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In this paper we discuss an online algorithm based on policy iteration for learning the continuous-time
(CT) optimal control solution with infinite horizon cost for nonlinear systems with known dynamics. That
is, the algorithm learns online in real-time the solution to the optimal control design HJ equation. This
method finds in real-time suitable approximations of both the optimal cost and the optimal control policy,
while also guaranteeing closed-loop stability. We present an online adaptive algorithm implemented
as an actor/critic structure which involves simultaneous continuous-time adaptation of both actor and
critic neural networks. We call this ‘synchronous’ policy iteration. A persistence of excitation condition is
shown to guarantee convergence of the critic to the actual optimal value function. Novel tuning algorithms
are given for both critic and actor networks, with extra nonstandard terms in the actor tuning law
being required to guarantee closed-loop dynamical stability. The convergence to the optimal controller is
proven, and the stability of the system is also guaranteed. Simulation examples show the effectiveness of
the new algorithm.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control (Lewis & Syrmos, 1995) has emerged as one of
the fundamental design philosophies of modern control systems
design. Optimal control policies satisfy the specified system
performance while minimizing a structured cost index which
describes the balance between desired performance and available
control resources.

From a mathematical point of view the solution of the optimal
control problem is based on the solution of the underlying
Hamilton-Jacobi-Bellman (HJB) equation. Until recently, due
to the intractability of this nonlinear differential equation for
continuous-time (CT) systems, which form the object of interest
in this paper, only particular solutions were available (e.g. for the
linear time-invariant case, the HJB becomes the Riccati equation).
For this reason considerable effort has been devoted to developing
algorithms which approximately solve this equation (Abu-Khalaf
& Lewis, 2005; Beard, Saridis, & Wen, 1997; Murray, Cox, Lendaris,
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& Saeks, 2002). Far more results are available for the solution of the
discrete-time HJB equation. Good overviews are given in Bertsekas
and Tsitsiklis (1996), Si, Barto, Powel, and Wunsch (2004) and
Werbos (1974, 1989, 1992).

Some of the methods involve a computational intelligence
technique known as Policy Iteration (PI) (Howard, 1960; Sutton
& Barto, 1998). PI refers to a class of algorithms built as a two-
step iteration: policy evaluation and policy improvement. Instead
of trying a direct approach to solving the HJB equation, the PI
algorithm starts by evaluating the cost of a given initial admissible
(in a sense to be defined herein) control policy. This is often
accomplished by solving a nonlinear Lyapunov equation. This new
cost is then used to obtain a new improved (i.e. which will have a
lower associated cost) control policy. This is often accomplished
by minimizing a Hamiltonian function with respect to the new
cost. (This is the so-called ‘greedy policy’ with respect to the new
cost.) These two steps of policy evaluation and policy improvement
are repeated until the policy improvement step no longer changes
the actual policy, thus convergence to the optimal controller is
achieved. One must note that the infinite horizon cost can be
evaluated only in the case of admissible control policies, which
requires that the policy be stabilizing. Admissibility is in fact a
condition for the control policy which is used to initialize the
algorithm.

Werbos defined actor—critic online learning algorithms to
solve the optimal control problem based on so-called Value
Iteration (VI), which does not require an initial stabilizing control
policy (Werbos, 1974, 1989, 1992). He defined a family of VI
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algorithms which he termed Adaptive Dynamic Programming
(ADP) algorithms. He used a critic neural network (NN) for value
function approximation (VFA) and an actor NN for approximation
of the control policy. Adaptive critics have been described in
Prokhorov and Wunsch (1997) for discrete-time systems and Baird
(1994), Hanselmann, Noakes, and Zaknich (2007), Vrabie and Lewis
(2008) and Vrabie, Vamvoudakis, and Lewis (2009) for continuous-
time systems.

Generalized Policy Iteration has been discussed in Sutton and
Barto (1998). This is a family of optimal learning techniques which
has PI at one extreme. In generalized PI, at each step one does not
completely evaluate the cost of a given control, but only updates
the current cost estimate towards that value. Likewise, one does
not fully update the control policy to the greedy policy for the
new cost estimate, but only updates the policy towards the greedy
policy. Value Iteration in fact belongs to the family of generalized
PI techniques.

In the linear CT system case, when quadratic indices are
considered for the optimal stabilization problem, the HJB equation
becomes the well known Riccati equation and the policy iteration
method is in fact Newton’s method proposed by Kleinman (1968),
which requires iterative solutions of Lyapunov equations. In
the case of nonlinear systems, successful application of the PI
method was limited until Beard et al. (1997), where Galerkin
spectral approximation methods were used to solve the nonlinear
Lyapunov equations describing the policy evaluation step in the
PI algorithm. Such methods are known to be computationally
intensive. These are all offline methods for PI.

The key to solving practically the CT nonlinear Lyapunov
equations was in the use of neural networks (NN) (Abu-Khalaf
& Lewis, 2005) which can be trained to become approximate
solutions of these equations. In fact the PI algorithm for CT systems
can be built on Werbos’ actor/critic structure which involves
two neural networks: the critic NN, is trained to approximate
the solution of the nonlinear Lyapunov equation at the policy
evaluation step, while the actor neural network is trained to
approximate an improving policy at the policy improving step. The
method of Abu-Khalaf and Lewis (2005) is also an offline method.

In Vrabie and Lewis (2008) and Vrabie, Pastravanu, Lewis,
and Abu-Khalaf (2009) was developed an online PI algorithm for
continuous-time systems which converges to the optimal control
solution without making explicit use of any knowledge on the
internal dynamics of the system. The algorithm was based on
sequential updates of the critic (policy evaluation) and actor (policy
improvement) neural networks. That is, while one NN is tuned the
other one remains constant.

This paper is concerned with developing an online approximate
solution, based on PI, for the infinite horizon optimal control
problem for continuous-time nonlinear systems with known
dynamics. We present an online adaptive algorithm which involves
simultaneous tuning of both actor and critic neural networks
(i.e. both neural networks are tuned at the same time). We term
this algorithm ‘synchronous’ policy iteration. This approach is an
extremal version of the generalized Policy Iteration introduced in
Sutton and Barto (1998).

