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Abstract—This paper describes a learning control system using
a reinforcement technique. The controller is capable of controlling a
plant that may be nonlinear and nonstationary. The only a priori in-
formation required by the controller is the order of the plant. The ap-~
proach is to design a controller which partitions the control measure-
ment space into sets called control situations and then learns the
best control choice for each control situation. The control measure-
ments are those indicating the state of the plant and environment.
The learning is accomplished by reinforcement of the probability of
choosing a particular control choice for a given control situation. The
system was stimulated on an IBM 1710-GEDA hybrid computer
facility. Experimental results obtained from the simulation are pre-
sented.

I. INTRODUCTION

N RECENT YEARS, the application of learning to
I[ automatic control systems has become an impor-
tant area of research [1]-[8]. The system described
in this paper is a learning control system in the sense
that it is capable of developing and improving a control
law in the case where there is very little a priori in-
formation about the plant and environment available.
1t has a greater capability than a conventional adaptive
system due to the fact that it recognizes similar recur-
ring sttuations and uses and improves the best previ-
ously obtained control law for this control situation. In
addition, the identification of the plant characteristics is
not required.
Consider a plant which is disturbed by the environ-
ment and obeys a differential equation of the form

X =¢X,uV,N,1) )]
where

X={(x1, - - -, x,) is the state vector defined in state
space £,

u=1is the control signal here called the “control
choice,”

V={_(v1, - -+, #a) is the environment vector defined
in space 2,, and
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nd.

N={(m, - -+, B, is the output disturbance vector
including output measurement noise, defined in
space ..

The index of performance of the system is of the form

n

2

r=1

IP =

Xu(rT) | )e @
where “a” is a constant selected by the designer. The
block diagram of the system is shown in Fig. 1. The
environment vector is obtained from the measurements
of the environmental parameters which affect the plant
dynamics. Thus the complete state of the plant at any
particular instant can be specified by a measurement
vector M=(x1, * -+, Xn, ¥1, - -+, Tm)' in space Qur.
1 EQ,, where @, is a set with a finite number of admis-
sible control signals. It is assumed that N is insignificant
(HN'I. <€) during most of the operating time. The occur-
rence of any significant disturbance will cause a signal
N’ to be detected by the controller. ¥ is an unknown
function which may be nonlinear. A measurement vec-
tor M is obtained and a new control choice « is deter-
mined every T seconds. T, the sampling period, must be
long enough to allow for a significant change in X for
a typical #. The value of T may be preset (if the approxi-
mate system response time is known) or learned by a
trial and error procedure.

The controller learns to drive the state vector X from
any set of initial conditions to the vicinity of the origin
in the state space in a way which approaches the opti-
mum as defined by the system IP. The learning is ac-
complished by establishing a stimulus-response type
relationship or mapping between elements of the space

I Environment ’

¥ N

Controller I————"' —-l Plant l——( — X
1
ILPluM With Disturbance

T X

Fig. 1. Simplified block diagram for system.

lgy, -+ +, oy are the measurable environmental parameters, for
example, the surrounding temperature which affects the plant char-
acteristics.
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Q3 and elements of the space ©,. The first step is to
partition the space Qj into classes or sets called control
situations. The best control choice from the set Q, is
considered the same for all members in one class or one
control situation. The next step is to determine which
control choice is the best for each control situation. This
is done through a reinforcement procedure which will be
described in detail later.

II. SampLE SET CONSTRUCTION

The partitioning of the measurement space Qi into
sets called control situations will be discussed in this
section. First consider the partitioning of the state
space {1, assuming no environmental effects (V=0).
This space is partitioned by the establishment of hyper-
spherical sets Sy’ as the measurements are made. Let
S.’ be the “set vector” locating the center of the 7th set
which has been established in the state space. Initially
there are no sets. Let S’ =X, the first measured state
vector, then

X, €S/ if X, — S < Db, (3)
where
) n 172
|X - Yll = [Z (x; — )’t)gjl ’
i=1
X, * X,
SWITCHING BOUNDARY
90— —
8o — ™~ 7
70— // L N -
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20

and D is a prespecified distance, If
Ix; — /|| > D, let S =X, (4)

This process is continued until the entire space in which
actual state vector measurements occur, denoted by
Q,', is covered with overlapping sets. (This process is
similar to that described by Sebestyen in the recognition
of speakers [9].) If a measured X, falls within distance
D of two or more set vectors it is considered a member
of the closest set. This scheme does not waste memory
by establishing sets in regions where measurements
never occur. This is a significant advantage over a pre-
gridded type partitioning especially if the space £ is
significantly greater than the space Q,’. A typical exam-
ple of the set construction for a second-order system
with two control choices is shown in Fig. 2. The set
radius D was made large so that a relatively small num-
ber of sets would cover the space €./. Due to this large
radius (and, therefore, large quantization), the resulting
switching boundary between two control choices will
be a crude approximation to the optimum one.

