in a slon-er 
learning  rate. I t  is  easily  shown that  repetitive  applica- 
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tion of the  operators L+ and L- t o  Pij causes P,j to 
converge  to 1 and 0, respectively [ 1 1 ,  [ 121. 

In  order  to  determine which of the Pij’s should  be 
positively  reinforced, the  reinforcement  must  be  related 
in some way to  the  subgoal.  In  this  work a continuously 
updated  xeighted  average  value of the  subgoal for each 
control  situation  and  control choice was used as a cri- 
teria  for  reinforcement.  Let Ai j  represent  the  weighted 
average  value of A for control  situation S j  \x-ith control 
choice 2 1 , .  Then if Z I ( Y  - 1 T) = zfr and M(r--TT) ESj, 

~~~ 

where 

All other A J Y T )  and C,,(rT) remain  the  same as for 
time (T .  - 1) T. Thus A z ,  is the  actual  average  value of 
Cii samples of A for  control choice u i  in control  situa- 
tion SI as long as C,j < C,. Once C,, = C,,, the  additional 
values of A are  weighted, in determining Aij,  as if they 
were the C,’th value. 

The  value of C, must increase as  the  quantization 
size is increased and as the  sum (n+nz) is  increased 
\There ( n  +m) is the dimension of the  measurement vec- 
tor M .  -Also, larger  values of C, must be  used  in the case 
\There measurement noise is included  in  the  measure- 
ment  vector M .  In  the case  n-here the  measurement 
noise is additive with  zero  mean the  averaging  process 
of (10) acts as a noise filter. 

The  zi corresponding  to  the  largest AiJ ( rT) ,  i = 1, 

satisfying  the  subgoal  for  control  situation SJ a t  time 
rT.  Let  the  maximum A,J(T.T)  for set SJ a t  time rT be 
represented  by  AIJ(rT).  Since,  according  to  the  sub- 
goal, 717 is the  best  control choice  for control  situation 
SJ a t  time rT, the  probability of choosing u1 should  be 
positively  reinforced by  applying  operator L+ to  P7J. 
The  learning  parameter 8 should  depend  upon  the  “cer- 
tainty”  that  If7 is the  best  control choice  for the  control 
situation SJ. One  measure of this  “certainty” is the 
term a n-here 

. . .  , k ,  is apparently  the  control choice most  nearly 

a = b min [a7J - aiJ].  
(13) i =  l ; . . , k  O < b < 1 / 2  

i # I  O < a < l .  

A large a \I-ould indicate  that  the  control choice 2 4 1  has 
produced a much  greater  value  for A than an); other 7 t i  

for set SJ. Thus,  one n-ould  be  fairly  sure that  u7 n-as 
the  proper  control  choice.  Since  fast  learning  is  desired 
when a is  large,  let 

e = 1 - (14 

The “b” that  is included in (13) determines  the maxi- 
mum possible reinforcement  and  forces a to lie \\-ithin 
the  range (0 ,  1). The  exponent y in  (14) is used to  either 
compress  or  expand  the  range of the  reinforcement  pa- 
rameter 8. The  best  results were  obtained  using y = 0.5. 
If too  large a value is used  for “b” i t  is  possible  for the 
system  to  “jump  to a false  conclusion” in the sense tha t  
i t  learns a control  choice that  does  not  satisfy  the  sub- 
goal. This  occurs  because of a learning  rate  that is too 
high. In  general,  when  the  parameter C, must  be  large, 
“b” must be  small  since the choice of “b” is  related to 
the  reliability of the  early 4i1’s. Thus “b” must  decrease 
as the  dimensionality of the  measurement  vector M in- 
creases  and as the  measurement noise  increases. On the 
other  hand, excessively  small values of “b” result in un- 
necessarily low learning  rates.  Kote  that  a  significant  dis- 
turbance N would introduce  errors  in  the Aij’s and  there- 
fore  possibly  cause  erroneous  reinforcement. To  a\:oid 
this  difficulty,  when  the  controller  receives an N ’  signal 
it merely  holds all Aij’s constant  and  prevents reinforce- 
ment  during  the  next  sampling  interval. 