This approach to policy iteration is motivated by work in adap-
tive control (Ioannou & Fidan, 2006; Tao, 2003). Adaptive control
is a powerful tool that uses online tuning of parameters to provide
effective controllers for nonlinear or linear systems with modeling
uncertainties and disturbances. Closed-loop stability while learn-
ing the parameters is guaranteed, often by using Lyapunov design
techniques. Parameter convergence, however, often requires that
the measured signals carry sufficient information about the un-
known parameters (persistence of excitation condition).

There are two main contributions in this paper. The first in-
volves introduction of a nonstandard ‘normalized’ critic neural net-
work tuning algorithm, along with guarantees for its convergence
based on a persistence of excitation condition regularly required

in adaptive control. The second involves adding nonstandard extra
terms to the actor neural network tuning algorithm that are re-
quired to guarantee closed-loop stability, along with stability and
convergence proofs.

The paper is organized as follows. Section 2 provides the
formulation of the optimal control problem, followed by the
general description of policy iteration and neural network value
function approximation. Section 3 discusses tuning of the critic NN,
in effect designing an observer for the unknown value function.
Section 4 presents the online synchronous PI method, and shows
how to simultaneously tune the critic and actor NNs to guarantee
convergence and closed-loop stability. Results for convergence
and stability are developed using a Lyapunov technique. Section 5
presents simulation examples that show the effectiveness of the
online synchronous CT PI algorithm in learning the optimal value
and control for both linear systems and nonlinear systems.

2. The optimal control problem and value function approxima-
tion

2.1. Optimal control and the continuous-time HJB equation

Consider the nonlinear time-invariant affine in the input
dynamical system given by

x(t) = f(x(0)) + g(x(t)) u(x(t)); x(0) =xo (1)

with statex(t) € R",f(x(t)) € R",g(x(t)) € R™™ and control input
u(t) € R™ We assume that, f(0) = 0, f(x) + g(x)u is Lipschitz
continuous on a set 2 C R" that contains the origin, and that the
system is stabilizable on 2, i.e. there exists a continuous control
function u(t) € U such that the system is asymptotically stable on
£2. The system dynamics f (x), g(x) are assumed known.

Define the infinite horizon integral cost

V(xo) = / r(x(z), u(r))dr (2)
0

where r(x,u) = Q(x) + u’Ru with Q(x) positive definite, i.e.
Vx # 0,Q(x) > 0andx = 0 = Q(X) = 0,andR € R™™ a
symmetric positive definite matrix.

Definition 1 (Abu-Khalaf & Lewis, 2005, Admissible Policy). A
control policy w(x) is defined as admissible with respect to (2) on
£2, denoted by u € ¥ (£2), if u(x) is continuous on £2, u(0) = 0,
u(x) = u(x) stabilizes (1) on £2, and V (xo) is finite Vxq € £2.

For any admissible control policy u € W (£2), if the associated
cost function

V*(x0) :f r(x(z), p(x(r)))de (3)
0

is C1, then an infinitesimal version of (3) is the so-called nonlinear
Lyapunov equation

0=r( 1)+ (V) FO+gru®), V4O =0 (4)

where V' denotes the partial derivative of the value function V*
with respect to x. (Note that the value function does not depend
explicitly on time.)

We define the gradient here as a column vector, and use at times
the alternative operator notation V = 9/0x.

Eq. (4) is a Lyapunov equation for nonlinear systems which,
given a controller u(x) € W($2), can be solved for the value
function V*(x) associated with it. Given that w(x) is an admissible
control policy, if V#(x) satisfies (4), with, then V*(x) is a Lyapunov
function for the system (1) with control policy w(x).

The optimal control problem can now be formulated: Given
the continuous-time system (1), the set © € ¥ (£2) of admissible
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control policies and the infinite horizon cost functional (2), find an
admissible control policy such that the cost index (2) associated
with the system (1) is minimized.

Defining the Hamiltonian of the problem

H(x, u, Vi) = r(x(t), u(t)) + V; (f (x(t)) + g(x(6)) (1)), (5)
the optimal cost function V*(x) defined by

[0.¢]

Vi(x) = min ( | o, M(X(r)))dr)
HEW (£2) 0

with xo = x is known as the value function, and satisfies the HJB

equation

0= min [Hx, u, V)1 (6)
HEW(£2)

Assuming that the minimum on the right hand side of (6) exists and
is unique then the optimal control function for the given problem
is

1
wr(x) = —ER“gT(x)VX*(x). (7)

Inserting this optimal control policy in the nonlinear Lyapunov
equation we obtain the formulation of the HJB equation in terms
of V¥

1
0=Q® +V ®f (0 — 7" WgR g (VY (0
V*(0) = 0.
For the linear system case, considering a quadratic cost functional,
the equivalent of this HJB equation is the well known Riccati
equation.

In order to find the optimal control solution for the problem one
only needs to solve the H]B equation (8) for the value function and
then substitute the solution in (7) to obtain the optimal control.
However, due to the nonlinear nature of the HJB equation finding
its solution is generally difficult or impossible.

(8)

2.2. Policy iteration

The approach of synchronous policy iteration used in this
paper is motivated by Policy iteration (PI) (Sutton & Barto, 1998).
Therefore in this section we describe PI.

