
Sutton 

Integrated Architectures for Learning, Planning, and Reacting 
Based on Approximating Dynamic Programming 

Richard S. Sutton 
GTE Laboratories Incorporated 

Waltham, MA 02254 
sutton@gte.com 

Abstract 

This paper extends previous work with Dyna, 
a class of architectures for intelligent systems 
based on approximating dynamic program-
ming methods. Dyna architectures integrate 
trial-and-error (reinforcement) learning and 
execution-time planning into a single process 
operating alternately on the world and on a 
learned model of the world. In this paper, I 
present and show results for two Dyna archi-
tectures. The Dyna-PI architecture is based 
on dynamic programming's policy iteration 
method and can be related to existing AI 
ideas such as evaluation functions and uni-
versal plans (reactive systems). Using a nav-
igation task, results are shown for a simple 
Dyna-PI system that simultaneously learns 
by trial and error, learns a world model, and 
plans optimal routes using the evolving world 
model. The Dyna-Q architecture is based 
on Watkins ?s Q-learning, a new kind of rein-
forcement learning. Dyna-Q uses a less famil-
iar set of data structures than does Dyna-PI, 
but is arguably simpler to implement and use. 
We show that Dyna-Q architectures are easy 
to adapt for use in changing environments. 

1 Introduction to Dyna 

How should a robot decide what to do? The traditional 
answer in AI has been that it should deduce its best 
action in light of its current goals and world model, 
i.e., that it should plan. However, it is now widely 
recognized that planning's usefulness is limited by its 
computational complexity and by its dependence on 
an accurate world model. An alternative approach is 
to do the planning in advance and compile its result 
into a set of rapid reactions, or situation-action rules, 
which are then used for real-time decision making. Yet 
a third approach is to learn a good set of reactions by 
trial and error; this has the advantage of eliminating 

the dependence on a world model. In this paper I 
briefly introduce Dyna, a class of simple architectures 
integrating and permitting tradeoffs among these three 
approaches. 

Dyna architectures use machine learning algo-
rithms to approximate the conventional optimal con-
trol technique known as dynamic programming (DP) 
(Bellman, 1957; Ross, 1983). DP itself is not a learn-
ing method, but rather a computational method for 
determining optimal behavior given a complete model 
of the task to be solved. It is very similar to state-
space search, but differs in that it is more incremental 
and never considers actual action sequences explicitly, 
only single actions at a time. This makes DP more 
amenable to incremental planning at execution time, 
and also makes it more suitable for stochastic or in-
completely modeled environments, as it need not con-
sider the extremely large number of sequences possi-
ble in an uncertain environment. Learned world mod-
els are likely to be stochastic and uncertain, making 
DP approaches particularly promising for learning sys-
tems. Dyna architectures are those that learn a world 
model online while using approximations to DP to 
learn and plan optimal behavior. 

Intuitively, Dyna is based on the old idea that 
planning is like trial-and-error learning from hypothet-
ical experience (Craik, 1943; Dennett, 1978). The 
theory of Dyna is based on the theory of DP (e.g., 
Ross, 1983) and on DP's relationship to reinforcement 
learning (Watkins, 1989; Barto, Sutton & Watkins, 
1989, 1990), to temporal-difference learning (Sutton, 
1988), and to AI methods for planning and search 
(Korf, 1990). Werbos (1987) has previously argued for 
the general idea of building AI systems that approx-
imate dynamic programming, and Whitehead (1989) 
and others (Sutton L· Barto, 1981; Sutton L· Pinette, 
1985; Rumelhart et al., 1986) have presented results 
for the specific idea of augmenting a reinforcement 
learning system with a world model used for planning. 
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2 Dyna-PI: Dyna by Approximating 
Policy Iteration 

I call the first Dyna architecture Dyna-PI because it 
is based on approximating a DP method known as pol-
icy iteration (Howard, 1960). The Dyna-PI architec-
ture consists of four components interacting as shown 
in Figure 1. The policy is simply the function formed 
by the current set of reactions; it receives as input a 
description of the current state of the world and pro-
duces as output an action to be sent to the world. 
The world represents the task to be solved; prototypi-
cally it is the robot's external environment. The world 
receives actions from the policy and produces a next 
state output and a reward output. The overall task is 
defined as maximizing the long-term average reward 
per time step (cf. Russell, 1989). The architecture also 
includes an explicit world model. The world model is 
intended to mimic the one-step input-output behavior 
of the real world. Finally, the Dyna-PI architecture in-
cludes an evaluation function that rapidly maps states 
to values, much as the policy rapidly maps states to 
actions. The evaluation function, the policy, and the 
world model are each updated by separate learning 
processes. 

