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Abstract. This article introduces a class of incremental learning procedures spe-
cialized for prediction—that is, for using past experience with an incompletely known
system to predict its future behavior. Whereas conventional prediction-learning meth-
ods assign credit by means of the difference between predicted and actual outcomes, the
new methods assign credit by means of the difference between temporally successive
predictions. Although such temporal-difference methods have been used in Samuel’s
checker player, Holland’s bucket brigade, and the author’s Adaptive Heuristic Critic,
they have remained poorly understood. Here we prove their convergence and optimality
for special cases and relate them to supervised-learning methods. For most real-world
prediction problems, temporal-difference methods require less memory and less peak
computation than conventional methods; and they produce more accurate predictions.
We argue that most problems to which supervised learning is currently applied are really
prediction problems of the sort to which temporal-difference methods can be applied to
advantage.

1. Introduction

This article concerns the problem of learning to predict, that is, of using past
experience with an incompletely known system to predict its future behavior.
For example, through experience one might learn to predict for particular chess
positions whether they will lead to a win, for particular cloud formations whether
there will be rain, or for particular economic conditions how much the stock market
will rise or fall. Learning to predict is one of the most basic and prevalent kinds
of learning. Most pattern recognition problems, for example, can be treated as
prediction problems in which the classifier must predict the correct classifications.
Learning-to-predict problems also arise in heuristic search, e.g., in learning an
evaluation function that predicts the utility of searching particular parts of the
search space, or in learning the underlying model of a problem domain. An
important advantage of prediction learning is that its training examples can be
taken directly from the temporal sequence of ordinary sensory input; no special
supervisor or teacher is required.
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In this article, we introduce and provide the first formal results in the theory of
temporal-difference (TD) methods, a class of incremental learning procedures spe-
cialized for prediction problems. Whereas conventional prediction-learning meth-
ods are driven by the error between predicted and actual outcomes, TD methods
are similarly driven by the error or difference between temporally successive pre-
dictions; with them, learning occurs whenever there is a change in prediction over
time. For example, suppose a weatherman attempts to predict on each day of the
week whether it will rain on the following Saturday. The conventional approach is
to compare each prediction to the actual outcome—whether or not it does rain on
Saturday. A TD approach, on the other hand, is to compare each day’s prediction
with that made on the following day. If a 50% chance of rain is predicted on
Monday, and a 75% chance on Tuesday, then a TD method increases predictions
for days similar to Monday, whereas a conventional method might either increase
or decrease them depending on Saturday’s actual outcome.

We will show that TD methods have two kinds of advantages over conventional
prediction-learning methods. First, they are more incremental and therefore easier
to compute. For example, the TD method for predicting Saturday’s weather
can update each day’s prediction on the following day, whereas the conventional
method must wait until Saturday, and then make the changes for all days of the
week. The conventional method would have to do more computing at one time
than the TD method and would require more storage during the week. The second
advantage of TD methods is that they tend to make more efficient use of their
experience: they converge faster and produce better predictions. We argue that
the predictions of TD methods are both better and easier to compute than those
of conventional methods.

The earliest and most well-known use of a TD method was in Samuel’s (1959)
celebrated checker-playing program. For each pair of successive positions in a
game, Samuel’s program used the difference between the evaluations assigned to
the two positions to modify the evaluation of the earlier one. Similar methods
have also been used in Holland’s (1986) bucket brigade, in the author’s Adaptive
Heuristic Critic (Sutton, 1984; Barto, Sutton & Anderson, 1983), and in learning
systems studied by Witten (1977), Booker (1982), and Hampson (1983). TD
methods have also been proposed as models of classical conditioning (Sutton &
Barto, 1981a, 1987; Gelperin, Hopfield & Tank, 1985; Moore et al., 1986; Klopf,
1987).

Nevertheless, TD methods have remained poorly understood. Although they
have performed well, there has been no theoretical understanding of how or why
they worked. One reason is that they were never studied independently, but only
as parts of larger and more complex systems. Within these systems, TD methods
were used to improve evaluation functions by better predicting goal-related events
such as rewards, penalties, or checker game outcomes. Here we advocate viewing
TD methods in a simpler way—as methods for efficiently learning to predict arbi-
trary events, not just goal-related ones. This simplification allows us to evaluate
them in isolation and has enabled us to obtain formal results. In this paper, we
prove the convergence and optimality of TD methods for important special cases,
and we formally relate them to conventional supervised-learning procedures.
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Another simplification we make in this paper is to focus on numerical predic-
tion processes rather than on rule-based or symbolic prediction (e.g., Dietterich
& Michalski, 1986). The approach taken here is much like that used in connec-
tionism and in Samuel’s original work—our predictions are based on numerical
features combined using adjustable parameters or “weights”. This and other rep-
resentational assumptions are detailed in Section 2.

Given the current interest in learning procedures for multi-layer connectionist
networks (e.g., Rumelhart, Hinton & Williams, 1985; Ackley, Hinton & Sejnowski,
1985; Barto, 1985; Anderson, 1986; Williams, 1986; Hampson & Volper, 1987),
we note that here we are concerned with a different set of issues. The work with
multi-layer networks is concerned with learning input-output mappings of more
complex functional forms. Most of that work remains within the supervised-
learning paradigm, whereas here we are interested in extending and going beyond
it. We consider mostly mappings of very simple functional forms, because the
differences between supervised learning methods and TD methods are clearest in
these cases. Nevertheless, the TD methods presented here are directly extensible
to the case of multi-layer networks (see Section 6.2).

The next section introduces a specific class of TD procedures by contrasting
them with conventional, supervised-learning approaches, focusing on computa-
tional issues. Section 3 develops an extended example that illustrates the poten-
tial performance advantages of TD methods. Section 4 contains the convergence
and optimality theorems and discusses TD methods as gradient descent. Section
5 discusses how to extend TD procedures, and Section 6 relates them to other
research.

2. Temporal-difference and supervised-learning
approaches to prediction learning

Historically, the most important learning paradigm has been that of supervised
learning. In this paradigm the learner is asked to associate pairs of items. When
later presented with just the first item of a pair, the learner is supposed to recall the
second. This paradigm has been used in pattern classification, concept acquisition,
learning by examples, system identification, and associative memory. For example,
in pattern classification and concept acquisition, the first item is something that
might be an instance of the pattern or concept, and the second item is an indication
of whether it is or not. In system identification, the learner must reproduce the
input-output behavior of some unknown system. Here, the first item of each pair
is an input and the second is the corresponding output.

Any prediction problem can be cast in the supervised-learning paradigm by
taking the first item to be the data based on which a prediction must be made,
and the second item to be the actual outcome, what the prediction should have
been. For example, to predict Saturday’s weather, one can form a pair from the
measurements taken on Monday and the actual observed weather on Saturday,
another pair from the measurements taken on Tuesday and Saturday’s weather,
and so on. Although this pairwise approach ignores the sequential structure of the
problem, it is easy to understand and analyze and has been widely used. In this
paper, we refer to this as the supervised-learning approach to prediction learning,
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and we refer to learning methods that take this approach as supervised-learning
methods. We argue that such methods are indequate, that TD methods are far
preferable.

2.1 Single-step and multi-step prediction

To clarify this claim, we distinguish two kinds of prediction-learning problems.
In single-step prediction problems, all information about the correctness of each
prediction is revealed at once, whereas, in multi-step prediction problems, cor-
rectness is not revealed until more than one step after the prediction is made,
while partial information relevant to its correctness s revealed at each step. For
example, the weather prediction problem mentioned above is a multi-step predic-
tion problem because inconclusive evidence relevant to the correctness of Monday’s
prediction becomes available in the form of new observations on Tuesday, Wednes-
day, Thursday and Friday. On the other hand, if each day’s weather were to be
predicted on the basis of the previous day’s observations—that is, on Monday
predict Tuesday’s weather, on Tuesday predict Wednesday’s weather, etc.—that
would be a single-step prediction problem, assuming no further observations were
made between the time of each day’s prediction and its confirmation or refutation
on the following day.

In this paper, we will be concerned only with multi-step prediction problems.
In single-step problems, data naturally comes in observation—outcome pairs; these
problems are ideally suited to the pairwise supervised-learning approach. TD
methods are not even distinct from supervised-learning methods in this case. Al-
though TD methods improve over conventional methods only on multi-step prob-
lems, we argue that these predominate in real-world applications. For example,
predictions about next year’s economic performance are not confirmed or discon-
firmed all at once, but rather bit by bit as the economic situation is observed
through the year. The likely outcome of elections is updated with each new poll,
and the likely outcome of a chess game is updated with each move. When a
baseball batter predicts whether a pitch will be a strike, he updates his prediction
continuously during the ball’s flight.

In fact, many problems that are classically cast as single-step prediction prob-
lems are more naturally viewed as multi-step problems. Perceptual learning prob-
lems, e.g., vision or speech recognition, are classically treated as supervised learn-
ing, using a training set of isolated, correctly-classified, input patterns. When
people hear or see things, on the other hand, they receive a stream of input over
time and constantly update their hypotheses about what they are seeing or hear-
ing. People are faced not with a single-step problem of unrelated pattern—class
pairs, but rather with a series of related patterns, all providing information about
the same classification. To disregard this structure seems improvident.