Policy iteration (PI) (Sutton & Barto, 1998) is an iterative method
of reinforcement learning (Doya, 2000) for solving optimal control
problems, and consists of policy evaluation based on (4) and policy
improvement based on (7). Specifically, the PI algorithm consists
in solving iteratively the following two equations:

Policy iteration algorithm: ‘
1. given u® (x), solve for the value V4" (x(t)) using

. (i) .
0=rx u?®)+ V) F® +gmu? ®)
v’ () =0
2. update the control policy using

w Y = arg min[H (x, u, VV,ED)], (10)
uew (£2)

which explicitly is

i 1 _ 0]
pE = —oR g WV, (11)

To ensure convergence of the PI algorithm an initial admissi-
ble policy @ (x(t)) € Ww(£) is required. It is in fact required
by the desired completion of the first step in the policy iteration:
i.e. finding a value associated with that initial policy (which needs
to be admissible to have a finite value and for the nonlinear Lya-
punov equation to have a solution). The algorithm then converges
to the optimal control policy u* € ¥ (£2) with corresponding cost
V*(x). Proofs of convergence of the PI algorithm have been given in

Critic
:_ _____ Cost function ¥ (x)
Actor |
Controll(?lL U System X
M HC, T T i+ e(0m xo
/' 4

Fig. 1. Actor/critic structure.

several references. See Abu-Khalaf and Lewis (2005), Baird (1994),
Beard et al. (1997), Hanselmann et al. (2007), Howard (1960), Mur-
ray et al. (2002) and Vrabie and Lewis (2008).

Policy iteration is a Newton method. In the linear time-invariant
case, it reduces to the Kleinman algorithm (Kleinman, 1968) for
solution of the Riccati equation, a familiar algorithm in control
systems. Then, (9) become a Lyapunov equation.

2.3. Value function approximation (VFA)

The standard PI Algorithm just discussed proceeds by alter-
nately updating the critic value and the actor policy by solving
respectively the Egs. (9) and (11). In this paper, the fundamental
update equations in PI namely (9) for the value and (11) for the
policy are used to design two neural networks. Then, by contrast
to standard PI, it is shown how to tune these critic and actor neural
networks simultaneously in real-time to guarantee convergence to
the control policy as well as stability during the training process.

The policy iteration algorithm, as other reinforcement learning
algorithms, can be implemented on an actor/critic structure which
consists of two neural network structures to approximate the
solutions of the two Egs. (9) and (10) at each step of the iteration.
The structure is presented in Fig. 1.

In the actor/critic structure (Werbos, 1974, 1989, 1992) the

cost VA" (x(t)) and the control w1 (x) are approximated at each
step of the PI algorithm by neural networks, called respectively
the critic Neural Network (NN) and the actor NN. Then, the PI
algorithm consists in tuning alternatively each of the two neural
networks. The critic NN is tuned to solve (9) (in a least-squares
sense Finlayson, 1990), and the actor NN to solve (11). Thus, while
one NN is being tuned, the other is held constant. Note that, at each
step in the iteration, the critic neural network is tuned to evaluate
the performance of the current control policy.

The critic NN is based on value function approximation
(VFA). In the following, it is desired to determine a rigorously
justifiable form for the critic NN. Since one desires approximation
in Sobolev norm, that is, approximation of the value V(x)
as well as its gradient, some discussion is given that relates
normal NN approximation usage to the Weierstrass higher-order
approximation theorem.

The solutions to the nonlinear Lyapunov equations (4), (9)
may not be smooth for general nonlinear systems, except in a
generalized sense (Sontag & Sussmann, 1995). However, in keeping
with other work in the literature (Van der Schaft, 1992) we make
the following assumptions.

Assumption 1. The solution to (4) is smooth, i.e. V(x) € C1(£2).

Assumption 2. The solution to (4) is positive definite. This is
guaranteed for stabilizable dynamics if the performance functional
satisfies zero-state observability (Van der Schaft, 1992), which is
guaranteed by the condition that Q (x) > 0,x € 2—{0}; Q(0) =0
be positive definite.

Assumption 1 allows us to bring in informal style of the
Weierstrass higher-order approximation Theorem (Abu-Khalaf
& Lewis, 2005; Finlayson, 1990) and the results of Hornik,
Stinchcombe, and White (1990), which state that then there exists
a complete independent basis set {¢;(x)} such that the solution
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V(x) to (4) and its gradient are uniformly approximated, that is,
there exist coefficients ¢; such that

00 N 00
Vo) =Y api®) =Y a0+ Y apix)
i=1 i=1 i=N+1
V) =i+ ) e (12)
i=N+1
WX o 300~ 000 | S dei®)
G =D G =) G o ) G (13)

i=1 i=1 i=N+1

where ¢;(x) = [01(x) ¢2(x)---@on(X)]T : R* — RN and the last
terms in these equations converge uniformly to zero as N —
oo. (Specifically, the basis set is dense in the Sobolev norm
W1 Adams & Fournier, 2003.) Standard usage of the Weierstrass
high-order approximation Theorem uses polynomial approxima-
tion. However, non-polynomial basis sets have been considered in
the literature (e.g. Hornik et al., 1990; Sandberg, 1998).

Thus, it is justified to assume there exist weights W; such that
the value function V (x) is approximated as

V(x) = Wi (x) + e(x). (14)

Then ¢1(x) : R* — RY is called the NN activation function vector,
N the number of neurons in the hidden layer, and e(x) the NN
approximation error. As per the above, the NN activation functions
{@i(x) : i =1, N} are selected so that {¢;(x) : i = 1, co} provides a
complete independent basis set such that V (x) and its derivative

v 3 T 9
W _ (29N w4 % e, 4 ve (15)
0x 0x 0x

are uniformly approximated. Then, as the number of hidden layer
neurons N — oo, the approximation errors ¢ — 0,Ve —
0 uniformly (Finlayson, 1990). In addition, for fixed N, the NN
approximation errors £(x), and Ve are bounded by constants on
a compact set (Hornik et al., 1990).

Using the NN value function approximation, considering a fixed
control policy u(t), the nonlinear Lyapunov equation (4) becomes

H(x,u, Wy) = W] Vo (f +gu) + Q(x) +u'Ru =gy (16)

where the residual error due to the function approximation error
is

en = — (Vo) (f + gu)

= —(C =WV (f+gu) — Y Vo +gu). (17)

i=N+1

Under the Lipschitz assumption on the dynamics, this residual
error is bounded on a compact set.

Define |v| as the magnitude of a scalar v, ||x|| as the vector norm
of a vector x, and || ||, as the induced matrix 2-norm.

