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Relaxed dynamic programming in switching systems

A. Rantzer

Abstract: In order to simplify computational methods based on dynamic programming, a relaxed
procedure based on upper and lower bounds of the optimal cost was recently introduced. The con-
vergence properties of this procedure are analysed here. In particular, it is shown that the compu-
tational effort in finding an approximately optimal control law by relaxed value iteration is related
to the polynomial degree that is needed to approximate the optimal cost. This gives a rigorous foun-
dation for the claim that the search for optimal control laws requires complex computations only if
the optimal cost function is complex. A computational example is given for switching control on a
graph with 60 nodes, 120 edges and 30 continuous states.

1 Introduction

Optimal switching between linear systems is in many
respects as challenging as optimal control of general non-
linear or hybrid systems. It is rarely possible to find exact
expressions for optimal control laws or the optimal cost.
Instead approximative solutions need to be sought.
Already in Bellman’s pioneering work on dynamic pro-
gramming [1], the need for approximate solutions was
recognised and discussed. Since then, a variety of
methods have been developed, with application to discrete
optimisation as well as Markov processes, differential
equations and hybrid systems. Of particular significance
for this paper is the inequality version of the Hamilton–
Jacobi–Bellman equation, used by Leake and Liu [2] to
derive bounds on the optimal cost function. It turns out
that the inequality for lower bounds on the optimal
(minimal) cost is convex. This gives a natural connection
to convex duality theory in optimal control, an idea
introduced by Kantorovich [3] for mass transporation pro-
blems, which has recently been further explored [4–7].
An application to image databases is described in [8].
Computational methods based on convex optimisation
were pursued in [9, 10] and the idea of relaxed dynamic pro-
gramming was introduced in [11, 12].

There are two important iterative approaches to dynamic
programming, known as value iteration and policy iteration.
Value iteration is the basis for this paper. In most appli-
cations, iterations in policy space would require fewer
iterations, but each iteration is more computationally
demanding and harder to parallelise. A detailed analysis
of policy iteration convergence was given by Puterman
and Brumelle [13]. For policy iteration with approximations
the analysis is still a subject of research [14].

Numerical solutions to the Hamilton–Jacobi–Bellman
equation in a continuous state-space are often based on dis-
cretisation [15–18]. This gives a connection to the rich
literature on optimal control in discrete state spaces [19].
In particular, error bounds for approximate dynamic pro-
gramming were given in [20, 21]. An alternative method
which avoids discretisation is to use Galerkin’s spectral
method to approximate the optimal cost function without
prior discretisation [22]. Altogether, existing methods have
proved effective for many small scale problems, but the com-
plexity grows exponentially with increasing state dimension.

In contrast to general non-linear methods with exponen-
tial growth, it is well known that linear-quadratic optimal
control problems grow only polynomially with state dimen-
sion and can be solved with hundreds of state variables. It is
therefore challenging to search for general non-linear syn-
thesis procedures that reduce to Riccati equations in the
special case of linear-quadratic control and to linear
programming in the case of network optimisation on a
finite graph. One step in this direction was taken in [23].
This paper proceeds towards the goal in a more general
setting.

Recent research on model predictive control and optimal
control of hybrid systems is also connected to this work
[24–27]. In fact, our approach resulted from an effort to
treat hybrid systems by merging methods and experiences
from the two fields of network optimisation and control
theory. In particular, convex inequality relaxations com-
monly used in network optimisation are combined with
computational tools from the control field, such as linear
matrix inequalities and sum-of-squares optimisation.

2 Relaxed value iteration

Let X, the set of states, and U, the set of inputs, be arbitrary.
Given f : X � U! X, consider the dynamical system

xðk þ 1Þ ¼ f ðxðkÞ; uðkÞÞ xð0Þ ¼ x0 ð1Þ

with k ¼ 0, 1, 2, . . . Combining this with the control law
m: X! U gives the closed-loop dynamics

xðk þ 1Þ ¼ f ðxðkÞ;mðxðkÞÞ ð2Þ

To measure the performance of the system, we introduce a
non-negative step cost l: X � U! R and define the value
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function

Vmðx0Þ ¼
X1
k¼0

lðxðkÞ;mðxðkÞÞÞ

where x is given by (2).
The optimal cost function V � is defined as

V �ðx0Þ ¼ inf
m

Vmðx0Þ

and can be characterised as follows.

