216

Sutton

Proceedings of the Seventh International Conference on Machine Learning,
Austin, TX, June 1990.

Integrated Architectures for Learning, Planning, and Reacting
Based on Approximating Dynamic Programming

Richard S. Sutton
GTE Laboratories Incorporated
Waltham, MA 02254
sutton@gte.com

Abstract

This paper extends previous work with Dyna,
a class of architectures for intelligent systems
based on approximating dynamic program-
ming methods. Dyna architectures integrate
trial-and-error (reinforcement) learning and
execution-time planning into a single process
operating alternately on the world and on a
learned model of the world. In this paper, I
present and show results for two Dyna archi-
tectures. The Dyna-PI architecture is based
on dynamic programming’s policy iteration
method and can be related to existing Al
ideas such as evaluation functions and uni-
versal plans (reactive systems). Using a nav-
igation task, results are shown for a simple
Dyna-PI system that simultaneously learns
by trial and error, learns a world model, and
plans optimal routes using the evolving world
model. The Dyna-Q architecture is based
on Watkins’s Q-learning, a new kind of rein-
forcement learning. Dyna-Q uses a less famil-
iar set of data structures than does Dyna-PI,
but is arguably simpler to implement and use.
We show that Dyna-Q architectures are easy
to adapt for use in changing environments.

1 Introduction to Dyna

How should a robot decide what to do? The traditional
answer in Al has been that it should deduce its best
action in light of its current goals and world model,
i.e., that it should plan. However, it is now widely
recognized that planning’s usefulness is limited by its
computational complexity and by its dependence on
an accurate world model. An alternative approach is
to do the planning in advance and compile its result
into a set of rapid reactions, or situation-action rules,
which are then used for real-time decision making. Yet
a third approach is to learn a good set of reactions by
trial and error; this has the advantage of eliminating

the dependence on a world model. In this paper I
briefly introduce Dyna, a class of simple architectures
integrating and permitting tradeoffs among these three
approaches.

Dyna architectures use machine learning algo-
rithms to approximate the conventional optimal con-
trol technique known as dynamic programming (DP)
(Bellman, 1957; Ross, 1983). DP itself is not a learn-
ing method, but rather a computational method for
determining optimal behavior given a complete model
of the task to be solved. It is very similar to state-
space search, but differs in that it is more incremental
and never considers actual action sequences explicitly,
only single actions at a time. This makes DP more
amenable to incremental planning at execution time,
and also makes it more suitable for stochastic or in-
completely modeled environments, as it need not con-
sider the extremely large number of sequences possi-
ble in an uncertain environment. Learned world mod-
els are likely to be stochastic and uncertain, making
DP approaches particularly promising for learning sys-
tems. Dyna architectures are those that learn a world
model online while using approximations to DP to
learn and plan optimal behavior.

Intuitively, Dyna is based on the old idea that
planning is like trial-and-error learning from hypothet-
ical experience (Craik, 1943; Dennett, 1978). The
theory of Dyna is based on the theory of DP (e.g.,
Ross, 1983) and on DP’s relationship to reinforcement
learning (Watkins, 1989; Barto, Sutton & Watkins,
1989, 1990), to temporal-difference learning (Sutton,
1988), and to Al methods for planning and search
(Korf, 1990). Werbos (1987) has previously argued for
the general idea of building Al systems that approx-
imate dynamic programming, and Whitehead {1989)
and others (Sutton & Barto, 1981; Sutton & Pinette,
1985; Rumelhart et al., 1986) have presented results
for the specific idea of augmenting a reinforcement
learning system with a world model used for planning.

mailto:sutton@gte.com
刘德荣
文本框
Proceedings of the Seventh International Conference on Machine Learning, Austin, TX, June 1990.