EVALUATION 
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Figure 1: Overview of the Dyna Architecture. With 
the world in place as shown we have reinforcement 
learning; with the world model switched in place of 
the world we have planning. 

For a fixed policy, Dyna-PI is simply a reactive sys-
tem. However, the policy is continually adjusted by an 
integrated planning/learning process. The policy is, in 
a sense, a plan, but one that is completely conditioned 
by current input. The planning process is incremental 
and can be interrupted and resumed at any time. It 
consists of a series of shallow seaches, each typically 
of one step ply, and yet ultimately produces the same 
result as an arbitrarily deep conventional search. I call 
this relaxation planning. Dynamic programming is a 
special case of this. 

Relaxation planning is based on continually adjust-
ing the evaluation function in such a way that credit 
is propagated to the appropriate steps within action 
sequences. Generally speaking, the evaluation e(x) of 
a state x should be equal to the best of the states y 
that can be reached from it in one action, taking into 
consideration the reward (or cost) r for that one tran-
sition: 

e(x) " = " max E {r + e(y) | x, a}, (1) 
aÇActions 

where E {· | ·} denotes a conditional expected value 
and the equal sign is quoted to indicate that this is a 
condition that we would like to hold, not one that nec-
essarily does hold. If we have a complete model of the 
world, then the right-hand side can be computed by 
looking ahead one action. Thus we can generate any 
number of training examples for the process that learns 
the evaluation function: for any x, the right-hand side 
of (1) is the desired output. If the learning process 
converges such that (1) holds in all states, then the 
optimal policy is given by choosing the action in each 
state x that achieves the maximum on the right-hand 
side. There is an extensive theoretical basis from dy-
namic programming for algorithms of this type for the 
special case in which the evaluation function is tabu-
lar, with enumerable states and actions. For example, 
this theory guarantees convergence to a unique evalua-
tion function satisfying (1) and that the corresponding 
policy is optimal (Ross, 1983). 

The evaluation function and policy need not be ta-
bles, but can be more compact function approxima-
tors such as decision trees, k-d trees, connectionist net-
works, or symbolic rules. Although the existing theory 
does not apply to these machine learning algorithms 
directly, it does provide a theoretical foundation for 
exploring their use in this way. This kind of planning 
also extends conventional state-space planning in that 
it is applicable to stochastic and uncertain worlds and 
to non-boolean goals. 

The above discussion gives the general idea of re-
laxation planning, but not the exact form used in 
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policy iteration and Dyna-PI, in which the policy is 
adapted simultaneously with the evaluation function. 
The evaluations in this case are not supposed to re-
flect the value of states given optimal behavior, but 
rather their value given current behavior (the current 
policy). As the current policy gradually approaches 
optimality, the evaluation function also approaches the 
optimal evaluation function. In addition, Dyna-PI is 
a Monte Carlo or stochastic approximation variant of 
policy iteration, in which the world model is only sam-
pled, not examined directly. Since the real world can 
also be sampled, by actually taking actions and ob-
serving the result, the world can be used in place of 
the world model in these methods. In this case, the 
result is not relaxation planning, but a trial-and-error 
learning process much like reinforcement learning (see 
Barto, Sutton & Watkins, 1989, 1990). In Dyna-PI, 
both of these are done at once. The same algorithm is 
applied both to real experience (resulting in learning) 
and to hypothetical experience generated by the world 
model (resulting in relaxation planning). The results 
in both cases are accumulated in the policy and the 
evaluation function. 