2.2 Computational issues

In this subsection, we introduce a particular TD procedure by formally relating
it to a classical supervised-learning procedure, the Widrow-Hoff rule. We show
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that the two procedures produce exactly the same weight changes, but that the
TD procedure can be implemented incrementally and therefore requires far less
computer power. In the following subsection, this TD procedure will be used
also as a conceptual bridge to a larger family of TD procedures that produce
weight changes different from any supervised-learning method. First, we detail
the representational assumptions that will be used throughout the paper.

We consider multi-step prediction problems in which experience comes in
observation-outcome sequences of the form xq, xs, 3, ..., Zm, 2, where each z; 1s
a vector of observations available at time ¢ in the sequence, and z is the outcome
of the sequence. Many such sequences will normally be experienced. The com-
ponents of each x; are assumed to be real-valued measurements or features, and
z 1s assumed to be a real-valued scalar. For each observation-outcome sequence,
the learner produces a corresponding sequence of predictions Py, Py, Ps, ..., Py,
each of which is an estimate of z. In general, each P; can be a function of
all preceding observation vectors up through time ¢, but, for simplicity, here we
assume that it is a function only of z;.! The predictions are also based on a
vector of modifiable parameters or weights, w. P;’s functional dependence on
z; and w will sometimes be denoted explicitly by writing it as P(z¢, w).

All learning procedures will be expressed as rules for updating w. For the
moment we assume that w is updated only once for each complete observation-
outcome sequence and thus does not change during a sequence. For each obser-
vation, an increment to w, denoted Awy, is determined, and, after a complete
sequence has been processed, w is changed by (the sum of) all the sequence’s
increments:

w<—w+ZAwt. (1)

t=1

Later, we will consider more incremental cases in which w is updated after each
observation, and also less incremental cases in which it is updated only after
accumulating Aw; ’s over a training set consisting of several sequences.

The supervised-learning approach treats each sequence of observations and
its outcome as a sequence of observation-outcome pairs; that is, as the pairs
(z1,2),(2,2),...,(®m,2). The increment due to time ¢ depends on the error
between P; and z, and on how changing w will affect P, . The prototypical
supervised-learning update procedure is

Awt = O[(Z — Pt)vat; (2)

where « is a positive parameter affecting the rate of learning, and the gradient,
Vu Py, is the vector of partial derivatives of P; with respect to each component
of w.

For example, consider the special case in which P, is a linear function of

and w, that is, in which P, = wlz, = 3, w(i)x,(i) , where w(i) and (i) are

1 The other cases can be reduced to this one by reorganizing the observations in such
a way that each x; includes some or all of the earlier observations. Cases in which
predictions should depend on ¢ can also be reduced to this one by including ¢ as
a component of ;.
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the i*" components of w and x; respectively. > In this case we have VP, = &,
and (2) reduces to the well known Widrow-Hoff rule (Widrow & Hoff, 1960):

Aw; = az — wat)xt.

This linear learning method is also know as the “delta rule”, the ADALINE, and
the LMS filter. It is widely used in connectionism, pattern recognition, signal
processing, and adaptive control. The basic idea is: The difference z — w' z,
represents the scalar error between the prediction, wTz,, and what it should
have been, z. This is multiplied by the observation vector z; to determine the
weight changes because x; indicates how changing each weight will affect the
error. For example, if the error is positive, and () is positive, then w;(¢) will
be increased, increasing w”z; and reducing the error. The Widrow-Hoff rule is
simple, effective, and robust. Its theory is also better developed than that of any
other learning method (e.g., see Widrow and Stearns, 1985).

Another instance of the prototypical supervised-learning procedure is the “gen-
eralized delta rule,” or backpropagation procedure, of Rumelhart, Hinton and
Williams (1985). In this case, P, is computed by a multi-layer connectionist
network and is a nonlinear function of x; and w. Nevertheless, the update rule
used is still exactly (2), just as in the Widrow-Hoff rule, the only difference being
that a more complicated process is used to compute the gradient V., P; .

In any case, note that all Aw; in (2) depend critically on z, and thus cannot
be determined until the end of the sequence when z becomes known. Thus,
all observations and predictions made during a sequence must be remembered
until its end, when all the Aw;’s are computed. In other words, (2) cannot be
computed incrementally.

There is, however, a TD procedure that produces exactly the same result as
(2), and yet which can be computed incrementally. The key is to represent the
error z — P; as a sum of changes in predictions, that is, as

z— P = Z(P’“‘H — Py) where P41 &f .

k=t

Using this, equations (1) and (2) can be combined as

NE
NE

w <—w+Za(z—Pt)Vth —w+
t=1

« (Pk+1_Pk)vat
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—
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~
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o
1l
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1l

1

1
w+ Y a(Pg1— P)Y Vi Py

1 k=1

NE

t

2 wT is the transpose of the column vector w . Unless otherwise noted, all vectors

are column vectors.
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In other words, converting back to a rule to be used with (1):

t
Awt:a(PH_l—Pt)ZVka. (3)

k=1

Unlike (2), this equation can be computed incrementally, because each Aw;
depends only on a pair of successive predictions and on the sum of all past values
for V,, P; . This saves substantially on memory, because it is no longer necessary
to individually remember all past values of V,, P;. Equation (3) also makes much
milder demands on the computational speed of the device that implements it;
although it requires slightly more arithmetic operations overall (the additional
ones are those needed to accumulate Y _; Vi, Py ), they can be distributed over
time more evenly. Whereas (3) computes one increment to w on each time step,
(2) must wait until a sequence is completed and then compute all of the increments
due to that sequence. If M is the maximum possible length of a sequence, then
under many circumstances (3) will require a computer with only 1/M th of the
memory and speed of that required to run (2).3

For reasons that will be made clear shortly, we refer to the procedure given by
(3) as the TD(1) procedure. In addition, we will refer to a procedure as linear
if its predictions P; are a linear function of the observation vectors xz; and the
vector of memory parameters w , that is, if P, = w” 2, . We have just proven:

Theorem 1  On multi-step prediction problems, the linear TD(1) procedure
produces the same per-sequence weight changes as the Widrow-Hoff procedure.

Next, we introduce a family of TD procedures that produce weight changes dif-
ferent from those of any supervised-learning procedure.

2.3 The TD( ) ) family of learning procedures

The hallmark of temporal-difference methods is their sensitivity to changes in
successive predictions rather than to overall error between predictions and the
final outcome. In response to an increase (decrease) in prediction from P; to
P;41, an increment Aw; is determined that increases (decreases) the predictions
for some or all of the preceding observation vectors xi,...,z¢. The procedure
given by (3) is the special case in which all of those predictions are altered to
an equal extent. In this article we also consider a class of TD procedures that
make greater alterations to more recent predictions. In particular, we consider
an exponential weighting with recency, in which alterations to the predictions of
observation vectors occurring k steps in the past are weighted according to A*

for 0 <A1
t

Aw, = a(Pryy — P) Y A TFV, Py (4)
k=1

3 Strictly speaking, there are other incremental procedures for implementing the
combination of (1) and (2), but only the TD rule (3) is appropriate for updating
w on a per-observation basis.
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Note that for A = 1 this is equivalent to (3), the TD implementation of the
prototypical supervised-learning method. Accordingly, we call this new procedure
TD( A) and the procedure given by (3), TD(1).

Alterations of past predictions can be weighted in ways other than the exponen-
tial form given above, and this may be appropriate for particular applications; but
an important advantage to the exponential form is that it can be computed incre-
mentally. Given that e; is the value of the sum in (4) for ¢, we can incrementally
compute e;y1 , using only current information, as

t+1

t+1-k
erp1 = »_ ANTIFY, P
k=1

t
=VuPip1+ Y NTFY, P
k=1

=VuPii1+ Aey.

For A < 1, TD( ) produces weight changes different from those made by
any supervised-learning method. The difference is greatest in the case of TD(0)
(where A =0), in which the weight increment is determined only by its effect on
the prediction associated with the most recent observation:

Awt = a(Pt+l — Pt)vat

Note that this procedure i1s formally very similar to the prototypical supervised-
learning procedure (2). The two equations are identical except that the actual
outcome z in (2) is replaced by the next prediction P;4; in the equation above.
The two methods use the same learning mechanism, but with different errors.
Because of these relationships and TD(0)’s overall simplicity, it is an important
focus here.

3. Examples of faster learning with TD methods

In this section we begin to address the claim that TD methods make more
efficient use of their experience than do supervised-learning methods, that they
converge more rapidly and make more accurate predictions along the way. TD
methods have this advantage whenever the data sequences have a certain statisti-
cal structure that is ubiquitous in prediction problems. This structure naturally
arises whenever the data sequences are generated by a dynamical system, that is,
by a system that has a state which evolves and is partially revealed over time.
Almost any real system is a dynamical system, including the weather, national
economies, and chess games. In this section, we develop two illustrative examples:
a game playing example to help develop intuitions, and a random-walk example
as a simple demonstration with experimental results.