In order to improve the effective quantization in the
measurement space, subsets are established in the sets
that lie on the switching boundary. The subsets with
radius D’ <D are established in the same way and with
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Fig. 2. Distribution of sets and subsets in the measurement space.
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the same characteristics as the primary sets. This gives
the system the advantage of fine quantization near the
switching boundary where it is needed without the ex-
cessive memory requirements of fine quantization for
the entire space. The range of each parameter v;EV is
quantized into a number of discrete levels ¢,. The quan-
tization levels need not be uniform. They may be either
preassigned or self-adjusted so as to maintain a balance
between the frequency of occurrence of measurements
in each quantization level and the similarity of switch-
ing boundaries. Thus a specific measurement Mj is con-
sidered a member of the set Sy if X;&S;" and V; fall in
quantization levels Qr= {q{, R g,,,’} where ¢/ are
the specific quantization levels for the parameters v; in
set S7. If the set S; has no subsets, all the members of .S;
constitute a control situation.

III. REINFORCEMENT SCHEME

Once the sample sets (control situations) are estab-
lished it is necessary to determine which control choice
from the class , is the best for each control situation.
The system IP that is usually given is of integral form
where the integration is over a number of sampling
periods. In this case it is difficult to determine which of
the series of control choices is most responsible for an
improvement in performance. A similar problem was at
least partially solved by Samuel [10] in his checker play-
ing machine through the establishment of subgoals
which are related to the main goal. A similar approach
was used here.

The subgoal was to choose u(*T) S, so as to maxi-
mize

A(r +17)
IPSGT) — IPS(r + 1T) — xu2(+T)
max of [TPS(r + 17), IPSGT)] + Mttmas)®
A>0.

(5)
IPS(rT) is defined as
IPS(:T) = X'(¢T)GX(T) (6)

where G is a positive definite diagonal matrix with ele-
ments {(gu, * *+ *, Zzn)- In (5), A is a cost of control
weighting term and #m.x equals the maximum value of
e

[ ‘ilthough the selection of the subgoal is rather heu-
ristic it is felt the selected form is a reasonable choice.
The system was able to select the best one from a set of
possible subgoals through a trial process. Of the various
subgoals that were tried, the one previously mentioned
yields the best results. Consider the case where the cost
of control term is zero (such as for a bang-bang system).
In this case (5) reduces to

TEIT) = IPS(rT) — IPS(r +17) o
N+ = 7PsG £ 11), 15seD)] |
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The maximization of (7) is equivalent to choosing # & Q,
at time T so as to maximize the percent decrease in
IPS in the time interval from #T to r-+17. IPS(rT)
represents a weighted vector distance of the state of the
system at time 77" from the origin of the state space.
The best value for G depends upon the plant as well as
the system 7P. One method to determine G is to use a
“secondary learning loop” to learn the value of G that
results in the control law which most nearly minimizes
the system IP. This “secondary learning loop” would
consist of a multidimensional search scheme. One of the
elements of G may be arbitrarily selected as 1. First, an
initial value for G is assigned, the corresponding control
law is learned, and the system IP is evaluated. Next, G
is incremented and a new control law is learned and
evaluated by the system IP. This procedure is con-
tinued until the G corresponding to the control law
giving the lowest system IP is found. Although this ap-
proach is time consuming, it does give satisfactory re-
sults [12], and also makes the stated goal of (2) more
meaningful.

The problem now is reduced to that of matching to
each control situation S; the best control choice from
the set Q,. This is not a straight forward deterministic
problem since the control choice at time 7T is dependent
on the system state at time 7+1T. Let P;; be the proba-
bility that the ¢th element u; of the class Q, is the best
control choice for members of the control situation .S;.
Initially (assuming no a priori knowledge) all P;;=1/k,
i=1,+--, k; j=1,- -, p. As the learning process
proceeds, P,; approaches 1 for one #; and each .S; (with
the possible exception of those sets located on the
switching boundary). A control choice #; is used for
control situation .S; with probability P,; unless some
P,;, exceeds a preset threshold Tp. In this case the u;
for which P,; is maximum is used as the control choice
for S;.