Integrated Architecture for Learning, Planning, and Reacting

2 Dyna-PI: Dyna by Approximating
Policy Iteration

I call the first Dyna architecture Dyna-PI because it
is based on approximating a DP method known as pol-
icy iteration (Howard, 1960). The Dyna-PI architec-
ture consists of four components interacting as shown
in Figure 1. The policy is simply the function formed
by the current set of reactions; it receives as input a
description of the current state of the world and pro-
duces as output an action to be sent to the world.
The world represents the task to be solved; prototypi-
cally it is the robot’s external environment. The world
receives actions from the policy and produces a next
state output and a reward output. The overall task is
defined as maximizing the long-term average reward
per time step (cf. Russell, 1989). The architecture also
includes an explicit world model. The world model is
intended to mimic the one-step input-output behavior
of the real world. Finally, the Dyna-PI architecture in-
cludes an evaluation function that rapidly maps states
to values, much as the policy rapidly maps states to
actions. The evaluation function, the policy, and the
world model are each updated by separate learning
processes.

EVALUATION
FUNCTION -
Heuristic
Reward
[} (scalar)
Y
Reward POLICY
(scalar)
State
Action
WORLD
OR
WORLD MODEL

SWITCH

Figure 1: Overview of the Dyna Architecture. With
the world in place as shown we have reinforcement
learning; with the world model switched in place of
the world we have planning.

For a fixed policy, Dyna-PI is simply a reactive sys-
tem. However, the policy is continually adjusted by an
integrated planning/learning process. The policy is, in
a sense, a plan, but one that is completely conditioned
by current input. The planning process is incremental
and can be interrupted and resumed at any time. It
consists of a series of shallow seaches, each typically
of one step ply, and yet ultimately produces the same
result as an arbitrarily deep conventional search. I call
this relazation planning. Dynamic programming is a
special case of this.

Relaxation planning is based on continually adjust-
ing the evaluation function in such a way that credit
is propagated to the appropriate steps within action
sequences. Generally speaking, the evaluation e(z) of
a state z should be equal to the best of the states y
that can be reached from it in one action, taking into
consideration the reward (or cost) r for that one tran-
sition:

e(z) « = »

where E {-|-} denotes a conditional expected value
and the equal sign is quoted to indicate that this is a
condition that we would like to hold, not one that nec-
essarily does hold. If we have a complete model of the
world, then the right-hand side can be computed by
looking ahead one action. Thus we can generate any
number of training examples for the process that learns
the evaluation function: for any z, the right-hand side
of (1) is the desired output. If the learning process
converges such that (1) holds in all states, then the
optimal policy is given by choosing the action in each
state z that achieves the maximum on the right-hand
side. There is an extensive theoretical basis from dy-
namic programming for algorithms of this type for the
special case in which the evaluation function is tabu-
lar, with enumerable states and actions. For example,
this theory guarantees convergence to a unique evalua-
tion function satisfying (1) and that the corresponding
policy is optimal (Ross, 1983).

The evaluation function and policy need not be ta-
bles, but can be more compact function approxima-
tors such as decision trees, k-d trees, connectionist net-
works, or symbolic rules. Although the existing theory
does not apply to these machine learning algorithms
directly, it does provide a theoretical foundation for
exploring their use in this way. This kind of planning
also extends conventional state-space planning in that
it is applicable to stochastic and uncertain worlds and
to non-boolean goals.

The above discussion gives the general idea of re-
laxation planning, but not the exact form used in

max E{r+e(y)|z,a}, (1)

a€Actions

217

218

Sutton

policy iteration and Dyna-PI, in which the policy is
adapted simultaneously with the evaluation function.
The evaluations in this case are not supposed to re-
flect the value of states given optimal behavior, but
rather their value given current behavior (the current
policy). As the current policy gradually approaches
optimality, the evaluation function also approaches the
optimal evaluation function. In addition, Dyna-PI is
a Monte Carlo or stochastic approzimation variant of
policy iteration, in which the world model is only sam-
pled, not examined directly. Since the real world can
also be sampled, by actually taking actions and ob-
serving the result, the world can be used in place of
the world model in these methods. In this case, the
result is not relaxation planning, but a trial-and-error
learning process much like reinforcement learning (see
Barto, Sutton & Watkins, 1989, 1990). In Dyna-PI,
both of these are done at once. The same algorithm is
applied both to real experience (resulting in learning)
and to hypothetical experience generated by the world
model (resulting in relaxation planning). The results
in both cases are accumulated in the policy and the
evaluation function.