3.1 A game-playing example

It seems counter-intuitive that TD methods might learn more efficiently than
supervised-learning methods. In learning to predict an outcome, how can one do
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Figure 1. A game-playing example showing the inefficiency of supervised-learning meth-
ods. Each circle represents a position or class of positions from a two-person
board game. The “bad” position is known from long experience to lead 90% of
the time to a loss and only 10% of the time to a win. The first game in which
the “novel” position occurs evolves as shown by the dashed arrows. What
evaluation should the novel position receive as a result of this experience?
Whereas TD methods correctly conclude that it should be considered another
bad state, supervised-learning methods associate it fully with winning, the
only outcome that has followed it.

better than by knowing and using the true actual outcome as a performance stan-
dard? How can using a biased and potentially inaccurate subsequent prediction
possibly be a better use of the experience? The following example is meant to
provide an intuitive understanding of how this is possible.

Suppose there is a game position that you have learned is bad for you, that has
resulted most of the time in a loss and only rarely in a win for your side. For
example, this position might be a backgammon race in which you are behind, or a
disadvantageous configuration of cards in blackjack. Figure 1 represents a simple
case of such a position as a single “bad” state that has led 90% of the time to a
loss and only 10% of the time to a win. Now suppose you play a game that reaches
a novel position (one that you have never seen before), that then progresses to
reach the bad state, and that finally ends nevertheless in a victory for you. That
is, over several moves it follows the path shown by dashed lines in Figure 1. As a
result of this experience, your opinion of the bad state would presumably improve,
but what of the novel state? What value would you associate with it as a result
of this experience?

A supervised-learning method would form a pair from the novel state and the
win that followed it, and would conclude that the novel state is likely to lead
to a win. A TD method, on the other hand, would form a pair from the novel
state and the bad state that immediately followed 1t, and would conclude that
the novel state is also a bad one, that it is likely to lead to a loss. Assuming
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O—E—O—O~—0O—E—C

Figure 2. A generator of bounded random walks. This Markov process generated the
data sequences in the example. All walks begin in state D). From states B,
C, D, E,and F, the walk has a 50-50 chance of moving either to the
right or to the left. If either edge state, A or (G, is entered, then the walk
terminates.

we have properly classified the “bad” state, the TD method’s conclusion is the
correct one; the novel state led to a position which you know usually leads to
defeat; what happened after that is irrelevant. Although both methods should
converge to the same evaluations with infinite experience, the TD method learns
a better evaluation from this limited experience.

The TD method’s prediction would also be better had the game been lost after
reaching the bad state, as is more likely. In this case, a supervised-learning method
would tend to associate the novel position fully with losing, whereas a TD method
would tend to associate it with the bad position’s 90% chance of losing, again a
presumably more accurate assessment. In either case, by adjusting its evaluation
of the novel state towards the bad state’s evaluation, rather than towards the ac-
tual outcome, the TD method makes better use of the experience. The bad state’s
evaluation is a better performance standard because it is uncorrupted by random
factors that subsequently influence the final outcome. It is by eliminating this
source of noise that TD methods can outperform supervised-learning procedures.

In this example, we have ignored the possibility that the bad state’s previously
learned evaluation is in error. Such errors will inevitably exist and will affect the
efficiency of TD methods in ways that cannot easily be evaluated in an example
like this. The example does not prove TD methods will be better on balance, but it
does demonstrate that a subsequent prediction can easily be a better performance
standard than the actual outcome.

This game playing example can also be used to show how TD methods can fail.
Suppose the bad state is usually followed by defeats exzcept when it is preceded
by the novel state, in which case it always leads to a victory. In this odd case,
TD methods could not perform better and might perform worse than supervised-
learning methods. Although there are several techniques for eliminating or min-
imizing this sort of problem, it remains a greater difficulty for TD methods than
it does for supervised-learning methods. TD methods try to take advantage of
the information provided by the temporal sequence of states, whereas supervised-
learning methods ignore it. It is possible for this information to be misleading,
but more often it should be helpful.
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Finally, note that although this example involved learning an evaluation func-
tion, nothing about it was specific to evaluation functions. The methods can
equally well be used to predict outcomes unrelated to the player’s goals, such
as the number of pieces left at the end of the game. If TD methods are more
efficient than supervised-learning methods in learning evaluation functions, then
they should also be more efficient in general prediction-learning problems.

3.2 A random-walk example

The game-playing example is too complex to analyze in great detail. Previous
experiments with TD methods have also used complex domains (e.g., Samuel,
1959; Sutton, 1984; Barto, Sutton & Anderson, 1983; Anderson, 1986, 1987).
Which aspects of these domains can be simplified or eliminated, and which aspects
are essential in order for TD methods to be effective? In this paper, we propose
that the only required characteristic is that the system predicted be a dynamical
system, that it have a state that can be observed evolving over time. If this is true,
then TD methods should learn more efficiently than supervised-learning methods
even on very simple prediction problems, and this is what we illustrate in this
subsection. Our example is one of the simplest of dynamical systems, that which
generates bounded random walks.

A bounded random walk is a state sequence generated by taking random steps
to the right or to the left until a boundary is reached. Figure 2 shows a system
that generates such state sequences. Every walk begins in the center state D .
At each step the walk moves to a neighboring state, either to the right or to the
left with equal probability. If either edge state (A or G) is entered, the walk
terminates. A typical walk might be DCDEFG . Suppose we wish to estimate
the probabilities of a walk ending in the rightmost state, G, given that it is in
each of the other states.

We applied linear supervised-learning and TD methods to this problem in a
straightforward way. A walk’s outcome was defined to be z = 0 for a walk ending
on the left at A and z = 1 for a walk ending on the right at G'. The learning
methods estimated the expected value of z ; for this choice of z , its expected value
is equal to the probability of a rightside termination. For each non-terminal state
1, there was a corresponding observation vector x; ; if the walk was in state 7 at
time ¢ then z; = x; . Thus, if the walk DCDEFG occurred, then the learning
procedure would be given the sequence xp,xc,xp,xg,xp,1. The vectors {x;}
were the unit basis vectors of length 5, that is, four of their components were 0 and
the fifth was 1 (e.g., xp = (0,0,1,0,0)7 ), with the one appearing at a different
component for each state. Thus, if the state the walk was in at time ¢ has its 1
at the ™" component of its observation vector, then the prediction P, = wT
was simply the value of the i*® component of w . We use this particularly simple
case to make this example as clear as possible. The theorems we prove later for a
more general class of dynamical systems require only that the set of observation
vectors {x;} be linearly independent.

Two computational experiments were performed using observation-outcome se-
quences generated as described above. In order to obtain statistically reliable
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Figure 3. Average error on random walk problem under repeated presentations. All
data are from TD( A) with different values of A. The error measure used is
the RMS error between the ideal predictions and those found by the learning
procedure after being repeatedly presented with the training set until conver-
gence of the weight vector. This measure was averaged over 100 training sets
to produce the data shown. The A = 1 data point is the performance level
attained by the Widrow-Hoff procedure. For each data point, the standard
error is approximately ¢ = 0.01, so the differences between the Widrow-Hoff
procedure and the other procedures are highly significant.

results, 100 training sets, each consisting of 10 sequences, were constructed for use
by all learning procedures. For all procedures, weight increments were computed
according to TD(A), as given by (4). Seven different values were used for A.
These were A = 1, resulting in the Widrow-Hoff supervised-learning procedure,
A = 0, resulting in linear TD(0), and also A = 0.1, 0.3, 0.5, 0.7, and 0.9, resulting
in a range of intermediate TD procedures.

In the first experiment, the weight vector was not updated after each sequence
as indicated by (1). Instead, the Aw’s were accumulated over sequences and only
used to update the weight vector after the complete presentation of a training set.
Each training set was presented repeatedly to each learning procedure until the
procedure no longer produced any significant changes in the weight vector. For
small « , the weight vector always converged in this way, and always to the same
final value, independent of its initial value. We call this the repeated presentations
training paradigm.

The true probabilities of rightside termination—the ideal predictions—for each

of the nonterminal states can be computed as described in section 4.1. These are

%, %, %, % and % for states B, C', D, F and F' | respectively. As a measure
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Figure 4. Average error on random walk problem after experiencing 10 sequences. All
data are from TD( A ) with different values of @ and A. The error measure
used is the RMS error between the ideal predictions and those found by the
learning procedure after a single presentation of a training set. This mea-
sure was averaged over 100 training sets. The A = 1 data points represent
performances of the Widrow-Hoff supervised-learning procedure.

of the performance of a learning procedure on a training set, we used the root
mean squared (RMS) error between the procedure’s asymptotic predictions using
that training set and the ideal predictions. Averaging over training sets, we found
that performance improved rapidly as A was reduced below 1 (the supervised-
learning method) and was best at A = 0 (the extreme TD method), as shown in
Figure 3.

This result contradicts conventional wisdom. It is well known that, under
repeated presentations, the Widrow-Hoff procedure minimizes the RMS error be-
tween its predictions and the actual outcomes in the training set (Widrow &
Stearns, 1985). How can it be that this optimal method performed worse than
all the TD methods for A < 17 The answer is that the Widrow-Hoff procedure
only minimizes error on the training set; it does not necessarily minimize error
for future experience. In the following section, we prove that in fact it is linear
TD(0) that converges to what can be considered the optimal estimates for match-
ing future experience—those consistent with the maximum-likelihood estimate of
the underlying Markov process.

