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Abstract

A formal setting for the development of adaptive
critic techniques is established in a nonlinear dynamical
systems setting and some preliminary stability and
suboptimality theorems are developed. Two alternative
versions of the theory are developed, one with a known
plant and one with an initial unknown plant which must
be identified on-line.

1. Introduction

Consider a nonlinear system of the form

Xie1 = Sx;uy) Xg=x (1)

x, e XC R", u; € UcR™ where X and U

are appropriate state and input spaces, respectively, and
Equation 1 has a “fixed point at zero”, ie,

f(0,0) = 0. We desire to find a stabilizing feedback
controller k € K such that, u; = k(x;), minimizes

the performance measure
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J= > I(x;,u) 2

i=0

where I: X x U > R" is greater than or equal to zero
with equality if and only if x = 0 and u = 0. Here, K is
an appropriate space of feedback controllers which
includes any desired stability constraints on the closed
loop system.

The well know dynamic programming solution to
this problem is obtained via the solution of the Bellman

equation1’2’3,

V() = M2 [x, 6(x)) + VR, k)] (3)

Here, V:X — R" is the optimal cost function for the
problem, i.e., V(X) is the minimal achievable J for the
optimal control problem with initial state x; while the
optimal feedback law, k, is the minimizing x in the
Bellman equation. Moreover, the resultant feedback
system, X; ., = f(x; k(x;)), is asymptotically

stable.
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While atheistically pleasing, the dynamic
programming solution to the optimal control program is
computationally untenable due to the backwards
numerical process required for its solution - the so-
called “curse of dimensionality”. Over the past decade a
number of researchers have attempted to circumvent
these difficulties by computing a sequence of “critics”,
V;, forward in time, which approximate V in the limit.
A corresponding sequence of feedback laws, k;, which
minimize

[I(x; k() + Vi(F(x,, k(x)))] 4)

over the constraint set, K, is computed and used to
define the feedback law, u; = k,(x;), and closed

loop system, x; , | = f(x; k;(x;)). Although these
techniques, which are collectively termed adaptive
critic methods, have often yielded excellent results,
little progress has been made in verifying that they
produce a stabilizing control law and are optimal or
sub-optimal in some sense. The purpose of this note is
to provide a formal background and partial results in
support of this methodology. In the following, we
consider two alternative forms of the asymptotic
dynamic programming problem; with a known plant

f[:XxU —> X as described above, and with an

unknown plant which is identified on-line, in parallel
with the asymptotic dynamic programming process.

For the case of a known plant, the asymptotic
dynamic programming process is described by the
diagram of Figure 1 and the following iterative process.

1. Initialization: Initialize the asymptotic dynamic
programming process with x, and k, (and V,, if required
by the algorithm used in step 3).

2. Run System: Input x; and u; = kx;) into the system
and run it one time step computing x;, ;.

3. Principle of Optimality: Choose V;,; to minimize
the error, £, between V;, (x;) and

l(xj, k](x])) + Vi + 1f(xja kJ(x])) )

j=0...1
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4. Optimization: Choose k;, ; in K to minimize

€, = 10 k(X )+ (6)
Vi 1(iGxi 1k 1(x41)))

5. Increment Time Step: Increment i and go to 2.

Note: we do not specify the numerical processes to
be used in steps 3 and 4. Rather, our goal is simply to
show that the asymptotic dynamic programming
process yields a stable “asymptotically optimal” control
if these processes converge sufficiently rapidly.
Although neural network methods are most commonly
applied in 3 and 4, any other appropriate algorithm can

be applied, classical optimization, reinforcement
learning, etc.

In the case where the plant, f, is initially unknown
we add an extra step to the above algorithm, identifying
f by approximating it with a sequence of models,

f;:XxU — X in parallel with the above described
asymptotic dynamic programming process. This
process is illustrated in Figure 2 and employs the
following iterative process.

1. Initialization: Initialize the asymptotic dynamic
programming process with x, and k, (and f, and V, if
required by the algorithm used in steps 3 and 4).