Definition 2 (Uniform Convergence). A sequence of functions {f}
converges uniformly to f on a set £2 if Ve > 0,3N(e) : SUPyp

Ifnx) = fFOI < e.
The following Lemma has been shown in Abu-Khalaf and Lewis
(2005).

Lemma 1. For any admissible policy u(t), the least-squares solution
to (16) exists and is unique for each N. Denote this solution as W1 and
define

Vi(x) = Wi (x). (18)
Then, as N — oo:

a. SUDyep l€y| — O

b. Wy —Cill; = 0
C. SUPye V1= V| —>0
d. supyeo [VV; = VV|| = 0. O

This result shows that V;(x) converges uniformly in Sobolev
norm W1 (Adams & Fournier, 2003) to the exact solution V (x)
to(4)as N — oo, and the weights W, converge to the first N of the
weights, Cy, which exactly solve (4).

Since the object of interest in this paper is finding the solution
of the HJB using the above introduced function approximator, it is
interesting now to look at the effect of the approximation error on
the HJB equation (8)

1 _
WIV¢J——ZM¢V¢mm 1gTVeIW, + Q) = ey (19)

where the residual error due to the function approximation error
is

1 1
emp = —Ve'f + 5W{V(p1gR_1gTV8 + ZVsTgR_]gTVS. (20)

It was also shown in Abu-Khalaf and Lewis (2005) that this error
converges uniformly to zero as the number of hidden layer units N
increases. That is, Ve > 0, AN (&) : supycp, llensll < e.

3. Tuning and convergence of critic NN

In this section we address the issue of tuning and convergence
of the critic NN weights when a fixed admissible control policy
is prescribed. Therefore, the focus is on the nonlinear Lyapunov
equation (4) for a fixed policy u.

In fact, this amounts to the design of an observer for the value
function which is known as ‘cost function’ in the optimal control
literature. Therefore, this algorithm is consistent with adaptive
control approaches which first design an observer for the system
state and unknown dynamics, and then use this observer in the
design of a feedback control.

The weights of the critic NN, W; which provide the best
approximate solution for (16) are unknown. Therefore, the output
of the critic neural network is

V(X)) = W ¢ (x) 21)

where W1 are the current estimated values of the ideal critic NN
weights W;. Recall that ¢p1(x) : R" — RV is the vector of activation
functions, with N the number of neurons in the hidden layer. The
approximate nonlinear Lyapunov equation is then

H(x, Wy, 1) = WV (f + gu) + Q(x) + u"Ru = ey. (22)
In view of Lemma 1, define the critic weight estimation error

Wy =W, — W.

Then

e = —V~V1Tv¢1(f + gu) + &y.

Given any admissible control policy u, it is desired to select Wl
to minimize the squared residual error

1
E] = Eegel.
Then W, (t) > Wj and e; — ey. We select the tuning law for the
critic weights as the normalized gradient descent algorithm
A 8E1 [op]
Wi=—-a1— = L b e

an (G] o1 + 1)

where 01 = V¢ (f +gu). This is a modified Levenberg-Marquardt
algorithm where (o{ o1 + 1)? is used for normalization instead of
(U]TG] + 1). This is required in the proofs, where one needs both
appearances of o1/(1 + ale) in (23) to be bounded (Ioannou &
Fidan, 2006; Tao, 2003).

[o] Wi 4+ Q(x) + u"Ru] (23)
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Note that, from (16),

Q(x) + u'Ru = =W Vo1 (f +gu) + en. (24)
Substituting (24) in (23) and, with the notation

Gr=01/(cj{o1+1), mi=1+o]o (25)

we obtain the dynamics of the critic weight estimation error as

W1 :—a15151TW1+a161;—H. (26)
S

Though it is traditional to use critic tuning algorithms of the
form (23), it is not generally understood when convergence of
the critic weights can be guaranteed. In this paper, we address
this issue in a formal manner. This development is motivated
by adaptive control techniques that appear in Ioannou and Fidan
(2006) and Tao (2003).

To guarantee convergence of W1 to Wi, the next Persistence of
Excitation (PE) assumption and associated technical lemmas are
required.

Persistence of excitation (PE) assumption. Let the signal o; be
persistently exciting over the interval [t,t + T], i.e. there exist
constants 81 > 0, 8, > 0, T > 0 such that, for all t,

t+T
Bl <So = / G1(7)a; (r)dt < Bl. (27)
t

The PE assumption is needed in adaptive control if one desires
to perform system identification using e.g. RLS (Iloannou & Fidan,
2006). It is needed here because one effectively desires to identify
the critic parameters to approximate V (x).

Technical Lemma 1. Consider the error dynamics system with
output defined as

. ~ &
W, = —010_'16';rW1 + G]&]i
ms
y=alWw;. (28)
The PE condition (27) is equivalent to the uniform complete
observability (UCO) (Lewis, Liu, & Yesildirek, 1995) of this system,
that is there exist constants B3 > 0, B4 > 0, T > 0 such that, for all
t,

t+T
B3l < S = / @' (7, t)61(1)6] (1)@ (z, t)dr < Bal (29)

with @ (ty, to), to < ty the state transition matrix of (28).

Propf. System (28) and the system defined by Wi = qioqu, y =
61T W are equivalent under the output feedback u = —y + ey /m;.
Note that (27) is the observability gramian of this last system. O

The importance of UCO is that bounded input and bounded

output implies that the state W;(t) is bounded. In Theorem 1
we shall see that the critic tuning law (23) indeed guarantees
boundedness of the output in (28).

Technical Lemma 2. Consider the error dynamics system (28). Let

the signal a1 be persistently exciting. Then:

(a) The system (28) is exponentially stable. In fact if ey = 0 then
IW (KT)|| < e=**T||W (0)|| with

a= —% In(v/1 — 2a18). (30)

(b) Let llenll < emax and |lyl < ymax then [|W;] converges
exponentially to the residual set

BT
B

where § is a positive constant of the order of 1.
Proof. See Appendix. O

Wi(t) <

{[Ymax + 8B2a1 (Emax + Ymax) 1} (31)

The next result shows that the tuning algorithm (23) is effective
under the PE condition, in that the weights W1 converge to the
actual unknown weights Wy which solve the nonlinear Lyapunov
equation (16) for the given control policy u(t). That is, (21)
converges close to the actual value function of the current control
policy.