There is insufficient room here to fully justify the 
algorithm used in Dyna-PI, but it is quite simple and 
is given in outline form in Figure 2. The algorithm is 
based on a version of (1) modified to discount later as 
opposed to immediate reward: 

e(x) " = " max E{r + ye(y)\x,a}, (2) 
aÇActtons 

where 7, 0 < 7 < 1, is the discount rate. Whereas (1) 
is limited to tasks that end with a clear termination 
event, such as the finding of a goal state or the end of 
a board game, (2) can be used for tasks that continue 
indefinitely, with rewards and/or penalties arriving on 
each step. Algorithms based on (2) are meant to esti-
mate and maximize the expected value of a discounted 
sum of future reward: 

E{f2lkn+1\x}, 

where r i , Γ2, Γ3, . . . is the sequence of future rewards. 
This is a standard optimization criterion in dynamic 
programming and Markov decision processes. 

3 A Navigation Task 

As an illustration of the Dyna-PI architecture, con-
sider the task of navigating the maze shown in the 
upper right of Figure 3. The maze is a 6 by 9 grid 
of possible locations or states, one of which is marked 
as the starting state, "S", and one of which is marked 

1. Decide if this will be a real experience or a hypo-
thetical one. 

2. Pick a state x. If this is a real experience, use the 
current state. 

3. Choose an action: a <— Policy(x) 
4. Do action a; obtain next state y and reward r from 

world or world model. 
5. If this is a real experience, update world model 

from #, a, y and r. 
6. Update evaluation function so that e(x) is more 

like r + ye(y); this is temporal-difference learning. 
7. Update policy—strengthen or weaken the ten-

dency to perform action a in state x according to 
the error in the evaluation function: r + je (y) — 
e(x). 

8. Go to Step 1. 
Figure 2. Inner Loop of the Dyna-PI Algorithm. 
These steps are repeatedly continually, sometimes with 
real experiences, sometimes with hypothetical ones. 

as the goal state, "G". The shaded states act as bar-
riers and cannot be entered. All the other states are 
distinct and completely distinguishable. From each 
there are four possible actions: UP, DOWN, RIGHT, 
and LEFT, which change the state accordingly, except 
where such a movement would take the take the system 
into a barrier or outside the maze, in which case the 
location is not changed. Reward is zero for all tran-
sitions except for those into the goal state, for which 
it is -fi. Upon entering the goal state, the system is 
instantly transported back to the start state to begin 
the next trial.1 None of this structure and dynamics 
is known to the Dyna-PI system a priori. 

In this demonstration, the world was assumed to 
be deterministic, that is, to be a finite-state automa-
ton, and the world model was implemented simply as 
next-state and reward tables that were filled in when-
ever a new state-action pair was experienced (Step 5 
of Figure 2). The evaluation function was also imple-
mented as a table and was updated (Step 6) according 
to the simplest temporal-difference learning method: 
e(x) <— e(x)+ß(r+ye(y) — e(x)) , where ß is a positive 
learning-rate parameter. The policy was implemented 
as a table with an entry wxa for every pair of state x 
and action a. Actions were selected (Step 3) stochasti-
cally according to a Boltzmann distribution: P(a\x) = 
eWxa /J2j ew*J. The policy was updated (Step 8) ac-
cording to: wxa <— wxa + a ( r + ye(y) - e(x)). For 

1In fact, the goal state is never entered; the UP action 
from the state below produces a reward of -f-l and sends 
the system directly to the start state. 
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hypothetical experiences, states were selected (Step 2) 
at random uniformly over all states previously encoun-
tered. The initial values of the evaluation function e(x) 
and the policy table entries wxa were all zero; the ini-
tial policy was thus a random walk. The world model 
was initially empty; if a state and action were selected 
for a hypothetical experience that had never been ex-
perienced in reality, then the following steps (Steps 
4-7) were simply omitted. 