2. Run System: Input x; and u; = k;i{x;) into the system
and run it one time step computing x;,, ;.

3. Identification: Choose f; to minimize the error, g,

between Xip1 and fi(xj,kj(xj); Jj=0... 1.

4. Principle of Optimality: Choose V,,; to minimize
the error, &, between V;, ;(x;) and
l(xj, kj(xj)) +V. . 1(fi(xj, kJ(x})))(/ =0) (7)
5. Optimization: Choose k;, ; in K to minimize
€, = Ui ki1 (X)) + (8)
Vi 1Uilxi 1k 1% 41)))
6. Increment Time Step: Increment i and go to 2.
As above, the numerical processes to be used in

steps 3, 4 and 5 are unspecified, and, our goal is simply
to show that the algorithm yields a stable



po—_-—-—

Figure 2: Asymptotic Dynamic Programming with Unknown Plant.
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“asymptotically optimal” control if these processes
converge sufficiently rapidly.

Since the Asymptotic Dynamic Programming
algorithm is designed for on-line implementation it is
essential to guarantee that the algorithm always
produces a stabilizing control even if it fails to
converge to an optimal or suboptimal solution. To
achieve this goal, we adopt a much more stringent
stability criterion than would otherwise be required. In
particular, rather than requiring that the system be
stable relative to some Lyapunov function, we require
stability relative to a prescribed Lyapunov function of
norm type. Le., we select a norm, | I, and say that the
dynamical system, x;; = h(xy), is stable if there exists
an N, such that for & > N, lx;, ;| < Ixgl. Similarly, we say
that it is asymptotically stable if I, ;I < gl and
exponentially stable if by, d <y gl y < 1.

We require that the feedback law constructed at each
time step in our asymptotic dynamic programming
algorithm be exponentially stable with respect to some
(arbitrarily) prescribed norm, | | and a fixed y. To
emphasize that we require exponential stability with
respect to a prescribed Lyapunov function of norm type,
we denote the feedback law constraint set by K| ;
instead of K in the remainder of the paper.

The requirement that the Lyapunov function be of
“norm type” is minor. The standard norm derived from
the Lyapunov equation for a linear system is always of
norm type, as are most of the Lyapunov functions used
in nonlinear analysis. Reference 4 gives a constructive
technique for computing a Lyapunov function of norm
type, which is widely applicable to both discrete time
and continuous time nonlinear dynamical systems.

The requirement that the Lyapunov function be fixed
a-priori, is, however, non-trivial, and represents a
constraint on the stable dynamics of the resultant
feedback system. For instance, if one takes | I to be the
classical euclidean norm, the closed loop trajectories of
the system are required to “decrease towards zero” are
each time step as illustrated in Figure 3a while the
system shown in Figure 3b, whose trajectories
periodically diverge from zero, is stable with respect to
the Tchebyshev norm but not the euclidean norm.

Once a stability concept has been specified via the
norm, | I, we use this norm for all of our computations

h
on the state space X C R and employ the norms
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induced by | | on the space of functions mapping the
state space to itself

_ sup|gx
[s]= SrleCl

x¢0|x| ®)

while we define two induced norms on the space of
functionals mapping the state space to the reals, the
gain norm,

_ sup |u)|
lul- x%0 le (10)
and the Lipschitz norm,

] xsipy lulgcx:j)l (1)

Clearly, lg(x)l < Igl Ixl and lu(x)! < lul Ixl for all
xeX and lu(x-y) < luMx-yl forall x # y € X . With

the exception of the Lipschitz norm, we use the same
notation for all of the above norms distinguishing
between them by context.

2. Preliminary Results

In the following, we formulate our basic asymptotic
dynamic programming results for both the case of a
known plant and an unknown plant. In both cases,
stability results are obtained. With a known plant, the
algorithm is guaranteed to produce a stable control even
if it does not converge. If the Principle of Optimality
and Identification approximations converge sufficiently
rapidly the resultant control is asymptotically optimal
in an appropriate sense.