There is insufficient room here to fully justify the
algorithm used in Dyna-PI, but it is quite simple and
is given in outline form in Figure 2. The algorithm is
based on a version of (1) modified to discount later as
opposed to immediate reward:

e(z) “=” max E{r+7e(y)|z,a}, (2)

agActions
where 7, 0 < v < 1, is the discount rate. Whereas (1)
is limited to tasks that end with a clear termination
event, such as'the finding of a goal state or the end of
a board game, (2) can be used for tasks that continue
indefinitely, with rewards and/or penalties arriving on
each step. Algorithms based on (2) are meant to esti-
mate and maximize the expected value of a discounted
sum of future reward:
z},

o]
E{Z ’Yka+1
k=0

where ry,ry,73,... is the sequence of future rewards.
This is a standard optimization criterion in dynamic
programming and Markov decision processes.

3 A Navigation Task

As an illustration of the Dyna-PI architecture, con-
sider the task of navigating the maze shown in the
upper right of Figure 3. The maze is a 6 by 9 grid
of possible locations or states, one of which is marked
as the starting state, “S”, and one of which is marked

1. Decide if this will be a real experience or a hypo-
thetical one.

2. Pick a state z. If this is a real experience, use the
current state.

3. Choose an action: a — Policy(xz)

4. Do action a; obtain next state y and reward r from
world or world model.

5. If this is a real experience, update world model
from z, a, y and r.

6. Update evaluation function so that e(z) is more
like r + ve(y); this is temporal-difference learning.

7. Update policy—strengthen or weaken the ten-
dency to perform action a in state z according to
the error in the evaluation function: » + ye(y) —
e(z).

8. Go to Step 1.

Figure 2. Inner Loop of the Dyna-PI Algorithm.
These steps are repeatedly continually, sometimes with
real experiences, sometimes with hypothetical ones.

as the goal state, “G”. The shaded states act as bar-
riers and cannot be entered. All the other states are
distinct and completely distinguishable. From each
there are four possible actions: UP, DOWN, RIGHT,
and LEFT, which change the state accordingly, except
where such a movement would take the take the system
into a barrier or outside the maze, in which case the
location is not changed. Reward is zero for all tran-
sitions except for those into the goal state, for which
it is +1. Upon entering the goal state, the system is
instantly transported back to the start state to begin
the next trial.! None of this structure and dynamics
i1s known to the Dyna-PI system a priori.

In this demonstration, the world was assumed to
be deterministic, that is, to be a finite-state automa-
ton, and the world model was implemented simply as
next-state and reward tables that were filled in when-
ever a new state-action pair was experienced (Step 5
of Figure 2). The evaluation function was also imple-
mented as a table and was updated (Step 6) according
to the simplest temporal-difference learning method:
e(z) «— e(z)+B(r+ve(y)—e(z)), where B is a positive
learning-rate parameter. The policy was implemented
as a table with an entry w,, for every pair of state z
and action a. Actions were selected (Step 3) stochasti-
cally according to a Boltzmann distribution: P(alz) =
e"'"/zj e¥=i. The policy was updated (Step 8) ac-
cording to: wza «— wWgza + a(r + ye(y) — e(z)). For

!In fact, the goal state is never entered; the UP action

from the state below produces a reward of +1 and sends
the system directly to the start state.

Integrated Architecture for Learning, Planning, and Reacting

hypothetical experiences, states were selected (Step 2)
at random uniformly over all states previously encoun-
tered. The initial values of the evaluation function e(z)
and the policy table entries w,, were all zero; the ini-
tial policy was thus a random walk. The world model
was initially empty; if a state and action were selected
for a hypothetical experience that had never been ex-
perienced in reality, then the following steps (Steps
4-T) were simply omitted.