Proposition 1 (Dynamic programming [1]): Suppose that
V: X! R satisfies

0 � VðxÞ ¼ min
u
½Vð f ðx; uÞÞ þ lðx; uÞ� 8x ð3Þ

and limk!1 V(x(k)) ¼ 0 for every f(x(k), u(k))g1j¼1 withP1
k¼1 l(x(k), u(k)) , 1. Then V ¼ V � and the formula

m�ðxÞ ¼ argmin
u
½V �ð f ðx; uÞÞ þ lðx; uÞ� ð4Þ

defines an optimal control law.

Remark 1: Strictly speaking, the stated proposition makes
sense only provided that the minimum with respect to u is
attained. Although it is possible to give a modified state-
ment without this assumption, we will keep it for simplicity
throughout the paper.

Proof: Notice that for every solution to (1) the equality (3)
implies that

VðxðkÞÞ � Vðxðk þ 1ÞÞ þ lðxðkÞ; uðkÞÞ

As a consequence

Vðxð0ÞÞ � VðxðT ÞÞ ¼
XT�1

k¼0

½VðxðkÞÞ � Vðxðk þ 1ÞÞ�

�
XT�1

k¼0

lðxðkÞ; uðkÞÞ

Taking limits as T! 1 on both sides implies that V � Vm

for every control law m. Hence V � V �. Moreover, the
inequalities becomes equalities when u(k) ¼ m�(x(k)), so
V ¼ Vm�. This proves both that V is equal to the optimal
cost and that m� is an optimal control law.

An iterative approach to solution of the Hamilton–
Jacobi–Bellman equation (3) is known as value iteration.
Next, we give a bound on the convergence rate of this
scheme.

Proposition 2 (Value iteration convergence): Suppose the
condition 0 � V �( f (x, u)) � gl(x, u) holds uniformly for
some g , 1 and that 0 � hV � � V �0 � dV �. Then the
sequence defined iteratively by

V �jþ1 ¼ min
u
½V�j ð f ðx; uÞÞ þ lðx; uÞ� j � 0 ð5Þ

approaches V � according to the inequalities

1þ
h� 1

ð1þ g�1Þ
j

� �
V �ðxÞ � V �j ðxÞ

� 1þ
d� 1

ð1þ g�1Þ
j

� �
V �ðxÞ ð6Þ

In particular, if 0 � V �0 � V �, then

1�
1

ð1þ g�1Þ
j

� �
V �ðxÞ � V �j ðxÞ � V �ðxÞ

The proof is given in Section 7.
The main limiting factor in applications of value iteration

is the complexity in computation and representation of the
functions Vj

�(x), except when X and U are finite sets of
moderate size. Many schemes for approximation have
therefore been developed. In this paper, we will use the fol-
lowing statement to quantify the effects of approximation
errors in the Hamilton–Jacobi–Bellman equation.

Proposition 3 (Relaxed dynamic programming [12]):
Suppose that 0 � a � 1 � b and let V: X! R satisfy

min
u
fVð f ðx; uÞÞ þ alðx; uÞg � VðxÞ

� min
u
fVð f ðx; uÞÞ þ blðx; uÞg ð7Þ

and limk!1 V(x(k)) ¼ 0 for every f(x(k), u(k))g1k¼1 withP
k¼1
1 l(x(k), u(k)) , 1. Then

aV �ðxÞ � VðxÞ � bV �ðxÞ 8x

Moreover, the control law m(x) ¼ arg minu [V( f (x, u))þ
al(x, u)] has a value function Vm satisfying aVm � V.

The proof is given in Section 7.
Solutions to the inequalities (7) can be found by relaxed

value iteration:

Proposition 4 (Relaxed value iteration): Suppose that the
sequences fVjg

1
j¼0 and fV�jgj¼0

1 start from the same
V0 ; V �0 and

min
u
fVjð f ðx; uÞÞ þ alðx; uÞg � Vjþ1ðxÞ

� min
u
fVjð f ðx; uÞÞ þ lðx; uÞg ð8Þ

while V �j satisfies (5). Then aV �j � Vj � V �j for all j.

Proof: The statement follows by induction over j. A

Combining Proposition 4 with the convergence bound of
Proposition 2, we get that the following bound on the dis-
tance from optimality.