In this instance of the Dyna-PI architecture, real 
and hypothetical experiences were used alternately 
(Step 1). For each experience with the real world, k hy-
pothetical experiences were generated with the model. 
Figure 3 shows learning curves for k = 0, k = 10, 
and k = 100, each an average over 100 runs. The 
k = 0 case involves no planning; this is a pure trial-
and-error learning system entirely analogous to those 
used in some reinforcement learning systems (Barto, 
Sutton & Anderson, 1983; Sutton, 1984; Anderson, 
1987). Although the length of path taken from start 
to goal falls dramatically for this case, it falls much 
more rapidly for the cases including hypothetical ex-

periences, showing the benefit of relaxation planning 
using the learned world model. For Ar = 100, the op-
timal path was generally found and followed by the 
fourth trip from start to goal; this is very rapid learn-
ing. The parameter values used were /? = 0.1,7 = 0.9, 
and a = 1000 (k = 0) or a = 10 (k = 10 and k = 100). 
The a values were chosen roughly to give the best per-
formance for each k value. 

Figure 4 shows why a Dyna-PI system that includes 
planning solves this problem so much faster than one 
that does not. Shown are the policies found by the 
k = 0 and k = 100 Dyna-PI systems half-way through 
the second trial. Without planning (k = 0), each trial 
adds only one additional step to the policy, and so 
only one step (the last) has been learned so far. With 
planning, the first trial also learned only one step, but 
here during the second trial an extensive policy has 
been developed that by the trial's end will reach almost 
back to the start state. By the end of the third or 
fourth trial a complete optimal policy will have been 
found and perfect performance attained. 
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Figure 3. Learning Curves for Dyna-PI Systems on 
a Simple Navigation Task. A trial is one trip from 
the start state "S" to the goal state "G". The more 
hypothetical experiences ("planning steps") using the 
world model, the faster an optimal path was found. 
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Figure 4. Policies Found by Planning and Non-
Planning Dyna-PI Systems by the Middle of the Sec-
ond Trial. The black square indicates the current lo-
cation of the Dyna-PI system. The arrows indicate 
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direction of movement. 
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4 Problems of Changing Worlds 

Suppose that, after a Dyna-PI system has learned the 
optimal path from start to goal, a new barrier is added 
that blocks the optimal path. The Dyna-PI system 
described above will run into the block and then try 
the formerly effective action many hundreds of times. 
Eventually, the correct new path may be found, but 
the process is very slow. It seems inappropriately slow 
in that the system's world model is updated immedi-
ately. Even though the world model knows that the 
formerly good action is now poor, this is not reflected 
in the system's behavior for a long time. I call this the 
blocking problem. 

Part of the problem is that the alternative actions 
are never tried, even hypothetically, because the policy 
assigns them a probability of zero. The model knows 
these actions are better, but this has no effect unless 
they are tried. One idea for solving this problem is 
to allow hypothetical actions to be selected according 
to a more liberal policy than that used to select real 
actions. The simplest case of this is that in which hy-
pothetical actions are selected at random uniformly. 
If this is done, a small adjustment must be made to 
the evaluation update (Step 6). Recall that the eval-
uation function is supposed to represent the value of 
each state given the current policy. If hypothetical are 
selected uniformly, then the bias toward the current 
policy must be introduced explicitly. To do this, the 
evaluation update (Step 6), on hypothetical steps only, 
is altered to be weighted by the current action prob-
ability: e(x) <— e(x) + ß(r + ye(y) — e(x))P{a\x). In 
empirical studies we have indeed found this to be an 
improvement on the original algorithm, substantially 
improving the robustness of its convergence onto opti-
mal behavior. However, this does not solve the block-
ing problem: the system still takes many hundreds of 
actions into an added barrier before finally finding a 
way around it. 

Now consider a second sort of change in the envi-
ronment. Suppose, after the optimal path has been 
learned, a barrier is removed that permits a shorter 
path from start to goal. The simple Dyna-PI system 
introduced above is unable to take advantage of such 
a shortcut; it never wavers from the formerly optimal 
path and thus never discovers that the former obsta-
cle is gone. I call this the shortcut problem. In seek-
ing to improve the Dyna-PI system to handle blocks, 
we might also seek to improve it to handle shortcuts. 
What is needed here is some way of continually testing 
the world model. In the next section we introduce a 
slightly different architecture that handles both kinds 
of changes with little increase in complexity. 