In this instance of the Dyna-PI architecture, real
and hypothetical experiences were used alternately
(Step 1). For each experience with the real world, k hy-
pothetical experiences were generated with the model.
Figure 3 shows learning curves for k¥ = 0, k¥ = 10,
and k = 100, each an average over 100 runs. The
k = 0 case involves no planning; this is a pure trial-
and-error learning system entirely analogous to those
used in some reinforcement learning systems (Barto,
Sutton & Anderson, 1983; Sutton, 1984; Anderson,
1987). Although the length of path taken from start
to goal falls dramatically for this case, it falls much
more rapidly for the cases including hypothetical ex-

800
G
700
)
600
500
STEPS
PER
TRIAL
400
300 0 Planning steps
(Trial and Error Learning
Only)
200 10 Planning
St
100 Planning
Ste

100

14

1 20 40 60 80 100

TRIALS

Figure 3. Learning Curves for Dyna-PI Systems on
a Simple Navigation Task. A trial is one trip from
the start state “S” to the goal state “G”. The more
hypothetical experiences (“planning steps”) using the
world model, the faster an optimal path was found.

periences, showing the benefit of relaxation planning
using the learned world model. For k£ = 100, the op-
timal path was generally found and followed by the
fourth trip from start to goal; this is very rapid learn-
ing. The parameter values used were # = 0.1,y = 0.9,
and a = 1000 (k = 0) or « = 10 (k = 10 and k = 100).
The « values were chosen roughly to give the best per-
formance for each k value.

Figure 4 shows why a Dyna-PI system that includes
planning solves this problem so much faster than one
that does not. Shown are the policies found by the
k = 0 and k = 100 Dyna-PI systems half-way through
the second trial. Without planning (k = 0), each trial
adds only one additional step to the policy, and so
only one step (the last) has been learned so far. With
planning, the first trial also learned only one step, but
here during the second trial an extensive policy has
been developed that by the trial’s end will reach almost
back to the start state. By the end of the third or
fourth trial a complete optimal policy will have been
found and perfect performance attained.

WITHOUT PLANNING (k = 0)
] n ‘

WITH PLANNING (k = 100)

$
17
s -r‘—)
. - —3
T
N L] T

Figure 4. Policies Found by Planning and Non-
Planning Dyna-PI Systems by the Middle of the Sec-
ond Trial. The black square indicates the current lo-
cation of the Dyna-PI system. The arrows indicate
action probabilities (excess over the smallest) for each
direction of movement.

219

220

Sutton

4 Problems of Changing Worlds

Suppose that, after a Dyna-PI system has learned the
optimal path from start to goal, a new barrier is added
that blocks the optimal path. The Dyna-PI system
described above will run into the block and then try
the formerly effective action many hundreds of times.
Eventually, the correct new path may be found, but
the process is very slow. It seems inappropriately slow
in that the system’s world model is updated immedi-
ately. Even though the world model knows that the
formerly good action is now poor, this is not reflected
in the system’s behavior for a long time. I call this the
blocking problem.

Part of the problem is that the alternative actions
are never tried, even hypothetically, because the policy
assigns them a probability of zero. The model knows
these actions are better, but this has no effect unless
they are tried. One idea for solving this problem is
to allow hypothetical actions to be selected according
to a more liberal policy than that used to select real
actions. The simplest case of this is that in which hy-
pothetical actions are selected at random uniformly.
If this is done, a small adjustment must be made to
the evaluation update (Step 6). Recall that the eval-
uation function is supposed to represent the value of
each state given the current policy. If hypothetical are
selected uniformly, then the bias toward the current
policy must be introduced explicitly. To do this, the
evaluation update (Step 6), on hypothetical steps only,
is altered to be weighted by the current action prob-
ability: e(z) — e(z) + B(r + ve(y) — e(z)) P(alz). In
empirical studies we have indeed found this to be an
improvement on the original algorithm, substantially
improving the robustness of its convergence onto opti-
mal behavior. However, this does not solve the block-
ing problem: the system still takes many hundreds of
actions into an added barrier before finally finding a
way around it.

Now consider a second sort of change in the envi-
ronment. Suppose, after the optimal path has been
learned, a barrier is removed that permits a shorter
path from start to goal. The simple Dyna-PI system
introduced above is unable to take advantage of such
a shortcut; it never wavers from the formerly optimal
path and thus never discovers that the former obsta-
cle is gone. I call this the shortcut problem. In seek-
ing to improve the Dyna-PI system to handle blocks,
we might also seek to improve it to handle shortcuts.
What is needed here is some way of continually testing
the world model. In the next section we introduce a
slightly different architecture that handles both kinds
of changes with little increase in complexity.