Theorem 1: Given 0 � a � 1, suppose 0 � V �( f (x,
u)) � gl(x, u) uniformly, g , 1 and that the sequence V0,
V1, V2, . . . starting with 0 � V0 � V � satisfies (8). Then

ajV
� � Vj � V � aj ¼ ½1� ð1þ g�1Þ

�j
�a ð9Þ

Moreover, the control policy mj(x) ¼ argminufVj( f (x, u)) þ
al(x, u)g gives a value function Vmj

(x) satisfying

½aþ gðaj � 1Þ�Vmj
ðxÞ � V �ðxÞ ð10Þ

Remark 2: The inequality (10) gives an upper bound on the
cost function for the policy mj provided that the bracket in
front of Vmj

is positive. This will happen for large values
of j, whenever a . g/(1þ g).

Proof: The inequalities (9) follow directly from
proposition 4 and proposition 2. Hence

Vjð f ðx;mjðxÞÞÞ þ alðx;mjðxÞÞ � Vjþ1ðxÞ � V �ðxÞ
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Using that ajV
� � Vj and V �( f (x, u)) � gl(x, u), we get

ajV
�ð f ðx;mjðxÞÞÞ þ alðx;mjðxÞÞ � V �ðxÞ

V �ð f ðx;mjðxÞÞÞ þ ½aþ gðaj � 1Þ�lðx;mjðxÞÞ � V �ðxÞ

For every trajectory of (1) with u(k) ¼ mj(x(k)), this implies

½aþ gðaj � 1Þ�lðx;mjðxÞÞ � ½V
�ðxðkÞÞ � V �ðxðk þ 1ÞÞ�

Summing over k gives (10) and the proof is complete. A

3 Iterations in a finite-dimensional subspace

When X has an infinite number of elements, the search for
the optimal cost V � is a search in an infinite-dimensional
space. It is often natural to limit this search to a finite-
dimensional subspace L, for example polynomials of a
fixed degree. A natural question to ask is whether existence
of a solution to (7) in L has any implications on feasibility
of the iterative inequalities (8). A striking result of this kind
is given next, but for a slightly modified algorithm

Theorem 2: The conclusions of Theorem 1 remain valid if
the conditions (8) are replaced by

min
u
fVjð f ðx; uÞÞ þ alðx; uÞg � Vjþ1ðxÞ

� min
u
fVjþ1ð f ðx; uÞÞ þ lðx; uÞg ð11Þ

Proof: Every solution Vjþ1 to the right inequality in
(11) must be bounded from above by V � as shown in
proposition 3. Moreover, the lower bound from proposition
4 remains valid with the same proof. The rest of the proof
is identical to the proof of Theorem 1. A

Remark 3: Suppose that V � has a simple approximation in
the sense that Vs [ L satisfies

min
u
fV �ð f ðx; uÞÞ þ alðx; uÞg � V sðxÞ

� min
u
fV sð f ðx; uÞÞ þ lðx; uÞg ð12Þ

Then, with V0 ; 0, the iterative inequalities (11) define
feasible convex conditions on Vjþ1 [ L at every step.

Remark 4: Time-varying linear quadratic optimal control
problems, usually solved by Riccati equations, and
shortest-path network problems solved by linear program-
ming are two well-known special cases of our framework.
One consequence of Theorem 2 is that other problems
with an optimal cost function close to one of these special
cases will be solvable with small computational effort.

Remark 5: Notice that the right-hand side of (12) is bounded
from above by minufV

�( f (x, u))þ l(x, u)g. Comparing this
to the left-hand side shows that the only difference is the
coefficient in front of l(x, u). Hence the assumption (12)
implicitly puts a constraint on the relative sizes of the
cost in the next step l(x, u) and the remaining cost
V �( f(x, u)). For optimal control problems with slow decay
rate of the terms in the sum

P
k l(x(k), u(k)) at optimality,

this means that Vs needs to approximate V � very accurately
in order for the theorem to apply.

This observation has a natural interpretation in economic
language. Let V �(x) be the value of a product with quality
and location specified by x. The changes because of the
business transaction u are given by f (x, u). The transaction
generates profit quantified by l(x, u). The problem to

maximise
P

k l(x, u) is then aimed to find the most profitable
sequence of business transactions. In this context, the
comparison of l(x, u) and V �( f(x, u)) says that small
profit margins in each transaction increases the need for
exact representation of the cost function at each step.