Theorem 1. Let u(t) be any admissible bounded control policy. Let
tuning for the critic NN be provided by (23) and assume that o, is
persistently exciting. Let the residual error in (16) be bounded | ey || <
emax- Then the critic parameter error converges exponentially with
decay factor given by (30) to the residual set

VBT
B

1

Wi(t) <

{[14 28B2a1] emax} - (32)
Proof. Consider the following Lyapunov function candidate

1 T 11
L(t) = Etr{W1 a; Wil (33)
The derivative of L is given by

. ~ g ~
L=—tr {W{;[a{wl — eH]}
m

S

. ~ o0l - - 01 €
i= —tr{WlT ! wl} +tr W{l”}
m2 m M
T 2 T
. g, ~ O, ~ &
ms ms ms
T T
. ol . ol . e
Lf—lel [lel = } (34)
ms ms ms
Therefore L < 0 if
T
g, ~ &
71W1 > Emax > i ) (35)
ms ms

since ||mg|| > 1. ~

This provides an effective practical bound for ||61T Wi, since
L(t) decreases if (35) holds.

Consider the estimation error dynamics (28) with the output
bounded effectively by ||y|| < &€max, as just shown. Now Technical
Lemma 2 shows exponential convergence to the residual set

BT
B

1

Wi(t) < {[1+4 2a18B,] emax} - (36)

This completes the proof. O

Remark 1. Note that,as N — o0, g — 0 uniformly (Abu-Khalaf
& Lewis, 2005). This means that e, decreases as the number of
hidden layer neurons in (21) increases.

Remark 2. This theorem requires the assumption that the control
policy u(t) is bounded, since u(t) appears in ey. In the upcoming
Theorem 2 this restriction is removed.

4. Action neural network and online synchronous policy
iteration

We will now present an online adaptive PI algorithm which
involves simultaneous, or synchronous, tuning of both the actor
and critic neural networks. That is, the weights of both neural
networks are tuned at the same time. This approach is a version
of Generalized Policy Iteration (GPI), as introduced in Sutton and
Barto (1998). In standard policy iteration, the critic and actor NN
are tuned sequentially, with the weights of the other NN being
held constant. By contrast, we tune both NN simultaneously in real-
time.
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It is desired to determine a rigorously justified form for the actor
NN. To this end, let us consider one step of the Policy Iteration
algorithm (9)-(11). Suppose that the solution V (x) € C!(£2) to the
nonlinear Lyapunov equation (9) for a given admissible policy u(t)
is given by (12). Then, according to (13) and (11) one has for the
policy update

-l o0
u=—-R"'g'x) ;ciw(x) (37)

for some unknown coefficients c¢;. Then one has the following
result.

Lemma 2. Let the least-squares solution to (16) be Wy and define

1 1
() =R g ) VVi(x) = —5R 'g" Ve (W, (38)

with V; defined in (18).

Then, as N — oo:

(a) supyeg llug —ull — 0 . o

(b) There exists an Ng such that uq(x) is admissible for N > Ng.
Proof. See Abu-Khalaf and Lewis (2005).

In light of this result, the ideal control policy update is taken as (38),
with W; unknown. Therefore, define the control policy in the form
of an action neural network which computes the control input in
the structured form

1 n
U (x) = —qugT(X)V(P]TWz, (39)

where Wz denotes the current estimated values of the ideal NN
weights W;. Define the actor NN estimation error as

Wy = Wy — W, (40)

The next definition and assumptions complete the machinery
required for our main result.

Definition 3 (Lewis, Jagannathan, & Yesildirek, 1999, UUB). The
equilibrium point x, = 0 of (1) is said to be uniformly ultimately
bounded (UUB) if there exists a compact set S C R" so that for
all xg € S there exists a bound B and a time T (B, xp) such that
|x(t) — x.|| < Bforallt >ty +T.

We make the following assumptions.

Assumption 3. a. f(.), is Lipschitz, and g(.) is bounded by a
constant

IFCOIl < belixll, lg@)Il < bg.

b. The NN approx error and its gradient are bounded on a compact
set containing £2 so that

llell < be
[IVell < by,.

c. The NN activation functions and their gradients are bounded so
that

llp1 )l < by
V1) || < bg,. O

These are standard assumptions, except for the rather strong
assumption on g(x) in a. Assumption 3c is satisfied, e.g. by
sigmoids, tanh, and other standard NN activation functions.

We now present the main Theorem, which provides the tuning
laws for the actor and critic neural networks that guarantee
convergence of the synchronous online PI algorithm to the optimal
controller, while guaranteeing closed-loop stability.

Theorem 2. Let the dynamics be given by (1), the critic NN be given
by (21) and the control input be given by actor NN (39). Let tuning for

the critic NN be provided by
02

W= —a—2
! "(0Toy +1)?

[o3 Wi + Q(x) + ujRu, ] (41)
where 05 = V1(f + guy), and assume that o, = 02/(0502 + 1)
is persistently exciting. Let the actor NN be tuned as

X ~ PN 1— ~ ~
W, = —a, {(szz —Fig, W) — ZDﬂx)wzmT(x)Wl} (42)

where

Di(x) = V1 (0g(R g ) Vo] (x),
(o}

- (02102 + 12’

and F; > 0 and F, > 0 are tuning parameters. Let Assumptions 1-3
hold, and the tuning parameters be selected as detailed in the proof.
Then there exists an Ny such that, for the number of hidden layer units
N > Nj the closed-loop system state, the critic NN error W1, and the
actor NN error WZ are UUB. Moreover, Theorem 1 holds with &max

defined in the proof, so that exponential convergence of W1 to the
approximate optimal critic value W1 is obtained.