The second experiment concerns the question of learning rate when the the
training set is presented just once rather than repeatedly until convergence. Al-
though it is difficult to prove a theorem concerning learning rate, it is easy to
perform the relevant computational experiment. We presented the same data to
the learning procedures, again for several values of A, with the following pro-
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Figure 5. Average error at best « value on random walk problem. Each data point
represents the average over 100 training sets of the error in the estimates
found by TD( A), for particular A and « values, after a single presentation
of a training set. The A value is given by the horizontal coordinate. The «
value was selected from those shown in Figure 4 to yield the lowest error for
that A value.

cedural changes. First, each training set was presented once to each procedure.
Second, weight updates were performed after each sequence (i.e., as in (1)) rather
than after each complete training set. Third, each learning procedure was applied
with a range of values for the learning-rate parameter «. Fourth, so that there
was no bias either toward rightside or leftside terminations, all components of the
weight vector were initially set to 0.5.

The results for several representative values of A are shown in Figure 4. Not
surprisingly, the value of « had a significant effect on performance, with best
results obtained with intermediate values. For all values, however, the Widrow-
Hoff (TD(1)) procedure produced the worst estimates. All of the TD methods
with A < 1 performed better both in absolute terms and over a wider range of «
values than did the supervised-learning method.

Figure 5 plots the best error level achieved for each A value, that is, using
the « value that was best for that A value. As in the repeated-presentation
experiment, all A values less than 1 were superior to the A = 1 case. In this
experiment, however, the best A value was not 0, but somewhere near 0.3.

One reason A = 0 is not optimal for this problem is that TD(0) is relatively
slow at propagating prediction levels back along a sequence. For example, suppose
states D, E, and F all start with the prediction value 0.5, and the sequence
Xp,Xg,Xp,1 is experienced. TD(0) will change only F'’s prediction, whereas
the other procedures will also change FE’s and D ’s to decreasing extents. If the
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sequence is repeatedly presented, this is no handicap, as the change works back
an additional step with each presentation, but for a single presentation it means
slower learning.

This handicap could be avoided by working backwards through the sequences.
For example, for the sequence xp,xg,xp,1, first F'’s prediction could be up-
dated in light of the 1, then E’s prediction could be updated toward F'’s new
level, and so on. In this way the effect of the 1 could be propagated back to the
beginning of the sequence with only a single presentation. The drawback to this
technique is that it loses the implementation advantages of TD methods. Since it
changes the last prediction in a sequence first, it has no incremental implemen-
tation. However, when this is not an issue, such as when learning is done offline
from an existing database, working backward in this way should produce the best
predictions.

4. Theory of temporal-difference methods

In this section, we provide a theoretical foundation for temporal-difference meth-
ods. Such a foundation is particularly needed for these methods because most of
their learning is done on the basis of previously learned quantities. “Bootstrap-
ping” in this way may be what makes TD methods efficient, but it can also make
them difficult to analyze and to have confidence in. In fact, hitherto no TD method
has ever been proved stable or convergent to the correct predictions. * The theory
developed here concerns the linear TD(0) procedure and a class of tasks typified
by the random walk example discussed in the preceding section. Two major re-
sults are presented: 1) an asymptotic convergence theorem for linear TD(0) when
presented with new data sequences, and 2) a theorem that linear TD(0) converges
under repeated presentations to the optimal (maximum likelihood) estimates. Fi-
nally, we discuss how TD methods can be viewed as gradient-descent procedures.

4.1 Convergence of linear TD(0)

The theory presented here is for data sequences generated by absorbing Markov
processes such as the random walk process discussed in the preceding section. Such
processes, in which each next state depends only on the current state, are among
the formally simplest dynamical systems. They are defined by a set of terminal
states 1", a set of nonterminal states N, and a set of transition probabilities p;;
(i€ N, je€ NUT), where each p;; is the probability of a transition from state i
to state j, given that the process is in state ¢. The “absorbing” property means
that indefinite cycles among the nonterminal states are not possible; all sequences
(except for a set of zero probability) eventually terminate.

Given an initial state ¢; , an absorbing Markov process provides a way of gen-
erating a state sequence ¢1,¢2,...,¢m+1, Where gni1 € T'. We will assume
the initial state is chosen probabilistically from among the nonterminal states,

4 Witten (1977) presented a sketch of a convergence proof for a TD procedure that
predicted discounted costs in a Markov decision problem, but many steps were left
out, and it now appears that the theorem he proposed is not true.
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each with probability g;. As in the random walk example, we do not give the
learning algorithms direct knowledge of the state sequence, but only of a related
observation-outcome sequence 1, 2o, ..., 2&m, 2. Each numerical observation vec-
tor x; is chosen dependent only the corresponding nonterminal state ¢; , and the
scalar outcome z is chosen dependent only on the terminal state ¢nm41 . In what
follows, we assume that there is a specific observation vector x; corresponding
to each nonterminal state ¢ such that if ¢, =i, then x; = x; . For each nonter-
minal state j, we assume outcomes z are selected from an arbitrary probability
distribution with expected value Z; .

The first step toward a formal understanding of any learning procedure is to
prove that it converges asymptotically to the correct behavior with experience.
The desired behavior in this case is to map each nonterminal state’s observation
vector x; to the true expected value of the outcome z given that the state
sequence is starting in 7. That is, we want the predictions P(x;,w) to equal
E{z|i}, Vi € N. Let us call these the ideal predictions. Given complete
knowledge of the Markov process, they can be computed as follows:

E{z]|i} = Zpijfj + Zpij ijkfk + Zpij ijk Zpszz + -

JET JEN keT JEN keN leT

For any matrix M , let [M];; denote its ij*" component, and, for any vector v,
let [v]; denote its i*® component. Let ) denote the matrix with entries [Q];; =
pij for i,j € N, and let h denote the vector with components [h]; = EjeT Dij Zj
for : € N . Then we can write the above equation as

peti =[S0 = [u-07, ®)

k=0 i

The second equality and the existence of the limit and the inverse are assured by
Theorem A.1.% This theorem can be applied here because the elements of Q¥
are the probabilities of going from one nonterminal state to another in %k steps;
for an absorbing Markov process, these probabilities must all converge to 0 as
k— oco.

If the set of observation vectors {x; | ¢ € N } is linearly independent, and if «
is chosen small enough, then it is known that the predictions of the Widrow-Hoff
rule converge in expected value to the ideal predictions (e.g., see Widrow and
Stearns, 1985). We now prove the same result for linear TD(0):

Theorem 2 For any absorbing Markov chain, for any distribution of starting
probabilities p; , for any outcome distributions with finite expected values z; , and
for any linearly independent set of observation vectors {x; |1 € N}, there exists
an € > 0 such that, for all positive a < € and for any initial weight vector, the
predictions of linear TD(0) (with weight updates after each sequence) converge in

5 To simplify presentation of the proofs, some of the more straightforward but po-
tentially distracting steps have been placed in the appendix as separate theorems.
These are referred to in the text as Theorems A.1, A.2, and A.3.
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expected value to the ideal predictions (5). That is, if w, denotes the weight vector
after n sequences have been ezperienced, then lim, oo E {xIw,} = E{z|i} =
[(I-Q)~'h]i, Vie N.

PROOF: Linear TD(0) updates w, after each sequence as follows, where m
denotes the number of observation vectors in the sequence:

Wnt1 = Wy + Z a(Piy1 — P)Vy Py where P &,

1

~
1l

m—1
=wn+ Y a&(Pip1— P)Vu Py + a(z — Pn)Vy P
t=1
m—1
= wp + a(ng‘h+1 - ng‘h)x% + a(z - ng‘bn)xtbna

t=1

where x,, is the observation vector corresponding to the state ¢; entered at time
t within the sequence. This equation groups the weight increments according to
their time of occurrence within the sequence. Each increment corresponds to a
particular state transition, and so we can alternatively group them according to
the source and destination states of the transitions:

Wnp1 = W+ 3 Y mijo (wix; —wixi)xi + > Y nija (2 — wlxi) xi,

ieENjEN ieENjET
where 7;; denotes the number of times the transition ¢ — j occurs in the se-

quence. (For j € T, all but one of the 7;; is 0.)

Since the random processes generating state transitions and outcomes are in-
dependent of each other, we can take the expected value of each term above,
yielding

E{wpyr | wn} = wy + Z Z dipijo w nXj — waZ) X;
tEN jJEN

+sz2pm Zj —w xz)xi;

iEN JET

(6)

where d; is the expected number of times the Markov chain is in state ¢ in one
sequence, so that d;p;; is the expected value of 7;; . For an absorbing Markov
chain (e.g., see Kemeny & Snell, 1976, p. 46):

d" = p"(I - Q)™ (7)

where [d]; = d; and [p]; = pi, 1 € N. Each d; is strictly positive, because any
state for which d; = 0 has no probability of being visited and can be discarded.