5 Dyna-Q: Dyna by Q-learning 

The Dyna-PI architecture is in essence the reinforce-
ment learning architecture that my colleagues and 
I developed (Sutton, 1984; Barto, Sutton & Ander-
son, 1983) plus the idea of using a learned world 
model to generate hypothetical experience and to plan. 
Watkins (1989) subsequently developed the relation-
ships between the reinforcement-learning architecture 
and dynamic programming (see also Barto, Sutton 
h Watkins, 1989, 1990) and, moreover, proposed a 
slightly different kind of reinforcement learning called 
Q-learning. The Dyna-Q architecture is the combina-
tion of this new kind of learning with the Dyna idea of 
using a learned world model to generate hypothetical 
experience and achieve planning. 

Whereas the original reinforcement learning ar-
chitecture maintains two fundamental memory struc-
tures, the evaluation function and the policy, Q-
learning maintains only one. That one is a cross be-
tween an evaluation function and a policy. For each 
pair of state x and action a, Q-learning maintains an 
estimate Qxa of the value of taking a in x. The value 
of a state can then be defined as the value of the state's 
best state-action pair: 

e(x) = maxQjû. 
a 

In general, the Q-value for a state x and an action 
a should equal the expected value of the immediate 
reward r plus the discounted value of the next state y: 

Qxa " = " £ { r + 7 e ( y ) | z , a } . (3) 

To achieve this goal, the updating steps (Steps 6 and 
7 of Figure 2) are implemented by 

Qxa «- Qxa + ß(r + je(y) - Qxa). (4) 

This is the only update rule in Q-learning. We note 
that it is very similar though not identical to Hol-
land's (1986) bucket brigade and to Sutton's (1988) 
temporal-difference learning. 

So far, the Dyna-Q architecture is slightly simpler 
than the Dyna-PI architecture. Two data structures 
have been replaced with one (which is no larger than 
one of the original two), and one update rule and 
one parameter (a) have been eliminated. However, 
Q-learning generally requires additional complexity in 
determining the policy from the Q-values, as we dis-
cuss below. One advantage of Q-learning is that it 
requires no special adjustments if the action selection 
during hypothetical experience is different from the 
current policy. Watkins (1989) has shown that the Q-
values will converge properly whatever policy is used, 
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either hypothetically or in reality, as long as all state-
action pairs are repetitively tried. In the following ex-
periments, actions were selected at random uniformly 
(Step 3) on hypothetical experiences. 

The simplest way of determining the policy on real 
experiences is to deterministically select the action 
that currently looks best—the action with the max-
imal Q-value. However, as we show below, this ap-
proach alone suffers from inadequate exploration and 
can not solve the shortcut problem. In his work with 
Q-learning, Watkins implemented the policy proba-
balistically using a Boltzmann distribution: P(a\x) = 
e<*Qxai γ^. e<*QXj ^ n annealing process was added in 
which a tended to infinity so that even a small dif-
ference between Q-values would eventually lead to the 
best action being selected with probability one. That 
approach, however, recreates the problem of loss of 
variability in behavior such that shortcuts can not be 
found. 

To deal directly with the shortcut problem, a new 
memory structure was added that keeps track of the 
degree of uncertainty about each component of the 
model. For each state x and action a, a record is kept 
of the number of time steps nxa that have elapsed since 
a was tried in x in a real experience. The square root 
y/nxa is used as a measure of the uncertainty about 
Qxa

2 To encourage exploration, each state-action pair 
is given an exploration bonus proportional to this un-
certainty measure. For real experiences, the policy is 
to select the action a that maximizes Qxa + ty/nxai 

where e is a small positive parameter. This method 
of encouraging variety is very similar to that used in 
Kaelbling's (in preparation) interval-estimation algo-
rithm. 