Proof. See Appendix. 0O

Remark 3. Let ¢ > 0 and let Ny be the number of hidden layer
units above which sup, o, |leysll < €. In the proof it is seen that
the theorem holds forN > Nj. Additionally, & provides an effective
bound on the critic weight residual set in Theorem 1. That is, &max
in (32) is effectively replaced by ¢.

Remark 4. The theorem shows that PE is needed for proper
identification of the value function by the critic NN, and that
a nonstandard tuning algorithm is required for the actor NN to
guarantee stability. The second term in (42) is a cross-product
term that involves both the critic weights and the actor weights.
It is needed to guarantee good behavior of the Lyapunov function,
i.e. that the energy decreases to a bounded compact region.

Remark 5. The tuning parameters F; and F, in (42) must be
selected to make the matrix M in (A.22) positive definite.

Note that the dynamics is required to implement this algorithm
inthat o, = V¢ (f 4 guy), D1(x), and (39) depend on f (x), g(x).

5. Simulation results
To support the new synchronous online PI algorithm for CT
systems, we offer two simulation examples, one linear and one

nonlinear. In both cases we observe convergence to the actual
optimal value function and control.

5.1. Linear system example

Consider the continuous-time F16 aircraft plant with quadratic
cost function used in Stevens and Lewis (2003)

—1.01887 0.90506 —0.00215 0
x= 0.82225 —1.07741 —-0.17555|x+ (0 |u
0 0 -1 1

where Q and R in the cost function are identity matrices of
appropriate dimensions. In this linear case the solution of the HJB
equation is given by the solution of the algebraic Riccati equation
(ARE). Since the value is quadratic in the LQR case, the critic NN
basis set ¢1(x) was selected as the quadratic vector in the state
components. Solving the ARE gives the parameters of the optimal
critic as

Wy =1[1.4245 1.1682 —0.1352 1.4349 —0.1501 0.4329 i
which are the components of the Riccati solution matrix P.
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Parameters of the critic NN

25
—Wc1 |
2t Wc? i
= WC3
158 o
. . Wcs
5 WcB
1 1
05t ) ) 1
118 4
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0 100 200 300 400 500 600 700 800

Time (s)
Fig.2. Convergence of the critic parameters to the parameters of the optimal critic.

The synchronous Pl algorithm is implemented as in Theorem 2.
PE was ensured by adding a small probing noise to the control
input. Fig. 2 shows the critic parameters, denoted by

Wy=[Wa Wo WiWy Wes Wel

converging to the optimal values. In fact after 800s the critic
parameters converged to

Wl(tf) =[1.4279 1.1612 —0.1366 1.4462 —0.1480 0.4317]".
The actor parameters after 800s converge to the values of
Wy (t;) = [ 1.4279 1.1612 —0.1366 1.4462 —0.1480 0.4317 .

Then, the actor NN is given by (39) as
T

2% 0 0 1.4279
e L 1.1612

) B x5 0 x| |-0.1366
np(x) = —7R h] 0 26 0 1.4462
0 x5 x| |—0.1480

0 0 26l Lo04317

i.e. approximately the correct optimal control solution u =
—R~1BTpx.

The evolution of the system states is presented in Fig. 3. One
can see that after 750 s convergence of the NN weights in both
critic and actor has occurred. This shows that the probing noise
effectively guaranteed the PE condition. On convergence, the PE
condition of the control signal is no longer needed, and the probing
signal was turned off. After that, the states remain very close to
zero, as required.

5.2. Nonlinear system example

Consider the following affine in control input nonlinear system,
with a quadratic cost derived as in Nevistic and Primbs (1996) and
Vrabie et al. (2009)

x=f@) +g®u,
where

x € R?

—X1 + X2
J&) = [—0.5)(1 — 0.5%(1 — (cos(2x;) + 2)2)]

0
8 = [cos(2x1) + 2] :

One selects Q = [(1) [])] ,R=1.

Systemn States
60 T T T T T T T

50 1

40 1

b\ Mﬂ UL

=20 <

-30 .

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
Time (s)

-40

Fig. 3. Evolution of the system states for the duration of the experiment.

Parameters of the critic NN

1.2 v T
— Wy
1 — W,
A W,

06

0.4F

0.2F

_B‘ 2 L 1 L 1 1 1 1 L L
0 10 20 30 40 50 B0 70 80 90 100

Time (s)
Fig. 4. Convergence of the critic parameters.

Using the procedure in Nevistic and Primbs (1996) the optimal
value function is
V*(x) = %xf +x5
and the optimal control signal is
u*(x) = —(cos(2x1) + 2)x,.

One selects the critic NN vector activation function as
P =[x xix2 %51

Fig. 4 shows the critic parameters, denoted by
Wi=[Waq Wo Wsl
These converge after about 80s to the correct values of
W, (tr) =[0.5017 —0.0020 1.0008 1.
The actor parameters after 80s converge to the values of
Wz(tf) =1[0.5017 —0.0020 1.0008]".
So that the actor NN (39)
A 1 0 T12% 07 [ 0.5017
1100 =3 | cnan 42 [ o 2} [‘1%%%280}
also converged to the optimal control.
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System States
15 T T T T T T T T T

05 ) i ;

_1 5 1 1 1 1 1 1 'l 1 1
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Time (s)

Fig. 5. Evolution of the system states for the duration of the experiment.

Optimal Value function

Fig. 6. Optimal value function.

The evolution of the system states is presented in Fig. 5. One can
see that after 80s convergence of the NN weights in both critic and
actor has occurred. This shows that the probing noise effectively
guaranteed the PE condition. On convergence, the PE condition
of the control signal is no longer needed, and the probing signal
was turned off. After that, the states remain very close to zero, as
required.

Fig. 6 show the optimal value function. The identified value
function given by V; (x) = er ¢1(x) is virtually indistinguishable.
In fact, Fig. 7 shows the 3D plot of the difference between the
approximated value function, by using the online algorithm, and
the optimal one. This error is close to zero. Good approximation of
the actual value function is being evolved.