Let w, denote the expected value of w, . Then, since the dependence of
E{wpy1 | wn} on w, is linear, we can write

wn+1—wn+zzd2pm w! x]_w X xz+zzd2pm _'_w xz)xi;

iEN jEN teN jeT
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an iterative update formula in w, that depends only on initial conditions. Now
we rearrange terms and convert to matrix and vector notation, letting D denote
the diagonal matrix with diagonal entries [D];; = d; and X denote the matrix
with columns x; :

Wp41 = Wp + @ Z dix; (Z pijZ; + Zpiju_)ng — wp X Z Pij)

‘€N JET JEN JENUT

=W, + Z d;x; ([h]z + Z pingxj- — ngi)

iEN JEN
= 1w, +aXD (h+QXTw, — XTw,);

XTwpp1 = XTw, + aXTXD (h 4+ QX" w, — XTwy,)
=aXTXDh+ (I —aXTXD(I - Q)X w,
=aXTXDh+ (I -aXTXD(I - Q))aXTXDh

+ (I—aXTXD(I - Q) ?XTw,_,

3
|
—_

=Y (I —-aXTXD(I — Q)" aXT X Dh
0
+ (I—aXTXD(I — Q)" X wp.

S
1l

Assuming for the moment that lim,_ (I — aXTXD(I — @Q))" = 0, then, by
theorem A.1, the sequence {X7Tw,} converges to

lim XTw, = (I— (I —aXTXD(I-Q))) " aXTXDh
= -Q) DY XTX) ta taXTXDh
=(I-Q)~"'h;

lim E{x]w,} = [(I - Q) "h]

n—00

; Vie N,
which is the desired result. Note that D~! must exist because D is diagonal
with all positive diagonal entries, and (X7 X)~! must exist by Theorem A.2.

It thus remains to show that lim,_.o(I —aXTXD(I —Q))" = 0. We do this
by first showing that D(I — Q) is positive definite, and then that X7 X D(I — Q)
has a full set of eigenvalues all of whose real parts are positive. This will enable
us to show that o can be chosen such that all eigenvalues of [ —aXT X D(I —Q)
are less than 1 in modulus, which assures us that its powers converge.
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We show that D(I — Q) is positive definite ® by applying the following lemma
(see Varga, 1962, p. 23, for a proof.):

Lemma If A is a real, symmetric, and strictly diagonally dominant matriz
with positive diagonal entries, then A 1is positive definite.

We cannot apply this lemma directly to D(I — @) because it is not symmetric.
However, by Theorem A.3, any matrix A is positive definite exactly when the
symmetric matrix A+ AT is positive definite, so we can prove that D(I — Q) is
positive definite by applying the lemmato S = D(I — Q)+ (D(I —Q))T. S is
clearly real and symmetric; it remains to show that it has positive diagonal entries
and is strictly diagonally dominant.

First, we note that

[D(I = @Q)lij = Y _[Dlirl[I = Qli; = [D]iill — Qlij = &ill — Q.

k

We will use this fact several times in the following.

S ’s diagonal entries are positive, because [S];; = [D(I—Q)]ii+[(D(I-Q)T )i =
2[D(I — Q)i = 2d;[I — Qlis = 2d;(1 — ps;) > 0,i € N . Furthermore, S’s off-
diagonal entries are non-positive, because, for 7 # j, [Sl;; = [D(I — Q)]i; +
[(D(I = @)T)ij = dill — Qi + d;[I — Qljs = —dipij — djp;i <0

S is strictly diagonally dominant if and only if |[S]i:| > 37, [[S]i;], for all
i, with strict inequality holding for at least one i. However, since [S];; > 0 and
[S]ij < 0, we need only show that [S]i; > —3_,,[S]ij, in other words, that

Ejf Slij > 0, which can be directly shown:
Z[S]ij = Z (ID(I = Q)i + (DU — @)"]i)
J —Zd[ Q”-l-ZdI Ql;s
=d; ZI Qlij + dT(I Q)i
i(1— me - I-Q)L  (by ()
di(1 - Zpij + i

> 0.
Furthermore, strict inequality must hold for at least one ¢, because p; must be
strictly positive for at least one ¢. Therefore, S is strictly diagonally dominant
and the lemma applies, proving that S and D(I — @) are both positive definite.

6 A matrix A is positive definite if and only if yT Ay > 0 for all real vectors

y#0.
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Next we show that X7 X D(I —Q) has a full set of eigenvalues all of whose real
parts are positive. First of all, the set of eigenvalues is clearly full, because the
matrix is nonsingular, being the product of three matrices, X7 X , D, and I—Q,
that we have already established as nonsingular. Let A and y be any eigenvalue-
eigenvector pair. Let y = a+bi and 2z = (XTX)" 1y # 0 (ie, y= XTXz2).
Then

YD —Qy=2"XTXD(I - Q)y= 2"y =r"XT Xz = \NX2)"Xz,

where “*” denotes the conjugate-transpose. This implies that
Re (y*D(I - Q)y) = Re ()\(Xz)*Xz);

al’D(I — Q)a+bTD(I — Q)b = (X2)*Xz Re .

Since the left side and (Xz)* Xz must both be strictly positive, so must the real
part of M.

Furthermore, y must also be an eigenvector of I —aXT XD(I — Q) , because
(I —aXTXD(I - Q))y = y—aly = (1 —aX)y. Thus, all eigenvectors of
I—aXTXD(I - Q) are of the form 1—a), where A has positive real part. For
each A=a+bi, a >0,if o is chosen 0 < a < afﬁ, then 1 — aX will have

modulus? less than 1:
|1 —a)| = /(1 —aa)? + (—ab)?
=1 - 2aa + a2a? + a2b?
=/1—2aa+ a?(a? + b2)

2
<¢1—2aa+a—a(az+b2):\/1—2aa+2aa:1.

a? 4 b2

The criterial value —2%; will be different for different A ; choose € to be the

a2+b2
smallest such value. ’f‘-hen, for any positive a < €, all eigenvalues 1 — ad of
I —aXD(I —@)XT are less than 1 in modulus. And this immediately implies
(e.g., see Varga, 1962, p. 13) that lim,_..(I —aXD(I—Q)XT)" = 0, completing
the proof. [ |

We have just shown that the expected values of the predictions found by linear
TD(0) converge to the ideal predictions for data sequences generated by absorbing
Markov processes. Of course, just as with the Widrow-Hoff procedure, the pre-
dictions themselves do not converge; they continue to vary around their expected
values according to their most recent experience. In the case of the Widrow-Hoff
procedure, it 1s known that the asymptotic variance of the predictions is finite and
can be made arbitrarily small by the choice of the learning-rate parameter « . Fur-
thermore, if « is reduced according to an appropriate schedule, e.g., o = % , then
the variance converges to zero as well. We conjecture that these stronger forms

7 The modulus of a complex number a + bi is Va2 + b2 .
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of convergence hold for linear TD(0) as well, but this remains an open question.
Also open is the question of convergence of linear TD( A ) for 0 < A < 1. We now
know that both TD(0) and TD(1) (the Widrow-Hoff rule) converge in the mean
to the ideal predictions; we conjecture that the intermediate TD( A) procedures
do as well.

4.2. Optimality and learning rate

The result obtained in the previous subsection assures us that both TD methods
and supervised learning methods converge asymptotically to the ideal estimates
for data sequences generated by absorbing Markov processes. However, if both
kinds of procedure converge to the same result, which gets there faster? In other
words, which kind of procedure makes the better predictions from a finite rather
than an infinite amount of experience? Despite the previously noted empirical
results showing faster learning with TD methods, this has not been proved for
any general case. In this subsection we present a related formal result which helps
explain the empirical result of faster learning with TD methods. We show that
the predictions of linear TD(0) are optimal in an important sense for repeatedly
presented finite training sets.

In the following, we first define what we mean by optimal predictions for finite
training sets. Though optimal, these predictions are extremely expensive to com-
pute, and neither TD nor supervised-learning methods compute them directly.
However, TD methods do have a special relationship with them. One common
training process is to present a finite amount of data over and over again until the
learning process converges (e.g., see Ackley, Hinton & Sejnowski, 1985; Rumel-
hart, Hinton & Williams, 1985). We prove that linear TD(0) converges under
this repeated presentations training paradigm to the optimal predictions, while
supervised-learning procedures converge to suboptimal predictions. This result
also helps explain TD methods’ empirically faster learning rates. Since they are
stepping toward a better final result, it makes sense that they would also be better
after the first step.

The word optimal can be misleading because it suggests a univerally agreed
upon criterion for the best way of doing something. In fact, there are many kinds
of optimality, and choosing among them is often a critical decision. Suppose that
one observes a training set consisting of a finite number of observation-outcome
sequences, and that one knows the sequences to be generated by an absorbing
Markov process as described in the previous section. What might one mean by
the “best” predictions given such a training set?

If the a priori distribution of possible Markov processes is known, then the
predictions that are optimal in the mean square sense can be calculated through
Baye’s rule. Unfortunately, it is very difficult to justify any a prior: assumptions
about possible Markov processes. In order to avoid making any such assumptions,
mathematicians have developed another kind of optimal estimate, known as the
mazimum-likelihood esttmate. This is the kind of optimality with which we will
be concerned here. For example, suppose one flips a coin ten times and gets seven
heads. What it the best estimate of the probability of getting a head on the next
toss? In one sense, the best estimate depends entirely on e prior: assumptions
about how likely one is to run into fair and biased coins, and thus cannot be
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uniquely determined. On the other hand, the best answer in the maximum-
likelihood sense requires no such assumptions; it is simply % . In general, the
maximum-likelihood estimate of the process that produced a set of data is that
process whose probability of producing the data is the largest.