This system uses what are called the linear reinforce-
ment learning operators L, and L_ to adjust the P's
in order to improve system performance. The positive
reinforcement operator L, is used to increase the proba-
bility of a particular control choice #; being used for a
given control situation S;.

Py(r +17) = Li[Py(rT)] = 6P;(T) + (1 —0) (8)
0<oe<1.

The negative reinforcement operator L_ is used to pro-
portionally decrease the probability of all other control
choices #4, g=1, - - -, k; g5£1, being used for the given
control situation .S;.

Piulr +17) = L_[Py;(rT)] = 0P,;(¢T) 0 <6< 1. (9)
# is the learning parameter. The larger @ is, the slower

the probabilities P,; change, which results in a slower
learning rate. It is easily shown that repetitive applica-
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tion of the operators Ly and L_ to P,; causes P;; to
converge to 1 and 0, respectively [1], [12].

In order to determine which of the P;'s should be
positively reinforced, the reinforcement must be related
in some way to the subgoal. In this work a continuously
updated weighted average value of the subgoal for each
control situation and control choice was used as a cri-
teria for reinforcement. Let A;; represent the weighted
average value of A for control situation S; with control
choice #,. Then if u(* —1T) =u; and M(r —1T)E S,

[CosrT) — 1][Ay G — 1T)] + AGT)

AulrT) = Cr(rT)
Ciy >0 (10)
where
Crs(¢T) = Crs(r — 1T) + 1 if Cry(r — 1T) < C.  (11)
and
CrsGT) = Cp if Cryr — 1T) = Cp. (12)
Thus
Crr=1,2,- -, Cn

All other A;;(rT) and C;;(rT) remain the same as for
time (r—1)7. Thus A,; is the actual average value of
C;; samples of A for control choice u; in control situa-
tion .S; as long as C.; < C,. Once C;;=C, the additional
values of A are weighted, in determining A, as if they
were the C,'th value.

The value of C, must increase as the quantization
size is increased and as the sum (n4+m) is increased
where (n+m) is the dimension of the measurement vec-
tor M. Also, larger values of C,, must be used in the case
where measurement noise is included in the measure-
ment vector M. In the case where the measurement
noise is additive with zero mean the averaging process
of (10) acts as a noise filter.

The u; corresponding to the largest Ay;(rT), i=1,

-, k, is apparently the control choice most nearly
satisfying the subgoal for control situation S; at time
rT. Let the maximum A, (rT) for set S; at time 7 be
represented by Az (#T). Since, according to the sub-
goal, u7 is the best control choice for control situation
Ss at time r7, the probability of choosing #; should be
positively reinforced by applying operator L, to Pyj.
The learning parameter # should depend upon the “cer-
tainty” that u; is the best control choice for the control
situation S;. One measure of this “certainty” is the
term « where

a=bmin [A[J—Ai,]].
i=1,-,k
1% 7

13
0<b<1/2 (13

0<a<l.

A large a would indicate that the control choice u; has
produced a much greater value for A than any other u;
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for set S;. Thus, one would be fairly sure that u; was
the proper control choice. Since fast learning is desired
when « is large, let

6=1— (a). (14)

The “p” that is included in (13) determines the maxi-
mum possible reinforcement and forces « to lie within
the range (0, 1). The exponent v in (14) is used to either
compress or expand the range of the reinforcement pa-
rameter §. The best results were obtained using y=0.5.
If too large a value is used for “b” it is possible for the
system to “jump to a false conclusion” in the sense that
it learns a control choice that does not satisfy the sub-
goal. This occurs because of a learning rate that is too
high. In general, when the parameter C,, must be large,
“p” must be small since the choice of “b” is related to
the reliability of the early A;;'s. Thus “b” must decrease
as the dimensionality of the measurement vector M in-
creases and as the measurement noise increases. On the
other hand, excessively small values of “b” result in un-
necessarily low learning rates. Note that a significant dis-
turbance NV would introduce errors in the A;;’s and there-
fore possibly cause erroneous reinforcement. To avoid
this difficulty, when the controller receives an N’ signal
it merely holds all A;;’s constant and prevents reinforce-
ment during the next sampling interval.