The first  scheme that  was used to  determine which 
primary  sets  should  be  further  partitioned  to  provide 
finer quantization is the follon-ing. If,  after a fixed 
number of samples C within a primary  set SJ,  Pir 
lies between  tn-o  thresholds T? < P ~ J  < T1 (typical 
values  might  be Tl=O.!% and T? = O . l )  subsets  are 
established in SJ. Reasonable  performance  can  be 
obtained  for  most  stationary  systems  by  proper  adjust- 
ment of C, T I ,  and Tz. Aq second  scheme  which  can  be 
used  for stationary  and  nonstationary  systems, uses the 
curvature of the  approximate  switching  boundary  to 
determine \\-here subsets  should  be  established.  The 
chain  encoding  scheme  described by  Freeman [ l l  ] is 
used to  determine  the  curvature of the  switching  bound- 
ary. Regions of the  switching  boundary  with  relatively 
high curvature in one  direction  are  identified  and  the 
sets  that  are  located on the inside of the  curv ,a t ure  are 
further  divided  into  subsets. 

The  system is capable of self-adjusting  the  environ- 
mental  quantization  levels  through  consideration of tu-o 
criteria.  First,  the  system  tries  to  adjust  the  quantiza- 
tion levels so as to  keep  the  resulting  switching  bound- 
aries  equally  dissimilar,  based  on  the  measure of simi- 
larity  suggested  in  the following. Second,  the sl;stem 
tries  to  adjust  the  quantization levels so as to  keep  ap- 
proximately  the  same  frequency of occurrence of mea- 
surements in the  various  quantization  intervals.  Since 
in the general  case  these  tu-o  criteria  cannot  be  satisfied 
simultaneously  with  any  given  quantization  distribu- 
tion, a relative  importance  or  n-eighting  must  be  as- 
signed to  each  criterion. 
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The  difference in the  directionality  spectrum  dis- 
cussed by  Freeman  was  used  as  a  measure of the simi- 
larity  between  sn-itching  boundaries  for  different  en- 
vironmental  quantization levels. The  frequency of oc- 
currence of measurements in a  given  quantization  inter- 
val is easily  found  by  counting  the  measurements  falling 
in each  interval  during  a fixed time  interval. In  actual 
operation,  initial  quantization levels are picked. The  
system  then  periodically  adjusts  the  quantization levels 
in the  direction  indicated b); the  evaluation of the 
similarity  and  frequency  criteria  [12]. 

11’. ASALI-TICAL RESULTS 
-4 number of analytical  results  have  been  obtained  for 

this  learning  system  with  a  linear  plant.  These  are  pre- 
sented  here  with  some of the  experimental  results  for 
comparison  purposes. The  experimental  procedure  is 
discussed in Section V. 

First consider the  theoretical  switching  boundary ob- 
tained  as a result of the  maximum of ( 7 )  for  a  linear 
plant  with  the  two  control  choices of + 1 and - 1. Since 
IPS(rT) is independent of z ~ ( r T ) ,  the n ( r T )  which 
nlaximizes (5) is the  same  as  the z ( r T )  11-hich mini- 
mizes IPS(r+l T ) .  The  snitching  boundary is defined 
as  the collection of all  points in the  state  space  for which 
positive ~ forcing [ ~ ( Y I ’ )  = +1] gives the  same  value of 
IPS( r+lT)  as  negative forcing  does.  Therefore, the 
problem  reduces  to  finding all X ( Y T )  for  which 

X,’ (x T )  GX, ( r T T )  

~ 

= Xm’(r + lT)GXm(r  + 1T). (15) 

X,(r+ 1 T) and X,(Y + 1 T )  equal  the  value of the vec- 
tor X a t  time Y+ 1 T with  positive  and ~ negative  forcing, 
respectively,  during  the  interval r T  to  Y + 1 T. Equation 
(15) can  be  n-ritten in the follon-ing form: 

~ - 

W,’(r f lT)HW,(r  + 1T) 

= Wm’(r + lT)HW,(r + 1T) (16) 

where 

K 1 om 

W,(.+T) = 9(T)W,(rT) (1 9) 

where 4(T)  in the  transition  matrix for the  plant.  Sub- 
stituting (19) into (16) gives 

W,’(rT)Q‘(T)HQ(T)W,(rT) 
= W,’(rT)d’(T)HQ(T)W,(rT). (20) 

The  matrix E’(T) = $ ( T ) H 4 ( T )  is  independent of 
X ( r T ) .  Therefore, (20) can  be  n-ritten  as 

WP’(YT) 17(T)Wp(rT) = Wm‘(rT) 17(T)Wm(rT).  (21) 

Performing  the  matrix  manipulation  with a general 
matrix E’ and simplifying the  result gik-es: 

s1(y21 + Y E )  + x2c2‘31 + ? l a )  

+ . . . .L&+l.l + yl,n+l) = 0. (22) 

Equation (21) which represents  the  sn-itching  surface 
for a  general d t h  order  linear  plant is the  equation of a 
hyperplane in space 0, passing  through  the  origin. The 
foregoing  derivation  proves that  the  su-itching  boundary 
is linear  for a linear  plant  regardless of the choice of G. 