What is the maximum-likelihood estimate for our prediction problem? If the
observation vectors x; for each nonterminal state ¢ are distinct, then one can
enumerate the nonterminal states appearing in the training set and effectively
know which state the process is in at each time. Since terminal states do not
produce observation vectors, but only outcomes, it is not possible to tell when two
sequences end in the same terminal state; thus we will assume that all sequences
terminate in different states.® Let 7' and N denote the sets of terminal and

nonterminal states respectively, as observed in the training set. Let [Q]i; = pi;

(i,j € N) be the fraction of the times that state i was entered in which a
transition occurred to state j. Let z; be the outcome of the sequence in which

termination occurred at state j € 7', and let [h]; = Y jet bijzj, 1€ N. @ and

h are the maximum-likelihood estimates of the true process parameters () and
h . Finally, estimate the expected value of the outcome z, given that the process

is in state i € N, as
[ee)
Sai] < [u-aril, ©
k=0 i !
That is, choose the estimate that would be ideal if in fact the maximum-likelihood
estimate of the underlying process were exactly correct. Let us call these estimates
the optimal predictions. Note that even though @ is an estimated quantity, it
still corresponds to some absorbing Markov chain. Thus, lim,_ Q” =0, and
Theorem A.1l applies, assuring the existence of the limit and inverse in the above
equation.

Although the procedure outlined above serves well as a definition of optimal
performance, note that it itself would be impractical to implement. First of all, it
relies heavily on the observation vectors x; being distinct, and on the assumption
that they map one-to-one onto states. Secondly, the procedure involves keeping
statistics on each pair of states (e.g., the p;; ) rather than on each state or compo-
nent of the observation vector. If n is the number of states, then this procedure
requires O(n?) memory whereas the other learning procedures require only O(n)
memory. In addition, the right side of (8) must be re-computed each time addi-
tional data become available and new estimates are needed. This procedure may
require as much as O(n®) computation per time step as compared to O(n) for
the supervised-learning and TD methods.

Consider the case in which the observation vectors are linearly independent,
the training set is repeatedly presented, and the weights are updated after each
complete presentation of the training set. In this case, the Widrow-Hoff procedure

8 Alternatively, we may assume that there is only one terminal state and that the
distribution of a sequence’s outcome depends on its penultimate state. This does
not change any of the conclusions of the analysis.
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converges so as to minimize the RMS error between its predictions and the actual
outcomes in the training set (Widrow & Stearns, 1985). As illustrated earlier
in the random-walk example, linear TD(0) converges to a different set of predic-
tions. We now show that those predictions are in fact the optimal predictions in
the maximume-likelihood sense discussed above. That is, we prove the following
theorem:

Theorem 3  For any training set whose observation vectors {x; | i € N}
are linearly independent, there exists an ¢ > 0 such that, for all positive o < €
and for any initial weight vector, the predictions of linear TD(0) converge, un-
der repeated presentations of the training set with weight updates after each com-
plete presentation, to the optimal predictions (8). That is, if wy is the value
of the weight vector aﬁer the training set has been presented n times, then

limy, — 0o X7 w, = [(I — Q) 1il]i, Vie N .

PROOF: The proof of Theorem 3 is almost the same as that of Theorem 2,
so here we only highlight the differences. Linear TD(0) updates w, after each
presentation of the training set:

ms
Wnt1 = Wp + ZZ“(Pts+1 — PV Py,

s t=1

where m; is the number of observation vectors in the s'h sequence in the training
set, P} is the t™" prediction in the s®® sequence, and P, .41 1s defined to be

the outcome of the s sequence. Let 7;; be the number of times the transition
¢ — j appears in the training set; then the sums can be regrouped as

Wnp1 = wo + Y Y mijo (whx; —wlxi) xi+ > > mija (2 — wix) x;

iENJEN iEN jET
= wn + § § dsz; w nXj — w xz x; + § E dsz; j T w xz) X4,
iENJEN iEN jET

where d; is the number of times state i € N appears in the training set. The
rest of the proof for Theorem 2, starting at (6), carries through with estimates
substituting for actual values throughout. The only step in the proof that requires
additional support is to show that (7) still holds, i.e., that d = a7 (I — Q)~!

where [f]; is the number of sequences in the training set that begin in state
i € N . Note that Doien Mii = 2 ieN cii[)ij is the number of times state j appears
in the training set as the destination of a transition. Since all occurrences of state
j must be either as the destination of a transition or as the beginning state of
a sequence cij = [al; + >, cfzﬁ” Converting this to matrix notation, we have

dT = @7 + dTQ , which yields the desired conclusion, d¥ = aT(I — Q)~*, after
algebralc manipulations. [ |

We have just shown that if linear TD(0) is repeatedly presented with a finite
training set, then it converges to the optimal estimates. The Widrow-Hoff rule,
on the other hand, converges to the estimates that minimize error on the training



32 R. S. SUTTON

set; as we saw in the random-walk example, these are in general different from
the optimal estimates. That TD(0) converges to a better set of estimates with
repeated presentations helps explain how and why it could learn better estimates
from a single presentation, but it does not prove that. What is still needed is a
characterization of the learning rate of TD methods that can be compared with
those already available for supervised-learning methods.

4.3 Temporal-difference methods as gradient descent

Like many other statistical learning methods, TD methods can be viewed as
gradient descent (hillclimbing)in the space of the modifiable parameters (weights).
That is, their goal can be viewed as minimizing an overall error measure J(w)
over the space of weights by repeatedly incrementing the weight vector in (an
approximation to) the direction in which J(w) decreases most steeply. Denoting
the approximation to this direction of steepest descent, or gradient, as @wJ(w) ,
such methods are typically written as

Aw, = —aVy, J(wy).

where « is a positive constant determining step size.

For a multi-step prediction problem in which P, = P(z;, w) is meant to ap-
proximate F {z | z;}, a natural error measure is the expected value of the square
of the difference between these two quantities:

1) = Be{ (B 1) - Poxw) ],

where Ex{ } denotes the expectation operator over observation vectors x. J(w)
measures the error for a weight vector averaged over all observation vectors, but
at each time step one usually obtains additional information about only a single
observation vector. The usual next step, therefore, is to define a per-observation
error measure Q(w,x) with the property that Ex{Q(w,x)} = J(w). For a
multi-step prediction problem,

Q(w,x) = (B {z | x} - P(x,w)) .

Each time step’s weight increments are then determined using V., Q(w, ;) , rely-
ing on the fact that Ex{V,Q(w,x)} = V,J(w), so that the overall effect of the
equation for Aw; given above can be approximated over many steps using small
a by

Awy = —aVy,Q(w, 1)

=2« (E {z | ®} — P(xy, w))VwP(xt, w).
The quantity E {z | z;} is not directly known and must be estimated. Depend-

ing on how this is done, one gets either a supervised-learning method or a TD
method. If F{z |z} is approximated by z, the outcome that actually occurs
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following #;, then we get the classical supervised-learning procedure (2). Alter-
natively, if F{z | z;} is approximated by P(z;41,w), the immediately following
prediction, then we get the extreme TD method, TD(0). Key to this analysis is
the recognition, in the definition of J(w), that our real goal is for each prediction
to match the expected value of the subsequent outcome, not the actual outcome
occurring in the training set. TD methods can perform better than supervised-
learning methods because the actual outcome of a sequence is often not the best
estimate of its expected value.

5. Generalizations of TD( )\)

In this article, we have chosen to analyze particularly simple cases of temporal-
difference methods. This has clarified their operation and made it possible to
prove theorems. However, more realistic problems may require more complex
TD methods. In this section, we briefly explore some ways in which the simple
methods can be extended. Except where explicitly noted, the theorems presented
earlier do not strictly apply to these extensions.

5.1 Predicting cumulative outcomes

Temporal-difference methods are not limited to predicting only the final out-
come of a sequence; they can also be used to predict a quantity that accumulates
over a sequence. That is, each step of a sequence may incur a cost, where we wish
to predict the expected total cost over the sequence. A common way for this to
arise is for the costs to be elapsed time. For example, in a bounded random walk
one might want to predict how many steps will be taken before termination; in
a pole-balancing problem one may want to predict time until a failure in balanc-
ing; in a packet-switched telecommunications network one may want to predict
the total delay in sending a packet. In game playing, points may be lost or won
throughout a game, and we are interested in predicting the expected net gain or
loss. In all of these examples, the quantity predicted is the cumulative sum of
a number of parts, where the parts become known as the sequence evolves. For
convenience, we will continue to refer to these parts as costs, even though their
minimization will not be a goal in all applications.

In such problems, it 1s natural to use the observation vector received at each step
to predict the total cumulative cost after that step, rather than the total cost for
the sequence as a whole. Thus, we will want P, to predict the remaining cumu-
lative cost given the ™! observation rather than the overall cost for the sequence.
Since the cost for the preceding portion of the sequence is already known, the
total sequence cost can always be estimated as the sum of the known cost-so-far
and the estimated cost-remaining (cf. the A* algorithm, dynamic programming).