The first scheme that was used to determine which
primary sets should be further partitioned to provide
finer quantization is the following. If, after a fixed
number of samples C within a primary set S;, P
lies between two thresholds 7.<P.;<T: (typical
values might be 77=0.90 and 7.=0.1) subsets are
established in S;. Reasonable performance can be
obtained for most stationary systems by proper adjust-
ment of C, Ty, and 73. A second scheme which can be
used for stationary and nonstationary systems, uses the
curvature of the approximate switching boundary to
determine where subsets should be established. The
chain encoding scheme described by Freeman [11]is
used to determine the curvature of the switching bound-
ary. Regions of the switching boundary with relatively
high curvature in one direction are identified and the
sets that are located on the inside of the curvature are
further divided into subsets.

The system is capable of self-adjusting the environ-
mental quantization levels through consideration of two
criteria. First, the system tries to adjust the quantiza-
tion levels so as to keep the resulting switching bound-
aries equally dissimilar, based on the measure of simi-
larity suggested in the following. Second, the svstem
tries to adjust the quantization levels so as to keep ap-
proximately the same frequency of occurrence of mea-
surements in the various quantization intervals. Since
in the general case these two criteria cannot be satisfied
simultaneously with any given quantization distribu-
tion, a relative importance or weighting must be as-
signed to each criterion.
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The difference in the directionality spectrum dis-
cussed by Freeman was used as a measure of the simi-
larity between switching boundaries for different en-
vironmental quantization levels. The frequency of oc-
currence of measurements in a given quantization inter-
val is easily found by counting the measurements falling
in each interval during a fixed time interval. In actual
operation, initial quantization levels are picked. The
system then periodically adjusts the quantization levels
in the direction indicated by the evaluation of the
similarity and frequency criteria [12].

IV, AxaALyTICAL RESULTS

A number of analytical results have been obtained for
this learning system with a linear plant. These are pre-
sented here with some of the experimental results for
comparison purposes. The experimental procedure is
discussed in Section V.

First consider the theoretical switching boundary ob-
tained as a result of the maximum of (7) for a linear
plant with the two control choices of 41 and —1. Since
IPS(rT) is independent of u(r7), the u(r7T) which
maximizes (7) is the same as the #(r7) which mini-
mizes TPS(r+17). The switching boundary is defined
as the collection of all points in the state space for which
positive forcing [u#(rT) = -+1] gives the same value of
IPS(r+17T) as negative forcing does. Therefore, the
problem reduces to finding all X(r7T) for which

X,/ (r F1T)GX,(r +17)

= X./(r F IT)GX.( +17). (13)
X,(r+17) and X.(r+17) equal the value of the vec-
tor X at time 417 with positive and negative forcing,

respectively, during the interval 7T to r417. Equation
(15) can be written in the following form:

W, (r + IT)EW,(r + 17)

= W.'(r + 1) HWa(r F 17) (16)

OCTOBER

Now

Walr +17) = HDHYW,(T) (19)

where ¢(7") in the transition matrix for the plant. Sub-
stituting (19) into (16) gives

W' (rT)¢' (T)He(T)W,(r T)
= Wm'(rT)¢'(T)H¢(T)Wm(rT).

The matrix Y(T)=¢(T)H¢(T) is independent of
X(rT). Therefore, (20) can be written as

W, T Y (DW,(T) = W' (¢T) V(T)Wa(rT).

(20)

(21)

Performing the matrix manipulation with a general
matrix ¥ and simplifyving the result gives:

x1i(yar + y12) + #2(ys + ¥13)
+ (g F Yieg1) = 0.

Equation (22) which represents the switching surface
for a general #’th order linear plant is the equation of a
hyperplane in space 2, passing through the origin. The
foregoing derivation proves that the switching boundary
is linear for a linear plant regardless of the choice of G.
Although this certainly does not represent the ideal
situation, this research was more concerned with the
learning process itself than in determining the best sub-
goal. It may be that several subgoals should be used
in the learning process.

In the case where G is a diagonal matrix and Y is
symmetrical, the switching boundary for a second-order
linear system is described by the equation

(22)

Y12
Xy = — ¥1 = Ymli.
Y13

(23)

Consider a plant described by the differential equation
d*x
dr?