Finally Fig. 8 shows the 3D plot of the difference between
the approximated control, by using the online algorithm, and the
optimal one. This error is close to zero.

6. Conclusions

In this paper we have proposed a new adaptive algorithm
which solves the continuous-time optimal control problem for
affine in the inputs nonlinear systems. We call this algorithm
synchronous online PI for CT systems. The algorithm requires
complete knowledge of the system model. For this reason our

Approximation Error of the Value function

002
0.015 1%
5> oo
-

d

0,005 4.

Fig. 7. 3D plot of the approximation error for the value function.

Eror between the approximated control and the optimal one

\\:\\{‘t“ :
R CRALALLULALLALAANA K
&l SUVRRSRTRRGTSVRERTY

x2 2 -2

x1

Fig. 8. 3D plot of the approximation error for the control.
research efforts will now be directed towards integrating a third
neural network with the actor/critic structure with the purpose

of approximating in an online fashion the system dynamics, as
suggested by Werbos (1974, 1989, 1992).
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Appendix. Proofs

Proof for Technical Lemma 2 Part a. This is a more complete
version of results in loannou and Fidan (2006) and Tao (2003).
Set ey = 0in (26). Take the Lyapunov function

Tor 1
L= Wi 'W;. (A1)

The derivative is

L=-Wl5 6w,
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Integrating both sides

t+T
Lit+T)—L(t) = —/ W!oi(t)ol (r)Wydr
t

t+T
Lt +T) = L(t) — W] (b) / @' (7, t)o1(1)o] (1)
x &(t, t)erlt(t)
= L(t) — W] (DS W1 (t) < (1 — 2aB3)L(D).
So

Lt +T) < (1—2a183)L(t). (A2)

Define y = (1 — 2a43). By using norms we write (A.2) in terms of
W as

Zial [wee+) HZ <Ja- 2alﬁ3)2ia1 [w H2
[wee+n)| = Va=2a8) [wo|
e+ <y |wol.

Therefore

IW&D)| < y W) (A3)

ie. W(t) decays exponentially. To determine the decay time
constant in continuous time, note that

W (KT)|| < e | W (0)]]

—akT

(A4)

where e = y*. Therefore the decay constant is

«=—310) & o=~ (/1= 2af).

T
This completes the proof. O

(A5)

Proof for Technical Lemma 2 Part b. Consider the system
x(t) = B(t)u(t)

y(©) = CT(Ox().

The state and the output are

t+T
X(t +T) = x(t) + B(t)u(r)dt

t
yt+T)=CT(t +Tx(t +T).
Let C(t) be PE, so that

t+T
Bl <S¢ = / C(M)CT WA < Bol.
t
Then,

t+T
y(t+T) =CT(t + Tx(t) + / CT(t + T)B(v)u(r)dr
t

t+T s
f Cc) (y(x)— / CT(A)B(r)u(t)dr> da
t

t

t+T
= / C)CTV)x(t)da

t+T A
f c(n) <y(A) — / CT(A)B(r)u(t)dr> dr = Scx(t)
t

t

t+T A
x(t) = 7' { / ch) (y(k) - / CT(A)B(r)u(r)dr) dk}.

t

Taking the norms in both sides yields

t+T
sc! / C(L)y(r)dx ‘
t

t+T A
551{/ Cc(n) (/ CT(A)B(r)u(r)dr>dk}H

4T 1
IOl < (BiD~! (/ C(A)CT(A)dA>

t+T %
x ( f ymTy(A)dA)
t

t+T t+T
+ s {/ lcoac | cu/ ||B(T)u(t)||dr}
t t

x(®)]l =

+

T 8 t+T
Ol < —ngymax + % / 1B(D)] - lu(@)llde (A9)

where § is a positive constant of the order of 1. Now consider

W1(t) = a161u. (A.10)
Note that settingu = —y + ;—i with output giveny = 617 W, turns

(A.10) into (26). Set B = a161,C = &1, x(t) = Wj so that (A.6)
yields (A.10). Then,

< Ymax T €max (A.11)

EH
lull < lyll + || —
ms

since ||m;|| > 1. Then,

t+T t+T
N = / 1B - lu()llde = / lai61 ()] - Ju()lde
t t

t+T
01 Y + Em) / 161(0)llde
t

=
4T 1/2 t+T 172
< 01V + Em) [ | 1 (r)nzdr] [ | 1dr]
t t
By using (A.8),
N < a1(Ymax + Emax)\/ BaT. (A.12)
Finally (A.9) and (A.12) yield,
~ BT
Wi(t) < 52 {[Ymax + 68201 (Emax + Ymax) 1} - (A.13)
1

This completes the proof. O

Proof of Theorem 2. The convergence proof is based on Lyapunov
analysis. We consider the Lyapunov function

1 - - 1 - ~
L(t) = V(x) + 5tr(w{a;]wg + 5tr(w{a;]wz). (A.14)

With the chosen tuning laws one can then show that the errors W1

and W, are UUB and convergence is obtained.
Hence the derivative of the Lyapunov function is given by

i) = V(x) + WiaT "Wy + Wlay ' W,
= Ly(x) + Li(x) + L(x).

First term is,

(A.15)

. 1— N
V(x) = Wy <V¢>1f(><) - 5D1(x)wz)

1 A
+ Vel () (f(x) - Eg(X)Rf]gT(X)V%TWz) :
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Then

. 1— ~
V(x) =Wy <V¢1f(x) - 5D1(X)W2> +e1(x)
T 1 = "
= WVoif (9 + WDy (W1 — W)
1
- EW{Dl(X)Wl +&1(%)
1 — ~ 1 —

= W{Vgif(x) + EW{Dl(X)WZ - EW{DI(X)WI +e1(%)

_ T 1 I -

= Wl o1+ 2W1 D1(x)W, + &1(x)
where

1 ~
e1(x) = £(x) = Ve' (%) (f(x) - Eg(x)R”gT(X)VQSlT(X)Wz) .
From the HJB equation
1
Wio) = —Q(x) — ZWlTD](X)W] + ey (X).
Then
. 1 _
Ly(x) = —Q(x) — ZW{ D1 ()W,
1 _ -

+ EW{D1(X)W2 + epp(X) +&1()

. 1 . -
=L, + 5W{Dl(x)w2 + &1(%). (A.16)
Second term is,

i,] = W]TOZ;]‘;\H

_ T -1 02 7 Tars
= W]d] o1 > 0, W] +Q(X)+ W2D1W2
(0200 +1) 4
5T 02 7 1T 2
= W —2— (o] Wy + Q) + - WID, (W,
(o2 +1) !