The procedures presented earlier are easily generalized to include the case of pre-
dicting cumulative outcomes. Let ¢;41 denote the actual cost incurred between
times ¢ and ¢+ 1, and let ¢;; denote the expected value of the cost incurred
on transition from state ¢ to state j. We would like P; to equal the expected
value of z; = Eth Ck+1 , Wwhere m is the number of observation vectors in the
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sequence. The prediction error can be represented in terms of temporal differences
as z— P =Y e chp1— P = e (ckh41+ Poy1— Pi) , where we define Ppqq =
0. Then, following the same steps used to derive the TD( A ) family of procedures
defined by (4), one can also derive the cumulative TD( A ) family defined by

t

Aw; = Oé(Ct+1 + Pt+1 )Z)\t ’“V Py.
k=1

The three theorems presented earlier in this article carry over to the cumulative
outcome case with the obvious modifications. For example, the ideal prediction
for each state 2 € N is the expected value of the cumulative sum of the costs:

E{z |2y =x} = Z pijEij+ZPij Z PjkCik

JENUT JEN keNUT
+ E Dij E Djk E PriCri =+ -+ -
JEN keN leNUT

If we let h be the vector with components [h]; = 3 . pijcij, @ € N, then (5)
holds for this case as well. Following steps similar to those in the proof of Theorem
2, one can show that, using linear cumulative TD(0), the expected value of the
weight vector after n sequences have been experienced is

. . ST T
Wnp1 = Wat Y, Y dipgo(Cj +whx; — 0L%;) xi
€N jEN
+ § § dzpzy czy —w xz) X
iEN JET
. . T T
= UWn+to E dix; E PijCij + E Pij Wy Xj — Wy Xy E Pij
1EN JENUT JEN JENUT
= w,+ta« E dix; + E pzyw - w X |,
ieN jEN

after which the rest of the proof of Theorem 2 follows unchanged.

5.2 Intra-sequence weight updating

So far we have concentrated on TD procedures in which the weight vector is
updated after the presentation of a complete sequence or training set. Since each
observation of a sequence generates an increment to the weight vector, in many
respects it would be simpler to update the weight vector immediately after each
observation. In fact, all previously studied TD methods have operated in this
more fully incremental way.
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Extending TD( A) to allow for intra-sequence updating requires a bit of care.
The obvious extension is

t
W41 :wt+a(Pt+1—Pt)Z)\t_kvak, where Pt déf P(xt,wt_l).
k=1

However, if w is changed within a sequence, then the temporal changes in predic-
tion during the sequence, as defined by this procedure, will be due to changes in
w as well as to changes in . This is probably an undesirable feature; in extreme
cases it may even lead to instability. The following update rule ensures that only
changes in prediction due to x are effective in causing weight alterations:

t
Wil = Wy + a(P(xH_l, wy) — P(ay, wt)) Z At_kaP(af:k, we).
k=1

This refinement is used in Samuel’s (1959) checker player and in the Adaptive
Heuristic Critic (Sutton, 1984), but not in Holland’s (1986) bucket brigade or in
the system described by Barto, Sutton, and Anderson (1983).

5.3 Prediction by a fixed interval

Finally, consider the problem of making a prediction for a particular fixed
amount of time later. For example, suppose you are interested in predicting one
week in advance whether or not it will rain—on each Monday, you predict whether
it will rain on the following Monday, on each Tuesday, you predict whether it will
rain on the following Tuesday, and so on for each day of the week. Although
this problem involves a sequence of predictions, TD methods cannot be directly
applied because each prediction is of a different event and thus there is no clear
desired relationship between them.

In order to apply TD methods, this problem must be embedded within a larger
family of prediction problems. At each day ¢, we must form not only P/, our esti-
mate of the probability of rain seven days later, and also P?, PP, ..., P}, where
each P} is an estimate of the probability of rain 6 days later. This will provide for
overlapping sequences of inter-related predictions, e.g., P/, Pt6+1, Pt5+2, .. .,Pt1+6 ,
all of the same event, in this case of whether it will rain on day ¢+ 7. If the
predictions are accurate, we will have P} = Pf_l__ll , Vt,1 <6 <7, where P? is
defined as the actual outcome at time ¢ (e.g., 1 if it rains, 0 if it doesn’t rain).
The update rule for the weight vector w® used to compute P} would be

13
Aw’ = o(PI5 — P} NFY, P
k=1

As illustrated here, there are three key steps in constructing a TD method for
a particular problem. First, embed the problem of interest in a larger class of
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problems, if necessary in order to produce an appropriate sequence of predictions.
Second, write down recursive equations expressing the desired relationship be-
tween predictions at different times in the sequence. For the simplest cases, with
which this article has been mostly concerned, these are just P; = P;41, whereas
in the cumulative outcome case these are Py = P;y1 + ¢;41 . Third, construct
an update rule that uses the mismatch in the recursive equations to drive weight
changes towards a better match. These three steps are very similar to those taken
in formulating a dynamic programming problem (e.g., Denardo, 1982).

6. Related Research

Although temporal-difference methods have never previously been identified or
studied on their own, we can view some previous machine learning research as
having used them. In this section we briefly review some of this previous work in
light of the ideas developed here.

6.1 Samuel’s checker-playing program

The earliest known use of a TD method was in Samuel’s (1959) celebrated
checker-playing program. This was in his “learning by generalization” procedure
that modified the parameters of the function used to evaluate board positions. The
evaluation of a position was thought of as an estimate or prediction of how the
game would eventually turn out starting from that position. Thus, the sequence
of positions from an actual game or an anticipated continuation naturally gave
rise to a sequence of predictions, each about the game’s final outcome.

In Samuel’s learning procedure, the difference between the evaluations of each
pair of successive positions occurring in a game was used as an error; that is, it
was used to alter the prediction associated with the first position of the pair to be
more like the prediction associated with the second. The predictions for the two
positions were computed in different ways. In most versions of the program, the
prediction for the first position was simply the result of applying the current eval-
uation function to that position. The prediction for the second position was the
“backed-up” or minimax score from a lookahead search started at that position,
using the current evaluation function. Samuel referred to the difference between
these two predictions as delta. Although his updating procedure was much more
complicated than TD(0), his intent was to use delta much as P41 — P is used
in (linear) TD(0).

However, Samuel’s learning procedure significantly differed from all the TD
methods discussed here in its treatment of the final step of a sequence. We have
considered each sequence to end with a definite, externally-supplied outcome (e.g.,
1 for a victory and 0 for a defeat). The prediction for the last position in a sequence
was altered so as to match this final outcome. In Samuel’s procedure, on the other
hand, no position had a definite a priori evaluation, and the evaluation for the last
position in a sequence was never explicitly altered. Thus, while both procedures
constrained the evaluations (predictions) of non-terminal positions to match those
that follow them, Samuel’s provided no additional constraint on the evaluation of
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terminal positions. As he himself pointed out, many useless evaluation functions
satisfy just the first constraint (e.g., any function that is constant for all positions).

To discourage his learning procedure from finding useless evaluation functions,
Samuel included in the evaluation function a non-modifiable term measuring how
many more pieces his program had than its opponent. However, although this
modification may have decreased the likelihood of finding useless evaluation func-
tions, it did not prohibit them. For example, a constant function could still have
been attained by setting the modifiable terms so as to cancel the effect of the
non-modifiable one.

If Samuel’s learning procedure was not constrained to find useful evaluation
functions, then it should have been possible for it to become worse with experience.
In fact, Samuel reported observing this during extensive self-play training sessions.
He found that a good way to get the program improving again was to set the weight
with the largest absolute value back to zero. His interpretation was that this drastic
intervention jarred the program out of local optima, but another possibility is that
it jarred the program out of evaluation functions that changed little, but that also
had little to do with winning or losing the game.

Nevertheless, Samuel’s learning procedure was overall very successful; it played
an important role in significantly improving the play of his checker playing pro-
gram until it rivaled human checker masters. Christensen and Korf have inves-
tigated a simplification of Samuel’s procedure that also does not constrain the
evaluations of terminal positions, and have obtained promising preliminary re-
sults (Christensen, 1986; Christensen & Korf, 1986). Thus, although a terminal
constraint may be critical to good temporal-difference theory, apparently it is not
strictly necessary to obtain good performance.

6.2 Backpropagation in connectionist networks

The backpropagation technique of Rumelhart, Hinton and Williams (1985) is
one of the most exciting recent developments in incremental learning methods.
This technique extends the Widrow-Hoff rule so that it can be applied to the in-
terior “hidden” units of multi-layer connectionist networks. In a backpropagation
network, the input-output functions of all units are deterministic and differen-
tiable. As a result, the partial derivatives of the error measure with respect to
each connection weight are well-defined, and one can apply a gradient-descent
approach such as that used in the original Widrow-Hoff rule. The term “back-
propagation” refers to the way the partial derivatives are efficiently computed in
a backward propagating sweep through the network. As presented by Rumelhart
et al., backpropagation is explicitly a supervised-learning procedure.