although  this  certainly  does  not  represent  the ideal 
situation,  this  research  was  more  concerned  with  the 
learning process itself than in determining  the  best  sub- 
goal. I t   may be that  several  subgoals  should  be  used 
in the  learning process. 

In the  case  n-here G is a  diagonal  matrix  and Y is 
symmetrical,  the  switching  boundary for a second-order 
linear  system is described by  the  equation 

3’1 2 x 2 =  -~ x1 = ym.rl. 

Consider  a plant described by  the differential  equation 

(23) 
y13 

(24) 

Performing  the  matrix  operation $’( T)H4( T) = Y( T) 
and  applying (23) gives  a  value for the slope 

( 2 5 )  

and 

Kote  that  the  resulting  switching  boundary  is  indepen- 
dent of the  system gain K .  I t  is  also  noted tha t  

(15) Lim y,, = 
- U  

1 and Lim y m  = 0. (26a) (26b) 
g11+- (1 - €-aT) P11+0 

For the  system in which a = 1 and T = 1/2, (26a) and 
(25) reduce  to 

(18) 
Lim ym = - 2.54 and 

y m  = - 1.98 for gll = 20 

911-+= y m  = - 1.61 for gll = 10. 
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This  theoretical  limit on the  magnitude of the  slope  is 
indicated in the  plot of Fig.  3  by  the  curve  for g, = a. 

The  calculated  switching  boundaries  with  the  foregoing 
slopes are  plotted on the  same  axes  as  the  learned  bound- 
aries in Figs. 4 and 5 so  that  they  might easily  be  com- 
pared. So te   t ha t  in both  cases  the  learned  curve  leads 
the  computed  curve,  that is, a  plant  trajectory  in  the 
state  space will intersect  the  learned  switching  bound- 
ary  (LSB) before it  intersects  the  computed  switching 
boundary  (CSB).  This  is a result of the  finite  decision 
time ( t d ' )  required  by a controller  operating in real 
time.?  The  controller  cannot  change  the  control  choice 
until t i  seconds  after a measurement  vector  is  obtained. 
The  learning  system  automatically  compensates  for  this 
effect by  rotating  the  slyitching  boundary.  The effect 
of this decision  time fd' can  be  removed  by  calculating 
the  plant  state td'  seconds  after i t  hits  the  sn-itching 
boundary.  The  equation of this  nen-  boundary  is  found 

9,,= 20 

Theoretical  Limlts 
g,,= 5- 

s,,=o\ 
Posihve forcing 

I C 1  
-100 -60 

\ 

-100 - 

Fig. 3. Effect of change in gll on  switching  boundaries. 

4 

by  using (19) with T = t d .  Initial  conditions  on  the 
learned  switching  boundary  are  considered  by  requiring 
that  x ? ( T f d )  =YLXl(rtd) \\-here y~ is  the  slope of the 
learned  switching  boundary.  For  the  case  where y~ 
= 1.26, gll= 10 and fd = O . O i 5  seconds  the modified or 
effective,  learned, witching  boundary  (ELSB) is de- 
scribed  by  the  equation 

x = - 1 . 2 8 ~ ~  + 7.56 

which  is  plotted in Fig. 4. For the  case  where g11=20, 
yr,= - 1.54, and td=0.07 seconds,  the  effective  learned 
switching  boundary  (ELSB) is described by  the  equa- 
tion 

x? = - 1.83r1 + 7.2 

which is plotted in Fig. 5. These  two  figures  show  that 
there is a verq; close agreement  between  the  ELSB  and 
the CSB. This  is sufficient  evidence that  the  learning 
process is functioning  properly in this  application! 