T 2
az—( a)u. (24)

Performing the matrix operation ¢'(TYHo(T) = Y(T)
and applying (23) gives a value for the slope

—a(e*? — 14 aT)gn

where
Ym =
W 17) = _+_1
P(r—l— )_|:X(7’+1T)}7
. —1 N
Wl +11) = [X(mT)} (1)
and
00 . 0'\
H = 0 (18)

[ ~ 1+ aD(A ~ eN)]gn + (%1 — eN]gar

(25)

Note that the resulting switching boundary is indepen-
dent of the system gain K. It is also noted that

—a
Lim v, = ———)
(1 — ¢°7)
(a) (b)

For the system in which a=1 and 7=1/2, (26a) and
(25) reduce to

and Lim y, = 0. (26a) (26b)

git—x gi1—0

m = — 1.98 for = 20
Lim y, = — 2.54 and {3 g1
¥m = — 161 for g; = 10,

gri—e
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This theoretical limit on the magnitude of the slope is
indicated in the plot of Fig. 3 by the curve for gn= .
The calculated switching boundaries with the foregoing
slopes are plotted on the same axes as the learned bound-
aries in Figs. 4 and 5 so that they might easily be com-
pared. Note that in both cases the learned curve leads
the computed curve, that is, a plant trajectory in the
state space will intersect the learned switching bound-
ary (LSB) before it intersects the computed switching
boundary (CSB). This is a result of the finite decision
time (#) required by a controller operating in real
time.? The controller cannot change the control choice
until £, seconds after a measurement vector is obtained.
The learning system automatically compensates for this
effect by rotating the switching boundary. The effect
of this decision time %/ can be removed by calculating
the plant state #;/ seconds after it hits the switching
boundary. The equation of this new boundary is found

X
|2
‘—IOO
9,/@ L
9,=20
Su=10 % Theoretical Li
eoretical Limits
9= 5 /
Positive forcing |- 20 Negalive forcing
q,=0
" k L Il 1 i i L { n | -
~-100 -60 -20 20 60 100 X,
20}
Swilching Boundariss
-60}
-i00}-
Fig. 3. Effect of change in gy on switching boundaries.

\\\ . . o EE

\\ —{80

\‘\\ CSB leo

LSB—a\ ° 1°°

\\ Ja0

9,10 \ S 30

\

\\\ 10

-l 1 ! L ! ] i 1 | ] o
X, -100 -90 -80 -70 -60 -50 -40 -30 -20 -I0 0

Fig. 4. Comparison of computed and learned

switching boundaries for g;; =10.

® The decision time £;’ is the time required to obtain the measure-
ment vector M, locate the control situation Sy containing M, and
decide upon a control choice u;.
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by using (19) with 7 ={; Initial conditions on the
learned switching boundary are considered by requiring
that x.(rfs) =vyix1(ris) where vy is the slope of the
learned switching boundary. For the case where yL
=1.26, gn=10 and #,=0.075 seconds the modified or
effective, learned, switching boundary (ELSB) is de-
scribed by the equation

x = — 1.28x, 4+ 7.56

which is plotted in Fig. 4. For the case where gy, =20,
yr.=—1.74, and #;=0.07 seconds, the effective learned
switching boundary (ELSB) is described by the equa-
tion

2o = — 1.83x; + 7.2

which is plotted in Fig. 5. These two figures show that
there is a very close agreement between the ELSB and
the CSB. This is sufficient evidence that the learning
process is functioning properly in this application!

Since the system 1s a sampled system with a signifi-
cant sampling period 7, it does not actually reverse
forcing when a trajectory hits the switching boundary.
The actual reversal in # occurs {4 seconds after the first
sampling period after the system crosses the LSB. In
the limit, this could be the distance traveled along a
trajectory in 7 -tq seconds. The equation of this upper
limit in the learned switching boundary (ULLS) which
is obtained using the same techniques as for obtaining
ELSB was found to be

xp = — 4.023x;, 4 98, 27
and is plotted in Fig. 5. The actual switching from 41 to
—1 can occur when the plant state is anywhere in the
region bounded by ELSB, ULLS, and a system trajec-
tory with # = 41 running from the origin to ULLS. It is
interesting to note that the minimum time switching
boundary (MTSB) for the continuous system [13] falls

A%

uLLs

100
S{S+1)

g,% 20

Plant

Typical Trajectory For
+| Forcing

1 1 | | J

- | 1
X, -100 -80 -80

! { | |
-70 -60 -50 -40 -30 -20 -IO o] 10 20

Fig. 5. Comparison of experimental and theoretical results.
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g, = 185
Y = Ve
T =.05
tm* 9

Learning Time =
(Real Time)

30 min.

|

-25_
-50]
MTSB —
Fig. 6.

within this region except for a very small segment near
the origin. (See Fig. 5.) A run was made on an IB) 7090
with C,=9, a=1, K=100, b=1/2, y=1/2, and gn
=185. The learned switching boundary (LLSB) is shown
in Fig. 6 along with the NI'TSB for comparison purposes.