The purpose of both backpropagation and TD methods is accurate credit-
assignment. Backpropagation decides which part(s) of a network to change so
as to influence the network’s output and thus to reduce its overall error, whereas
TD methods decide how each output of a temporal sequence of outputs should be
changed. Backpropagation addresses a structural credit-assignment issue whereas
TD methods address a temporal credit-assignment issue.
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Although it currently seems that backpropagation and TD methods address
different parts of the credit-assignment problem, it is important to note that they
are perfectly compatible and easily combined. In this article, we have emphasized
the linear case, but the TD methods presented are equally applicable to predictions
formed by nonlinear functions, such as backpropagation-style networks. The key
requirement is that the gradient V,, P; be computable. In a linear system, this is
just x; . In a network of differentiable nonlinear elements, it can be computed by
a backpropagation process. For example, Anderson (1986, 1987) has implemented
such a combination of backpropagation and a temporal-difference method (the
Adaptive Heuristic Critic, see below), successfully applying it to both a nonlinear
broomstick-balancing task and the Towers of Hanoi problem.

6.3 Holland’s bucket brigade

Holland’s (1986) bucket brigade is a technique for learning sequences of rule
invocations in a kind of adaptive production system called a classifier system.
The production rules in a classifier system compete to become active and have
their right-hand sides (called messages) posted to a working-memory data struc-
ture (called the message list). Conflict resolution is carried out by a competitive
auction. Each rule that matches the current contents of the message list makes
a bid that depends on the product of its specificity and its strength, a modifiable
numerical parameter. The highest bidders become active and post their messages
to a new message list for the next round of the auction.

The bucket brigade is the process that adjusts the strengths of the rules and
thereby determines which rules will become active at which times. When a rule
becomes active, it loses strength by the amount of its bid, but also gains strength
if the message it posts triggers other rules to become active in the next round of
the auction. The strength gained is exactly the bids of the other rules. If several
rules post the same message, then the bids of all responders are pooled and divided
equally among the posting rules. In principle, long chains of rule invocations can
be learned in this way, with strength being passed back from rule to rule, thus
the name “bucket brigade.” For a chain to be stable, its final rule must affect the
environment, achieve a goal, and thereby receive new strength in the form of a
payoff from the external environment.

Temporal-difference methods and the bucket brigade both borrow the same key
idea from Samuel’s work—that the steps in a sequence should be evaluated and
adjusted according to their immediate or near-immediate successors, rather than
according to the final outcome. The similarity between TD methods and the
bucket brigade can be seen at a more detailed level by considering the effect of the
bucket brigade on an isolated, linear chain of rule invocations. Each rule’s strength
can be thought of as a prediction of the payoff that will ultimately be obtained
from the environment. Assuming equal specificities, the strength of each rule
experiences a net change dependent on the difference between that strength and
the strength of the succeeding rule. Thus, like TD(0), the bucket brigade updates
each strength (prediction) in a sequence of strengths (predictions) according to
the immediately following temporal difference in strength (prediction).
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There are also numerous differences between the bucket brigade and the TD
methods presented here. The most important of these is that the bucket brigade
assigns credit based on which rules caused which other rules to become active,
whereas TD methods assign credit based solely on temporal succession. The
bucket brigade thus performs both temporal and structural credit assignment in
a single mechanism. This contrasts with the TD/backpropagation combination
discussed in the preceding subsection, which uses separate mechanisms for each
kind of credit assignment. The relative advantages of these two approaches are
still to be determined.

6.4 Infinite discounted predictions and the Adaptive Heuristic Critic

All the prediction problems we have considered so far have had definite out-
comes. That is, after some point in time the actual outcome corresponding to
each prediction became known. Supervised-learning methods require this prop-
erty, because they make no learning changes until the actual outcome is known,
but in some problems it never becomes completely known. For example, suppose
you wish to predict the total return from investing in the stock of various compa-
nies; unless a company goes out of business, total return is never fully determined.

Actually, there is a problem of definition here: if a company never goes out of
business and earns income every year, the total return can be infinite. For reasons
of this sort, infinite-horizon prediction problems usually include some form of
discounting. For example, if some process generates costs c;41 at each transition
from ¢ to ¢+ 1, we may want P, to predict the discounted sum:

(o]
k
2t = Z'y Ct+k+1,
k=0

where the discount-rate parameter v, 0 < < 1, determines the extent to which
we are concerned with short-range or long-range prediction.

If P, should equal the above z; , then what are the recursive equations defin-
ing the desired relationship between temporally successive predictions? If the
predictions are accurate, we can write

[ee]

k
P = Z'y Ct+k+1
k=0

[ee]
k
=cCi1 T Z'y Cttk+2
k=0
=ci41 + YPi41-

The mismatch or TD error is the difference between the two sides of this equation,
(et41 +7Pit1) — Pr.° Sutton’s (1984) Adaptive Heuristic Critic uses this error

9 Witten (1977) first proposed updating predictions of a discounted sum based on a
discrepancy of this sort.
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in a learning rule otherwise identical to TD( A )’s:

t
Aw; = a(ci41 + YPig1 — Pr) Z Nk, Py,
k=1

where P, is the linear form wTw;, so that V,P; = #;. Thus, the Adaptive
Heuristic Critic is probably best understood as the linear TD method for predict-
ing discounted cumulative outcomes.

7. Conclusion

These analyses and experiments suggest that TD methods may be the learn-
ing methods of choice for many real-world learning problems. We have argued
that many of these problems involve temporal sequences of observations and pre-
dictions. Whereas conventional, supervised-learning approaches disregard this
temporal structure, TD methods are specially tailored to it. As a result, they can
be computed more incrementally and require significantly less memory and peak
computation. One TD method makes exactly the same predictions and learning
changes as a supervised-learning method, while retaining these computational ad-
vantages. Another TD method makes different learning changes, but has been
proved to converge asymptotically to the same correct predictions. Empirically,
TD methods appear to learn faster than supervised-learning methods, and one
TD method has been proved to make optimal predictions for finite training sets
that are presented repeatedly. Overall, TD methods appear to be computationally
cheaper and to learn faster than conventional approaches to prediction learning.

The progress made in this paper has been due primarily to treating TD meth-
ods as general methods for learning to predict rather than as specialized methods
for learning evaluation functions, as they were in all previous work. This sim-
plification makes their theory much easier and also greatly broadens their range
of applicability. It is now clear that TD methods can be used for any pattern
recognition problem in which data is gathered over time—for example, speech
recognition, process monitoring, target identification, and market-trend predic-
tion. Potentially, all of these can benefit from the advantages of TD methods
vis-a-vis supervised-learning methods. In speech recognition, for example, cur-
rent learning methods cannot be applied until the correct classification of the
word is known. This means that all critical information about the waveform and
how it was processed must be stored for later credit assignment. If learning pro-
ceeded simultaneously with processing, as in TD methods, this storage would be
avoided, making it practical to consider far more features and combinations of
features.

As general prediction-learning methods, TD methods can also be applied to the
classic problem of learning an internal model of the world. Much of what we mean
by having such a model is the ability to predict the future based on current actions
and observations. This prediction problem is a multi-step one, and the external
world is well modeled as a causal dynamical system; so TD methods should be
applicable and advantageous. Sutton and Pinette (1985) and Sutton and Barto
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(1981b) have begun to pursue one approach along these lines, using TD methods
and recurrent connectionist networks.

Animals must also face the problem of learning internal models of the world.
The learning process that seems to perform this function in animals is called
Pavlovian or classical conditioning. For example, if a dog is repeatedly presented
with the sound of a bell and then fed, it will learn to predict the meal given just
the bell, as evidenced by salivation to the bell alone. Some of the detailed features
of this learning process suggest that animals may be using a TD method (Kehoe,
Schreurs & Graham, 1987; Sutton & Barto, 1987).
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Appendix: Accessory Theorems

Theorem A.1 If limy oo A" =0, then I—A has an inverse, and (I-A)~1 =
Ei:O At
PROOF: See Kemeny and Snell (1976, p. 22).

Theorem A.2 For any matrix A with linearly independent columns, AT A is
nonsingular.

PROOF: If AT A were singular, then there would exist a vector y # 0 such that
0= A" Ay;
0=y AT Ay = (Ay)" Ay,

which would imply that Ay = 0, contradicting the assumptions that y # 0 and
that A has linearly independent columns.

Theorem A.3 A square matrix A is positive definite if and only if A+ AT is
positive definite.

PROOF: 1 1 1 1
T _ I - AT _ Z AT
y Ay =y (GA+ A+ AT —5AT)y

= 30 (At At AT~ AT)y
1 1
= Sy (A+ ATy + Sy (4 - AT)y.

But the second term is 0, because y? (A — AT)y = (y7 (A — AT)y)T = yT (AT —
Ay = —yT(A — AT)y, and the only number that equals its own inverse is 0.
Therefore,
1
y Ay =Syt (A+ ATy,
implying that 7yTAy and yT (A-l—AT)y always have the same sign, and thus either
A and A+ A" are both positive definite, or neither is positive definite.

This document is a digitally remastered version of the original article. There are
numerous small differences in typesetting, such as line breaks, and perhaps some
small changes in wording. The figures have been remade. Finally, this version
includes Figure 3, which was left out of the original (and only published later, as
an errata, in Volume 3, p. 377). In the original Figure 5 was printed twice, once
in place of Figure 3.