Remark 6: The difference between (8) and (11) is that in the
second case, Vjþ1 appears also in the right-hand side, not
just in the middle expression. This enables us to guarantee
feasibility in every iteration. The condition (11) is slightly
more complicated than (8) but is still a convex condition
on Vjþ1. A disadvantage in some applications is that the
new condition leaves less room for distributed
computations.

Combination of Theorem 2 with the previous bounds on
value iteration convergence gives the following main result
of the paper.

Theorem 3: Assume 0 � V �( f (x, u)) � gl(x, u) uniformly
with g , 1. Let L be a linear space of functions X! R.
Suppose that there exists a U [ L such that
(1 2 e)V �(x) � U(x) � V �(x) where 0 � e , (1þ g)22.
Then, with V0 ; 0 and a ¼ 1 2 e(1þ g)2, the iterative
convex inequalities (11) have a solution sequence V0, V1,
V2

. . . [ L and the conclusions of Theorem 1 remain valid.

The proof is given in Section 7.

Remark 7: Combining this result with L as a set of poly-
nomials and using the sum-of-squares technique [28, 29]
for verification of the inequalities (11) gives a very
general computational setting for optimal control. In this
context, it is natural to apply the theorem with a modified
interpretation of the inequalities, namely that the differ-
ences between left- and right-hand sides can be written as
sums of squares.

In particular, the theorem proves an attractive feature of
the algorithm defined by iteration of (11). This is that the
computational effort in finding an approximately optimal
control law (the polynomial degree needed in the relaxed
value iteration) is related to the polynomial degree that is
required to approximate the optimal cost. It also quantifies
the accuracy of the outcome in terms of two fundamental
parameters related to the difficulty of the problem, g and e.

4 Approximate policy iteration

Another iterative method to solve the Hamilton–Jacobi–
Bellman equation (3) is known as policy iteration. Instead
of keeping the value function Vj for the next iteration, the
policy mj is kept. In many instances, this method requires
fewer but more expensive iterations compared to value
iteration. A detailed analysis will not be given here, just
the following comparison.

Proposition 5 (Policy iteration convergence): Given a
policy m0 with value function Vm0

, consider the policy
sequence defined iteratively by

mjþ1ðxÞ ¼ argmin
u
½Vmj
ð f ðx; uÞÞ þ lðx; uÞ� j � 0 ð13Þ

Let V �0, V �1, V �2, . . . be defined by value iteration (5) with
V �0 ¼ Vm0

. Then

V �ðxÞ � Vmj
ðxÞ � V �j ðxÞ j � 1 ð14Þ

Proof: Define W0 ¼ Vm0
and

Wjþ1ðxÞ ¼ Wjð f ðx;m1ðxÞÞÞ þ lðx;m1ðxÞÞ j � 1
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Then W1 � W0 by definition of m1 and the iteration gives
W(jþ1) � W1 for all j. Hence

Vm1
ðxÞ ¼ lim

j!1
WjðxÞ � W1ðxÞ ¼ V �1 ðxÞ

This proves (14) for j ¼ 1. Repeating the argument gives
the general statement. A

Remark 8: Policy iteration can be viewed as an application
of Newton’s method for solving the Hamilton–Jacobi–
Bellman equation. Hence fast convergence should be
expected locally. Conditions for superlinear and quadratic
convergence can be found in [21].

Remark 9: The initialisation, to find a policy m0 with finite
cost W0 is sometimes a non-trivial task.

Remark 10: For systems evolving on a graph, the compu-
tations of value iteration can often be parallelised, since
the minimisation of (5) can be done for each node indepen-
dently. In policy iteration, all nodes are usually tied together
by (13) and parallelisation is more difficult.

Proposition 6 (Relaxed policy iteration): Given a policy m0,
consider a sequence (V0, m0), (V1, m1), (V2, m2), . . . satisfying

VjðxÞ � Vjð f ðx;mjðxÞÞÞ þ lðx;mjðxÞÞ

mjþ1ðxÞ ¼ argmin
u
½Vjð f ðx; uÞÞ þ lðx; uÞ�

Define V �0, V �1, V �2, . . . by value iteration (5) with V �0 ¼ Vm0
.

Then Vj � V �j for all j.