V. DiscussioN oF COMPUTER SIMULATION
AND REsSULTS

Several example systems have been simulated on hy-
brid computing equipment. The plant was simulated on
a GEDA analog computer and the controller was simu-
lated on the IBM 1620 digital computer which was part
of the IBA 1710 control system. In addition to the 1620
computer, the IBM 1710 system also includes analog to
digital and digital to analog conversion equipment. The
plant simulated on the analog computer was actually
controlled by the digital computer. (A simplified flow
diagram for the controller is shown in Fig. 7.) The re-
sults obtained from several types of plants are presented
in the following. A more detailed discussion of results
can be found in Waltz and Fu [8] and Waltz [12]. In
all of the following examples the state variables were
limited to the range (—100, 100). The control choice #,
was constrained to be either +1 or —1 (£=2). It was
necessary to time-scale the problem by a factor of 4 to 1
due to the speed of the digital equipment. A sampling
period of 2 seconds in computer time or 0.5 seconds in
real time was used in all but Example 3, in which
7"=0.75 seconds.

Example 1: In Section IV some results for the plant
described by the transfer function

100
s(s+1)

were discussed. The switching boundary and typical

G(s) =

100 " x,

———No Subsels in
This Region

Learned switching boundary with 7=0.5 seconds.

“learning curve” for the case where V=0,b=1/2,y=1
and C,=9, are shown in Figs. 2 and 8. These curves
were obtained by applying a specified initial condition
to the plant every three minutes for evaluating the sys-
tem IP and arbitrary initial conditions at all other
times.

Example 2: The plant is described by the differential
equation

d*y
dr?

The gain constant K=100,b=1/2,y=1/2, and C,,=2.
The influence of the environment on the plant was simu-
lated by the damping constant { which could be either
0.1, 0.5, or 1.0 (V=1,). { was held constant over three
minute intervals. After each three minute interval, one
of the three possible values of { was picked at random
for the next three minute interval. The system IP was
of the form

dy
Xg = —

dt

dy
+2§‘E—|—1¢=Ku, =9,

2| ml|
=1
A “learning curve” obtained in the same way as for
Example 1 for this 3-environment situation is shown in
Fig. 9. Portions of curves where the system is learning
on a given environment are represented by solid lines
which are connected together by horizontal dashed lines
to form a continuous curve for each environmental situa-
tion. Results have also been obtained for the case where
{ varies continuously over the foregoing range [8]:
Example 3: The plant is described by the following
third-order differential equation:
dx d*x
—+ 1.9
ar de

dx
+ 1.7 Z + 0.5x = 100u(s).
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The three state wvariables x1=x, xo=2%;, x3=% were
monitored. b, v, and C,, were 0.1, 0.5 and 4, respectively.
In order to show the improved performance with learn-
ing for this system, four different test signals were ap-
plied to the system every 12 minutes and the system

15
IP =3 7| 2D |
r=1

was evaluated for each test signal. The sum of the four
IP’s at every 12 minutes is plotted in Fig. 10. During

A simplified flow diagram of a learning controller.

the three hour period recorded here the total IP im-
proved by a factor of 10.

V1. CoNCLUSIONS

The previously described method appears to be one
practical approach to the problem of learning control
systems. One difficulty with the method is that it will
require a great deal of computer memory for high-order
plants. This, however, will probably be a problem with
all learning systems. A second problem is that of finding
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a satisfactory subgoal for a given system and ZP. This
is particularly difficult when the plant is varying with
the environment or with time.

The method is most useful for cases where a relatively
small number of environmental parameters affect a large
number of plant parameters. The advantages of the
method are:
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Fig. 10. Learning curve for third-order system.

1) It can be extended to higher-order systems.

2) It can be used with plants that vary with the ex-
ternal environment providing the environmental param-
eter can be measured.

3) Very little a priori information need be known
about the plant.

4) Practical systems can be controlled with available
computer equipment.

5) The switching surface need not be convex, con-
cave, or simply connected.
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