Since  the  system is a  sampled  system  with a signifi- 
cant  sampling  period T ,  i t  does  not  actually  reverse 
forcing when a trajectory  hits  the  switching  boundary. 
The  actual  reversal in ZL occurs i d  seconds  after  the  first 
sampling  period  after  the  system  crosses  the  LSB.  In 
the  limit,  this could  be  the  distance  traveled  along  a 
trajectory in T + t d  seconds. The  equation of this  upper 
limit in the  learned  switching  boundary (ULLS) which 
is obtained  using  the  same  techniques  as  for  obtaining 
ELSB  was  found  to  be 

x2 = - 4.025.2.1 + 98, (27) 

and is plotted  in  Fig. 5. The  actual  switching  from + 1  to 
-1 can  occur \Then the  plant  state  is  anywhere in the 
region  bounded  by  ELSB,  ULLS,  and  a  system  trajec- 
tory  with ZL = +1  running  from  the  origin  to  ULLS. I t  is 
interesting  to  note  that  the  minimum  time  switching 
boundar7. (3ITSB) for  the  continuous  system  [I31  falls 

- 90 

- 80 
- 70 

- 5 0  

I I I I I I I I I I  
X 4 - I O 0  -90 -80 -70 -60 -60 -40 -30 -20 -10 0 

0.. 10 

Plant 

Fig. 4. Comparison of computed  and learned 
switching  boundaries  for gll = 10. 

ment  vector M? locate  the control  situation SJ containing M, and 
The decision time td' is the  time  required to obtain  the  measure- 

decide  upon a control  choice XI. 

4xr 

=.075 seconds 

Typical Trajectory For 

I 
I I I l l  I I I I I I \  I 

x:-IO0 -90 -80 -70 -60 - 5 0  -40 -30 -20 -10 0 10 20 

Fig. 5. Comparison of experimental and theoretical  results. 
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Fig. 6. Learned  switching  boundary  with T = 0 5  seconds. 

within  this  region  except  for  a  very  small  segment  near 
the  origin. (See Fig. 5.) A run  was  made on an I B l I  5090 
with C,=9, a = l ,  K=100,  b=1/2,  y=1,!2, and gll 
= 1%. The  learned  sn-itching  boundary (LSB) is  shon-n 
in Fig. 6 alongwith  the lITSB for  comparison  purposes. 

1’. DISCL-SSIOX OF COMPUTER SIMULATION 
ASD RESULTS 

Several  example  systems  have  been  simulated on hy- 
brid  computing  equipment.  The  plant  n-as  simulated  on 
a GEDX analog  computer  and  the  controller  was  simu- 
lated  on  the IB51 1620 digital  computer  xhich  was  part 
of the I B l I  1710 control  system.  In  addition  to  the 1620 
computer,  the 1 B l I  1710 s)-stem  also  includes  analog to 
digital  and  digital  to  analog  conversion  equipment.  The 
plant  simulated on the  analog  computer  was  actually 
controlled  by  the  digital  computer. (-4 simplified  flox 
diagram  for  the  controller is shon-n in Fig. 7.) The re- 
sults obtained  from  several  types of plants  are  presented 
in the follon-ing. A more  detailed  discussion of results 
can  be  found in \\\‘altz and Fu [ 8 ]  and  il‘altz [12]. In 
all of the following  examples  the  state  variables  were 
limited to the range ( -  100, 100). The control  choice t ~ ,  

\vas constrained  to  be  either +1 or - 1 ( k = 2 ) .  I t  was 
necessary  to  time-scale  the  problem  by  a  factor of 4 to 1 
due  to  the  speed of the  digital  equipment.  sampling 
period of 2 seconds in computer  time  or 0.5 seconds in 
real  time  \\-as  used in all but  Example 3, in which 
T = 0.75 seconds. 