5 Dyna-Q: Dyna by Q-learning

The Dyna-PI architecture is in essence the reinforce-
ment learning architecture that my colleagues and
I developed (Sutton, 1984; Barto, Sutton & Ander-
son, 1983) plus the idea of using a learned world
model to generate hypothetical experience and to plan.
Watkins (1989) subsequently developed the relation-
ships between the reinforcement-learning architecture
and dynamic programming (see also Barto, Sutton
& Watkins, 1989, 1990) and, moreover, proposed a
slightly different kind of reinforcement learning called
Q-learning. The Dyna-@ architecture is the combina-
tion of this new kind of learning with the Dyna idea of
using a learned world model to generate hypothetical
experience and achieve planning.

Whereas the original reinforcement learning ar-
chitecture maintains two fundamental memory struc-
tures, the evaluation function and the policy, Q-
learning maintains only one. That one is a cross be-
tween an evalnation function and a policy. For each
pair of state z and action a, Q-learning maintains an
estimate @z, of the value of taking a in . The value
of a state can then be defined as the value of the state’s
best state-action pair:

e(z) e max Qza-

In general, the Q-value for a state z and an action
a should equal the expected value of the immediate
reward r plus the discounted value of the next state y:

Qza “=" E{T + 76(-'/) I :c,a}. (3)

To achieve this goal, the updating steps (Steps 6 and
7 of Figure 2) are implemented by

Qza — Qza + /3(7' + 76(9) - Qxa)- (4)

This is the only update rule in Q-learning. We note
that it is very similar though not identical to Hol-
land’s (1986) bucket brigade and to Sutton’s (1988)
temporal-difference learning.

So far, the Dyna-Q architecture is slightly simpler
than the Dyna-PI architecture. Two data structures
have been replaced with one (which is no larger than
one of the original two), and one update rule and
one parameter (a) have been eliminated. However,
Q-learning generally requires additional complexity in
determining the policy from the Q-values, as we dis-
cuss below. One advantage of Q-learning is that it
requires no special adjustments if the action selection
during hypothetical experience is different from the
current policy. Watkins (1989) has shown that the Q-
values will converge properly whatever policy is used,

Integrated Architecture for Learning, Planning, and Reacting

either hypothetically or in reality, as long as all state-
action pairs are repetitively tried. In the following ex-
periments, actions were selected at random uniformly
(Step 3) on hypothetical experiences.

The simplest way of determining the policy on real
experiences 1s to deterministically select the action
that currently looks best—the action with the max-
imal Q-value. However, as we show below, this ap-
proach alone suffers from inadequate exploration and
can not solve the shortcut problem. In his work with
Q-learning, Watkins implemented the policy proba-
balistically using a Boltzmann distribution: P(a|z) =
e*Qs=s [PP €*9=i. An annealing process was added in
which ¢ tended to infinity so that even a small dif-
ference between Q-values would eventually lead to the
best action being selected with probability one. That
approach, however, recreates the problem of loss of
variability in behavior such that shortcuts can not be
found.

To deal directly with the shortcut problem, a new
memory structure was added that keeps track of the
degree of uncertainty about each component of the
model. For each state z and action a, a record is kept
of the number of time steps n,, that have elapsed since
a was tried in z in a real experience. The square root
/Mza is used as a measure of the uncertainty about
Q@:4.2 To encourage exploration, each state-action pair
is given an ezploration bonus proportional to this un-
certainty measure. For real experiences, the policy is
to select the action a that maximizes Qzq + €y/Mzq,
where ¢ is a small positive parameter. This method
of encouraging variety is very similar to that used in
Kaelbling’s (in preparation) interval-estimation algo-
rithm.