To simplify the notation in the following analysis,
we define the mapping, B, from the space of cost
functionals on X to itself by

B(U)(.) = K?}ﬁ | (12)

(G, k() + UUA( , ()]

In our asymptotic dynamic programming algorithm,
B(V,) is computed by the optimization step in the
algorithm while the error between V; and B(V;) is
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Figure 3: Systems which are stable with respect to a) euclidean and b) Tchebyshev norms.

minimized by the Principle of Optimality step.
Moreover, a functional, V, is a solution to the Bellman

equation if and only if B(V) = V.

THEOREM: For the Asymptotic Dynamic
Programming algorithm with known plant (described in
Steps 1 through 5, and Figure 1.)

a). The feedback control law, u; = kfx),

exponentially stabilizes the system (with respect to the
Lyapunov function, | | and the coefficient y).

b. 1t |[V;=B(V|>0 then |V;-V] >0

where V is the solution to the Bellman equation.

c). If IVi_B (Vij—-) O exponentially then the
feedback control law, u; = kix; is asymptotically

optimal in the sense that for any € there exists an N such
that

[o0]

D 1x;, ki(x)) - V(xy) <t (13)

i=M

foral M>N.

The numerical techniques used to implement the
asymptotic dynamic programming process are not
specified in the theorem. Rather, our purpose is simply
to characterize the behavior of the control produced by
the asymptotic dynamic programming process if the
numerical processes employed converge sufficiently
rapidly. One can use classical numerical methods,
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neural network techniques, reinforcement learning
techniques, etc.

For the case of an unknown plant, we assume that f
takes the form

f(xp,u;) = a(x;) +b(x)u; (14)

and the approximating sequence, f;, takes the form

fi(xp u) = a(x;) +b(x)u; (15)

Although representing a non-trivial restriction of the
system dynamics, this case is indicative of the power of
the asymptotic dynamic programming concept for the
case of an unknown plant.

To simplify the following analysis, we adopt the
(admittedly abusive) notation B(V;) for the functional

defined by

BOV)() = xeK)| (16)

[AC, k(N + YV, x(ON)]

THEOREM: For the Asymptotic Dynamic
Programming algorithm with unknown plant (described
in Steps 1 through 6, and Figure 2.) assume that the
solution of the Bellman equation, V, has a finite

Lipschitz constant, | VI&.



a). If Iai — al—) 0, the feedback control law, U, =

ky{x;), exponentially stabilizes the system (with respect
to the Lyapunov function, ! | and the coefficient v.

b). If Ja;~ af> 0 and [V, ~ B(V;] - 0. then
IVi - Vl — 0 where V is the solution to the Bellman
equation,

c). If Ia i aI—) O  exponentially  and

IVi -B (Vii——) 0 exponentially then the feedback

control law, u; = ki(x;) is asymptotically optimal in the
sense that for any € there exists an N such that

o0

D Uy, k(%)) = V(xy) <& (17)
i=M

foral M>N.

Unlike the previous theorem, convergence of the
identification process is required for stability. If one
does not know the plant, nor can it be identified on-line,
there is little hope of guaranteeing stability.

As before, the numerical techniques used to
implement the asymptotic dynamic programming
process with unknown plant are not specified in the
theorem. Rather, our purpose is simply to characterize
the behavior of the control produced by the asymptotic
dynamic programming process if the numerical
processes employed converge sufficiently rapidly.

3. Caveat

Although we have developed rigorous proofs of the
above theorems, they represent only the preliminary
first steps in formulation a meaningful theory of
Asymptotic Dynamic Programming. Specifically,

« they make no reference to the learning technique
employed or

e its computational complexity and

+ they assume a highly restrictive stability concept.
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These results represent a first step toward developing
a rigorous theory of Asymptotic Dynamic
Programming in support of the various on-going
research activities in the adaptive critic area.
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