1 _
- QW) — oWy — ZW{D1(X)W1 + SHJB(X))
~ o ~
= W/ % (a{ W, — o] ()W,
(az oy + 1)
1 A= A 1 -
+ ZWZTDl(X)Wz - ZWITD](X)W] + 8HjB(X)>
~ O ~ T
- W—— (— Wi (V1) ()
(02 oy + 1)
I B 1=
- sz Di(x)W; + 5W1 Di(x)W; + ZWZ Di(x)W,
1 _
- ZW{Dl(X)Wl + SHJB(X)>
~T (%)) T T ~ 1. = ~
= W] s 2 —f ) V¢1 X)W1 + *WZ D1(x)W;
(O’ZTO‘Z +1 2

1~.— ~
+ ZW2TD1(X)W2 + SH]B(X)) .

; T 02 Vi 17 =
Ly = Wi———— | —o, Wi + —W, Di(x)W> + epp(x)
(0302 + 1) 4
1
= Li+-W/ . W, D1 (x)W, (A17)
(02 oy + 1
where
O ~
L] = WlT 2 )2 (—o‘zTW1 =+ 5H]B(X))

(O‘ZTO'Z +1

~ ~ & X

S

Finally by adding the terms (A.16) and (A.17)

L(x)

1 - 1 _ -
—Qx) — ZW{ Dy (x)W; + Ew{ D1 ()W,
~ o
+emp(X) +e1(x) + W{%
("2 oy + 1)

~ 1-~..- ~ ~ 2
X (—O'ZTW1 + ZWZTD] (X)Wz + 81.1]3()()) + WZTOl2_1W2

. ~ . ~ A ] ~ p—
L(x) = Ly + L +&1(x) — WTa;1W2 + fwTD] (x)w1

1-

+ - W Dl(X)W1 W1 A D1(X)W1 W1
S 4 ms

—T

+ - W2D1(X)W2EW1+ WZDl(X)Wzawl

S

(A.18)

where
02

= and m;=oloy + 1.
02T(72+1 s 272

In order to select the update law for the action neural network,
write (A.18) as

14 1— A 52T A
, Wi — *Dl(X)W2§W1

S

L(X) = iv +i1 +81(X) — WZT I:Ol

1 - —T
+ =Wy D1 (xOW; + - W2 Dl(X)Wl 2
2 mg
1~ o T 1~
- = (X)Wl Wi+ - W D1(X)W1 2 W,
4 ms m

S

and we define the actor tuning law as

A

N ~ 1- N ~
Wy = —ay {(szz — F162TW1> - an(x)wzm7w1} . (A19)

This adds to L the terms
WIERW, — WIF &I W,

=W, (W, — W,) — W, Fi6; (Wy — Wh)

= WIEW;, — WIEW, — WIFi6] W,y + WIF el w;.
Overall

. 1 _
L(x) = —Qx) — ZW{ D1 (x)W; + exp(x)

~r I e (X
+ W] &, (—02TW1 + Hifl( )) +e1(x)

S

5T
+ - Wle(X)W1+ W2D1(X)W1mW1

S

1~ 1~
— *W D] (X)W] W] + W D] (X)W] Wz
4 m; 4 ms

+WIEW;, — WIEW, — WIF6IW, + WIF&IW,.  (A20)

Now it is desired to introduce norm bounds. It is easy to show that
under the assumptions

1O < ey Il -+ 5 be,b2bg,omn ) (1W1+ 2] ).
Also, since Q(x) > O there exists q such that xX'gx < Q(x) for

X € £.1It is shown in Abu-Khalaf and Lewis (2005) that ey
converges to zero uniformly as N increases.
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Select ¢ > 0 and Ny(¢) such that sup,.p H sH]BH < é&. Then,

X

assuming N > Ny and writing in terms of Z = |, W, | (A.20)
W,
becomes
.1 S 1 5
L < 2IWill* [D1@] + & + 5 IWil1be, by bzomin (R)
[ql 0 0
0 I 1F ! DWW '
_7T T 87ms 1Wh 7
1 1 - 1 - : =
0 755 — S—msnlm F, — 3 (D1wym" + mw{ D)
I bstf
&€
+27 mg (A.21)
1- 1-
(501 +F—Fd) — ZDIWImT> Wy + b}xbgbd,xamm(R)
Define
ql 0 0
0 i Ly ' bw !
M= T2 T gy (A.22)
1 1 - 1 /- _
0 —-F—(—Dw F——(DWm mWTD)
>h <8m5 1 1) 2= g \Dia + 1D1
be,b,
%f
d= ms

1- _T 1- T 1 5
ED] +Fy - F10’2 — ZD]W]TT[ Wi + Engbgbquﬂmin(R)

1
= Wi l|bey by b omin (R).-

= L iwa 2 By + ¢ +
3" 1 2

Let the parameters be chosen such that M > 0. Now (A.21)
becomes

. ~ 112 -
P<— HZH min(M) + |Id| Hz“ Yot

Completing the squares, the Lyapunov derivative is negative if

c+e¢
Omin(M)

It is now straightforward to demonstrate that if L exceeds a certain
bound, then, L is negative. Therefore, according to the standard
Lyapunov extension theorem (Lewis et al., 1999) the analysis above
demonstrates that the state and the weights are UUB.

This completes the proof. O

|dll &
0 H 2<y,m,,(1\/1)Jr 402, (M)

min

=B,. (A23)
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