However, this approach alone does not take advan-
tage of the planning capability of Dyna architectures.
Suppose there is a state-action pair that has not been
tested in a long time, but which is far from the cur-
rently preferred path, and thus extremely unlikely to
be tried even with the exploration bonus discussed
above. In a Dyna system, why not expect the sys-
tem to plan an action sequence to go out and test the
uncertain state-action pair? If there is genuine uncer-
tainty, then there is potential benefit in going out and
trying the action, and thus forming such a plan is sim-
ply rational behavior and should be done. It turns out
that there is a simple way to do this in Dyna-Q. The
exploration bonus of ¢,/nz4 is used not in the policy,

2The use of the square root is heuristic but not arbi-
trary, as the standard deviation of all stationary, cumula-
tive random processes increases with the square root of the
number of cumulating steps.

but in the update equation for the Q-values. That is,
(4) is replaced by:3

Qra — Quza + B(r + €/Mzg + 7e(¥) — Qza). (5)

In addition, the system is permitted to hypothetically
experience actions is has never before tried, so that
the exploration bonus for trying them can be propa-
gated back by relaxation planning. This can be done
by starting the system with a non-empty initial model.
In the experiments with Dyna-Q systems reported be-
low, actions that had never been tried were assumed
to produce zero reward and leave the state unchanged.

6 Changing-World Experiments

Experiments were performed to test the ability of
Dyna systems to solve blocking and shortcut problems.
Three Dyna systems were used: the Dyna-PI system
presented earlier in the paper, a Dyna-Q system in-
cluding the exploration bonus (5), called the Dyna-
Q+ system,* and a Dyna-Q system without the explo-
ration bonus (4), called the Dyna-Q- system. All sys-
tems used k£ = 10. For the Dyna-PI system, the other
parameters were set as in the navigation experiment.
For the Dyna-Q systems, they were set at § = 0.5,
v = 0.9, and € = 0.001.

The blocking experiment used the two mazes
shown in the upper portion of Figure 5. Initially a
short path from start to goal was available (first maze).
After 1000 time steps, by which time the short path
was usually well learned, that path was blocked and a
longer path was opened (second maze). Performance
under the new condition was measured for 2000 time
steps. Average results over 50 runs are shown in Fig-
ure 5 for the three Dyna systems. The graph shows a
cumulative record of the number of rewards received
by the system up to each moment in time. In the first
1000 trials, all three Dyna systems found a short route
to the goal, though the Dyna-Q+ system did so signif-
icantly faster than the other two. After the short path
was blocked at 1000 steps, the graph for the Dyna-PI
system remains almost flat, indicating that it was un-
able to obtain further rewards. The Dyna-Q systems,
on the other hand, clearly solved the blocking problem,
reliably finding the alternate path after about 800 time
steps. :

3Note that this differs from (4) only on hypothetical
experiences, as nz, = 0 on real experiences.

In these experiments, the Dyna-Q+ system selected
the action a in each state z that maximized Qm+c\/(nm),
but we have since found that equally good performance can
be obtained simply by picking the action with maximal

Qza-

221

222

Sutton

Cumulative
Reward

0 1000 2000 3000
Time Steps

Figure 5. Average Performance of Dyna Systems on a
Blocking Task. The left maze was used for the first
1000 time steps, the right maze for the last 2000.
Shown is the cumulative reward received by a Dyna
system at each time (e.g., a flat period is a period
during which no reward was received).

The shortcut experiment began with only a long
path available (first maze of Figure 6). After 3000
times steps all three Dyna systems had learned the
long path, and then a shortcut was opened without
interferring with the long path (second maze of Figure
6). The lower part of Figure 6 shows the results. The
increase in the slope of the curve for the Dyna-Q+ sys-
tem, while the others remain constant, indicates that
it alone was able to find the shortcut. The Dyna-Q+
system also learned the original long route faster than
the Dyna-Q- system, which in turn learned it faster
than the Dyna-PI system. However, the ability of
the Dyna-Q+ system to find shortcuts does not come
totally for free. Continually re-exploring the world
means occasionally making suboptimal actions. If one
looks closely at Figure 6, one can see that the Dyna-
Q+ system actually acheives a slightly lower rate of
reinforcement during the first 3000 steps. In a static
environment, Dyna-Q+ will eventually perform worse
than Dyna-Q-, whereas, in a changing environment, it
will be far superior, as here. One possibility is to use
a meta-level learning process to adjust the exploration
parameter ¢ to match the degree of variability of the
environment.