However, this approach alone does not take advan-
tage of the planning capability of Dyna architectures. 
Suppose there is a state-action pair that has not been 
tested in a long time, but which is far from the cur-
rently preferred path, and thus extremely unlikely to 
be tried even with the exploration bonus discussed 
above. In a Dyna system, why not expect the sys-
tem to plan an action sequence to go out and test the 
uncertain state-action pair? If there is genuine uncer-
tainty, then there is potential benefit in going out and 
trying the action, and thus forming such a plan is sim-
ply rational behavior and should be done. It turns out 
that there is a simple way to do this in Dyna-Q. The 
exploration bonus of Cy/nxa is used not in the policy, 

2The use of the square root is heuristic but not arbi-
trary, as the standard deviation of all stationary, cumula-
tive random processes increases with the square root of the 
number of cumulating steps. 

but in the update equation for the Q-values. That is, 
(4) is replaced by:3 

Qxa <- Qxa + ß(r + Cy/n^ + ye(y) - Qxa). (5) 

In addition, the system is permitted to hypothetically 
experience actions is has never before tried, so that 
the exploration bonus for trying them can be propa-
gated back by relaxation planning. This can be done 
by starting the system with a non-empty initial model. 
In the experiments with Dyna-Q systems reported be-
low, actions that had never been tried were assumed 
to produce zero reward and leave the state unchanged. 

6 Changing-World Experiments 

Experiments were performed to test the ability of 
Dyna systems to solve blocking and shortcut problems. 
Three Dyna systems were used: the Dyna-PI system 
presented earlier in the paper, a Dyna-Q system in-
cluding the exploration bonus (5), called the Dyna-
Q-h system,4 and a Dyna-Q system without the explo-
ration bonus (4), called the Dyna-Q- system. All sys-
tems used k = 10. For the Dyna-PI system, the other 
parameters were set as in the navigation experiment. 
For the Dyna-Q systems, they were set at ß = 0.5, 
7 = 0.9, and e = 0.001. 

The blocking experiment used the two mazes 
shown in the upper portion of Figure 5. Initially a 
short path from start to goal was available (first maze). 
After 1000 time steps, by which time the short path 
was usually well learned, that path was blocked and a 
longer path was opened (second maze). Performance 
under the new condition was measured for 2000 time 
steps. Average results over 50 runs are shown in Fig-
ure 5 for the three Dyna systems. The graph shows a 
cumulative record of the number of rewards received 
by the system up to each moment in time. In the first 
1000 trials, all three Dyna systems found a short route 
to the goal, though the Dyna-Q-h system did so signif-
icantly faster than the other two. After the short path 
was blocked at 1000 steps, the graph for the Dyna-PI 
system remains almost flat, indicating that it was un-
able to obtain further rewards. The Dyna-Q systems, 
on the other hand, clearly solved the blocking problem, 
reliably finding the alternate path after about 800 time 
steps. 

3 Note that this differs from (4) only on hypothetical 
experiences, as nxa — 0 on real experiences. 

4 In these experiments, the Dyna-Q+ system selected 
the action a in each state x that maximized Q x a +£ \J (« io) , 
but we have since found that equally good performance can 
be obtained simply by picking the action with maximal 
Qxa. 
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Figure 5. Average Performance of Dyna Systems on a 
Blocking Task. The left maze was used for the first 
1000 time steps, the right maze for the last 2000. 
Shown is the cumulative reward received by a Dyna 
system at each time (e.g., a flat period is a period 
during which no reward was received). 

The shortcut experiment began with only a long 
path available (first maze of Figure 6). After 3000 
times steps all three Dyna systems had learned the 
long path, and then a shortcut was opened without 
interferring with the long path (second maze of Figure 
6). The lower part of Figure 6 shows the results. The 
increase in the slope of the curve for the Dyna-Q+ sys-
tem, while the others remain constant, indicates that 
it alone was able to find the shortcut. The Dyna-Q-f 
system also learned the original long route faster than 
the Dyna-Q- system, which in turn learned it faster 
than the Dyna-PI system. However, the ability of 
the Dyna-Q-f system to find shortcuts does not come 
totally for free. Continually re-exploring the world 
means occasionally making suboptimal actions. If one 
looks closely at Figure 6, one can see that the Dyna-
Q+ system actually acheives a slightly lower raie of 
reinforcement during the first 3000 steps. In a static 
environment, Dyna-Q-f- will eventually perform worse 
than Dyna-Q-, whereas, in a changing environment, it 
will be far superior, as here. One possibility is to use 
a meta-level learning process to adjust the exploration 
parameter e to match the degree of variability of the 
environment. 