Example 1: In  Section I\,7 some  results  for  the  plant 
described  by  the  transfer  function 

100 
G(s) = ~ 

4 s  + 1) 

n-ere discussed. The switching  boundaq-  and  typical 

“learning  curve”  for  the  case  \\-here V =  0 ,  b = 1!2, y = 1 
and C,,, =9 ,  are shoxvn in  Figs. 2 and 8.  These  curves 
were  obtained  by  applying  a specified initial  condition 
to  the  plant  ever>-  three  minutes for  evaluating  the ~ 1 ; s -  
tem IP  and  arbitrary  initial  conditions a t  all  other 
times. 

Example 2 :  The  plant is described by the  differential 
equation 

The gain constant K = 100, b = 1/2, y= l i 2 ,  and Cm=2. 
The influence of the  environment on the  plant  was  simu- 
lated  by  the  damping  constant { which  could be  either 
0.1, 0.5, or 1.0 (V=rl) .  { was  held  constant  over  three 
minute  intervals. -After each  three  minute  interval,  one 
of the  three possible  values of was  picked a t  random 
for the  next  three  minute  interval.  The  system IP  was 
of the  form 

2-7 13,(rT) I . 

X “learning  curve”  obtained in the  same  way  as for 
Example 1 for  this  3-environment  situation is shown  in 
Fig. 9. Portions of curves xvhere the  system  is  learning 
on a given  environment  are  represented  by solid lines 
which are  connected  together  by  horizontal  dashed  lines 
to  form a continuouscurve  for  each  environmental situa- 
tion.  Results  have  also  been  obtained  for  the  case  where 
{ varies  continuously  over  the  foregoing  range [SI: 

Example 3: The  plant  is  described  by  the  following 
third-order  differential  equation: 

-1 

d3.v a% dx 
at 3 dt2 at 
- + 1.9 - + 1.5 - + 0.5.u = lOOu( t ) .  
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I or PLANT AND 
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Fig. 7.  A simplified flow diagram of a  learning  controller. 

The  three  state  variables x1 =x, x2 =i1, x3 =i2 were 
monitored. b ,  y ,  and C,were 0.1,0.5 and 4, respectively. 
In  order  to  show  the  improved  performance  with  learn- 
ing  for  this  system,  four  different  test  signals  were  ap- 
plied to  the s).;stem ever17 1 2  minutes  and  the  system 

was  evaluated  for  each  test  signal.  The  sum of the  four 
I P S  a t  every 1 2  minutes  is  plotted  in  Fig. 10. During 

the  three  hour period  recorded  here  the  total I P  im- 
proved  by  a  factor of 10. 

VI.  CONCLUSIOKS 
The previously  described  method  appears to  be  one 

practical  approach  to  the  problem of learning  control 
systems.  One  difficulty  with  the  method is that  i t  will 
require a great  deal of computer  memory  for  high-order 
plants.  This,  however, will probably  be a problem  with 
all  learning  systems. A second  problem  is that  of finding 
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Fig. 8. Learning  curves  for  plant  in a fixed environment. 
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Fig. 9. Learning  curve for three  environment  situation. 

a satisfactory  subgoal for a  given  s>-stem  and IP.  This 
is particularly  difficult  when  the  plant is varying  with 
the  environment or with  time. 

The  method  is  most  useful  for  cases  where  a  relatively 
small  number of environmental  parameters  affect a large 
number of plant  parameters.  The  advantages of the 
method are : 

12 

0 1 1 ’ 1  1 1 1  I ‘ ’ ” ’ I ’ *  
o .4 .a 1.2 1.6 , 2 0  24 2 8  

TIME IN HOURS 

Fig. 10. Learning  curve for third-order  system. 

1) I t  can  be  extended  to  higher-order  systems. 
2) I t  can  be  used  with  plants  that  vary  with  the ex- 

ternal  environment  providing  the  environmental  param- 
eter  can  be  measured. 

3) Very  little a priori  information  need  be  known 
about  the  plant. 
4) Practical  systems  can  be  controlled  with  available 

computer  equipment. 
5) The switching  surface  need  not  be  convex,  con- 

cave,  or  simply  connected. 
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