Cumulative
Reward

Time Steps

Figure 6. Average Performance of Dyna Systems on a
Shortcut Task. The left maze was used for the first
3000 time steps, the right maze for the last 3000.
Shown is the cumulative reward received by a Dyna
system at each time (e.g., the slope corresponds to the
rate at which reward was received).

One strength of the Dyna approach is that it ap-
plies to stochastic problems as well as deterministic
ones. We have explored this direction in recent work,
but are not yet ready to present systematic results.
The basic idea is to learn a model which predicts not
a deterministc next state and next reward, but rather
a probability distribution over next states and next
rewards. In the simple cases we have explored, this
reduces to counting the number of times each possible
outcome has occurred. In hypothetical experiences,
the expected value on the right of (3) is then estimated
using the sample statistics. A slightly different explo-
ration bonus is also needed. Promising preliminary
results have so far been obtained for simple problems
involving random autonomous agents and stochastic
state transitions (e.g., action UP takes the system to
the state above 80% of the time, and to a random
neighboring state 20% of the time).

Further results are needed for a thorough compari-
son of Dyna-PI and Dyna-Q architectures, but the re-
sults presented here suggest that it is easier to adapt
Dyna-Q architectures to changing environments.

Integrated Architecture for Learning, Planning, and Reacting

7 Limitations and Conclusions

The simple illustrations presented here are clearly lim-
ited in many ways. The state and action spaces are
small and denumerable, permitting tables to be used
for all learning processes and making it feasible for the
entire state space to be explicitly explored. For large
state spaces it is not practical to use tables or to visit
all states; instead one must represent a limited amount
of experience compactly and generalize from it. Both
Dyna architectures are fully compatible with the use
of a wide range of learning methods for doing this.

We have also assumed that the Dyna systems have
explicit knowledge of the world’s state. In general,
states can not be known directly, but must be esti-
mated from the pattern of past interaction with the
world (Rivest & Schapire, 1987; Mozer and Bachrach,
1990). Dyna architectures can use state estimates
constructed in any way, but will of course be lim-
ited by their quality and resolution. A promising area
for future work is the combination of Dyna architec-
tures with egocentric or “indexical-functional” state
representations (Agre & Chapman, 1987; Whitehead,
1989).

Yet another limitation of the Dyna systems pre-
sented here is the trivial form of search control used.
Search control in Dyna boils down to the decision of
whether to consider hypothetical or real experiences,
and of picking the order in which to consider hypo-
thetical experiences. The tasks considered here are so
small that search control is unimportant, and thus it
was done trivially, but a wide variety of more sophisti-
cated methods could be used. Particularly interesting
is the possibility of using Dyna architectures at higher
levels to make these decisions.

Finally, the examples presented here are limited
in that reward is only non-zero upon termination of
a path from start to goal. This makes the problem
more like the kind of search problem typically studied
in Al, but does not show the full generality of the
framework, in which rewards may be received on any
step and there need not even exist start or termination
states.

Despite these limitations, the results presented
here are significant. They show that the use of an
internal model can dramatically speed trial-and-error
learning processes even on simple problems. Moreover,
they show how planning can be done with the incom-
plete, changing, and oftimes incorrect world models
that are contructed through learning. Finally, they
show how the functionality of planning can be obtained
in a completely incremental manner, and how a plan-
ning process can be freely intermixed with reaction and

learning processes. I conclude that it is not necessary
to choose between planning systems, reactive systems
and learning systems. These three can be integrated
not only into one system, but into a single algorithm,
where each appears as a different facet or different use
of that algorithm.

Acknowledgments

The author gratefully acknowledges the extensive
contributions to the ideas presented here by Andrew
Barto, Chris Watkins and Steve Whitehead. I also
wish to also thank the following people for ideas
and discussions: Paul Werbos, Luis Almeida, Ron
Williams, Glenn Iba, Leslie Kaelbling, John Vittal,
Charles Anderson, Bernard Silver, Oliver Selfridge,
Judy Franklin, Tom Dean and Chris Matheus.

References

Agre, P. E., & Chapman, D. (1987) Pengi: An im-
plementation of a theory of activity. Proceedings of
AAAI-87, 268-272.