0 3000 6000 

Time Steps 

Figure 6. Average Performance of Dyna Systems on a 
Shortcut Task. The left maze was used for the first 
3000 time steps, the right maze for the last 3000. 
Shown is the cumulative reward received by a Dyna 
system at each time (e.g., the slope corresponds to the 
rate at which reward was received). 

One strength of the Dyna approach is that it ap-
plies to stochastic problems as well as deterministic 
ones. We have explored this direction in recent work, 
but are not yet ready to present systematic results. 
The basic idea is to learn a model which predicts not 
a déterministe next state and next reward, but rather 
a probability distribution over next states and next 
rewards. In the simple cases we have explored, this 
reduces to counting the number of times each possible 
outcome has occurred. In hypothetical experiences, 
the expected value on the right of (3) is then estimated 
using the sample statistics. A slightly different explo-
ration bonus is also needed. Promising preliminary 
results have so far been obtained for simple problems 
involving random autonomous agents and stochastic 
state transitions (e.g., action UP takes the system to 
the state above 80% of the time, and to a random 
neighboring state 20% of the time). 

Further results are needed for a thorough compari-
son of Dyna-PI and Dyna-Q architectures, but the re-
sults presented here suggest that it is easier to adapt 
Dyna-Q architectures to changing environments. 
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7 Limitations and Conclusions 

The simple illustrations presented here are clearly lim-
ited in many ways. The state and action spaces are 
small and denumerable, permitting tables to be used 
for all learning processes and making it feasible for the 
entire state space to be explicitly explored. For large 
state spaces it is not practical to use tables or to visit 
all states; instead one must represent a limited amount 
of experience compactly and generalize from it. Both 
Dyna architectures are fully compatible with the use 
of a wide range of learning methods for doing this. 

We have also assumed that the Dyna systems have 
explicit knowledge of the world's state. In general, 
states can not be known directly, but must be esti-
mated from the pattern of past interaction with the 
world (Rivest k Schapire, 1987; Mozer and Bachrach, 
1990). Dyna architectures can use state estimates 
constructed in any way, but will of course be lim-
ited by their quality and resolution. A promising area 
for future work is the combination of Dyna architec-
tures with egocentric or "indexical-functional" state 
representations (Agre k Chapman, 1987; Whitehead, 
1989). 

Yet another limitation of the Dyna systems pre-
sented here is the trivial form of search control used. 
Search control in Dyna boils down to the decision of 
whether to consider hypothetical or real experiences, 
and of picking the order in which to consider hypo-
thetical experiences. The tasks considered here are so 
small that search control is unimportant, and thus it 
was done trivially, but a wide variety of more sophisti-
cated methods could be used. Particularly interesting 
is the possibility of using Dyna architectures at higher 
levels to make these decisions. 

Finally, the examples presented here are limited 
in that reward is only non-zero upon termination of 
a path from start to goal. This makes the problem 
more like the kind of search problem typically studied 
in AI, but does not show the full generality of the 
framework, in which rewards may be received on any 
step and there need not even exist start or termination 
states. 

Despite these limitations, the results presented 
here are significant. They show that the use of an 
internal model can dramatically speed trial-and-error 
learning processes even on simple problems. Moreover, 
they show how planning can be done with the incom-
plete, changing, and oftimes incorrect world models 
that are contructed through learning. Finally, they 
show how the functionality of planning can be obtained 
in a completely incremental manner, and how a plan-
ning process can be freely intermixed with reaction and 

learning processes. I conclude that it is not necessary 
to choose between planning systems, reactive systems 
and learning systems. These three can be integrated 
not only into one system, but into a single algorithm, 
where each appears as a different facet or different use 
of that algorithm. 
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