Anderson, C. W. (1987) Strategy learning with multi-
layer connectionist representations. Proceedings of the
Fourth International Workshop on Machine Learning,
103-114. Morgan Kaufmann, Irvine, CA.

Barto, A. G., Sutton R. S.; & Anderson, C. W. (1983)
Neuronlike elements that can solve difficult learning
control problems. IEEE Transactions on Systems,
Man, and Cybernetics 13: 834-846.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H.
(1989) Learning and sequential decision making.
COINS Technical Report 89-95, Dept. of Computer
and Information Science, University of Massachusetts,
Ambherst, MA 01003. Also to appear in Learn-
ing and Computational Neuroscience, M. Gabriel and

J.W. Moore (Eds.), MIT Press, 1990.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H.
(1990) Sequential decision problems and neural net-
works. In Advances in Neural Information Processing
Systems 2, D. S. Touretzky, Ed. Morgan Kaufmann,
San Mateo, CA.

Bellman, R. E. (1957) Dynamic Prograemming. Prince-
ton University Press, Princeton, NJ.

Craik, K. J. W. (1943) The Nature of Explanation.
Cambridge University Press, Cambridge, UK.

Dennett, D. C. (1978) Why the law of effect will not
go away. In Brainstorms, by D. C. Dennett, 71-89,
Bradford Books, Montgomery, Vermont.

223

224

Sutton

Howard, R. A. (1960) Dynamic Programming and
Markov Processes. Wiley, New York.

Kaelbling, L. (in preparation) Learning in Embedded
Systems. Stanford Computer Science Ph.D. Disserta-
tion.

Korf, R. E. (1990) Real-Time Heuristic Search. Arti-
ficial Intelligence 42: 189-211.

Mozer, M. C., & Bachrach, J. (1990) Discovering the
structure of a reactive environment by exploration. In
Advances in Neural Information Processing Systems 2,
D. S. Touretzky, Ed. Morgan Kaufmann, San Mateo,
CA. See also Technical Report CU-CS-451-89, Dept.
of Computer Science, University of Colorado at Boul-
der 80309.

Rivest, R. L., & Schapire, R. E. (1987) A new ap-
proach to unsupervised learning in deterministic en-
vironments. Proceedings of the Fourth International
Workshop on Machine Learning, 364-375. Morgan
Kaufmann, Irvine, CA.

Ross, S. (1983) Introduction to Stochastic Dynamic
Programming. Academic Press, New York.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., &
Hinton, G. E. (1986) Schemata and sequential thought
processes in PDP models. In Parallel Distributed Pro-
cessing: Ezplorations in the Microstructure of Cogni-
tion, Volume II, by J. L. McClelland, D. E. Rumel-
hart, and the PDP research group, 7-57. MIT Press,
Cambridge, MA.

Russell, S. J. (1989) Execution architectures and com-
pilation. Proceedings of IICAI-89, 15-20.

Sutton, R. S. (1984) Temporal credit assignment in
reinforcement learning. Doctoral dissertation, Depart-

ment of Computer and Information Science, Untversity
of Massachusetts, Amherst, MA 01003.

Sutton, R.S. (1988) Learning to predict by the meth-
ods of temporal differences. Machine Learning 3: 9-
44.

Sutton, R.S., Barto, A.G. (1981) An adaptive network
that constructs and uses an internal model of its en-

vironment. Cognition and Brain Theory Quarterly 4:
217-246.

Sutton, R.S., Pinette, B. (1985) The learning of world
models by connectionist networks. Proceedings of the
Seventh Annual Conf. of the Cognitive Science Society,
54-64. Lawrence Erlbaum, Hillsdale, NJ.

Watkins, C.J. C. H. (1989) Learning with Delayed Re-
wards. PhD thesis, Cambridge University Psychology
Department.

Werbos, P. J. (1987) Building and understanding
adaptive systems: A statistical/numerical approach to
factory automation and brain research. IEEE Trans-
actions on Systems, Man, and Cybernetics, Jan-Feb.

Whitehead, S. D. (1989) Scaling reinforcement learn-
ing systems. Technical Report 304, Dept. of Com-
puter Science, University of Rochester, Rochester,
NY 14627.