Proof: By proposition 3, the inequality implies that Vj � Vmj

for every j. Hence, the same argument as in the proof of
proposition 5 gives that

V1 � Vm1
ðxÞ ¼ lim

j!1
WjðxÞ � W1ðxÞ ¼ V �1 ðxÞ

Repeating the argument gives the general statement. A

5 A model of switched linear systems

To concretise the results for switched linear systems,
consider a graph defined by a set of nodes N and a set of
edges E , N � N. A matrix Aij [ Rn�n is assigned to
each edge (i, j) [ E. The state x ¼ (z, i) has two com-
ponents, z [ Rn and i [ N and the system dynamics are

zðk þ 1Þ ¼ AiðkÞuðkÞzðkÞ zð0Þ ¼ z0

iðk þ 1Þ ¼ uðkÞ ið0Þ ¼ i0
ð15Þ

Note that z evolves according to a linear equation defined by
Aii as long as the discrete state i remains constant. The role
of the input u is to induce changes in the discrete state.

The step cost is defined by a set of matrices Qij � 0 for
(i, j) [ E such that

lððz; iÞ; uÞ ¼ zT Qiuz

Thus, the cost is given by Qii when the discrete state i
remains unchanged and by Qiu when the step switches to u.

Taken together, this gives the following problem state-
ment for switched linear systems

Minimise
X1
k¼0

zðkÞTQiðkÞuðkÞzðkÞ subject to ð15Þ ð16Þ

Example 1 (Shortest path problem): In this classical
problem the objective is to find the shortest path to a
given target node in a graph where each edge (i, j) [ E
has an associated length qij. This problem is recovered in
the setting above by letting z be a scalar, Aij ¼ 1 for all
(i, j) and Qij ¼ qij for all i = j, whereas Qii is zero for the
target node and strictly positive elsewhere.

Example 2 (Generalised shortest path problem): Again the
problem is to find an optimal transportation path for goods
to reach the target node. However, not only the distance
matters. It is assumed that the quality of the goods
changes during transportation. The continuous state vector
x(k) measures the quality of the goods at time k. The
matrix Aij describes how the quality of the goods changes
along edge (i, j). For example, the changes could be
quality degradation because of transportation conditions,
or quality improvements because of maintenance or
upgrades. The problem (16) then describes the objective
to find a path that allows for delivery at the target with
optimal product quality.

Example 3 (Linear time-varying systems with quadratic
cost): In the special case of a graph with only one path,
that is, for every i [ N there is just one j with (i, j) [ E,
the cost function is a quadratic function V �(z, i) ¼ zTPiz
uniquely determined by the initial state. The Hamilton–
Jacobi–Bellman equation then reduces to a time-varying
Lyapunov equation

Pk ¼ AT
k Pkþ1Ak þ Qk

where Pk ¼ Pi(k), Ak ¼ Ai(k)i(kþ1) and Qk ¼ Qi(k)i(kþ1)

Computation of the optimal control law for (16) is gener-
ally NP-hard. In fact, the classical travelling salesman
problem is a special case:

Example 4 (Travelling salesman problem): A salesman is
required to visit once and only once each of n different
cities starting from a base city and returning to this city.
What path minimises the total distance travelled by the
salesman?

This problem can be modelled as a switching linear
system with one node for each city. In particular i ¼ 1 corre-
sponds to the base city. A continuous state z ¼ (z1, . . . , zn)
is used to keep track of past visits. The matrices Aij are
defined by the following dynamics

zlðk þ 1Þ ¼ zlðkÞ � z1ðkÞ if l ¼ iðkÞ [ f2; . . . ; ng

zlðk þ 1Þ ¼ zlðkÞ otherwise

�

Let the initial state be z0 ¼ (1, . . . , 1). Define qij ¼ qji to be
the distance between the cities i and j with qii ¼ 0 for all i.
Then, minimisation of the cost function

X1
k¼1

zðkÞTQiðkÞiðkþ1ÞzðkÞ where Qij ¼ diagfqij; 1; . . . ; 1g

becomes equivalent to the travelling salesman problem.
Every time a city is visited, the corresponding state variable
zi steps from 1 to 0. The state z1 remains constant and equal
to 1 all the time. It is easy to see that the cost becomes
infinite unless the salesman first visits all cities once to
get zl ¼ 0 for l ¼ 2, . . . , n, then stays in the base city. For
such trajectories, the cost depends only on the total travel-
ling distance.
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Finally, the model can be modified by setting
A11 ¼ (1 2 e)I for some number e. If e is sufficiently
small, this has no effect on the optimal trajectory for
z0 ¼ (1, . . . , 1), but it makes it possible to get finite cost
also for other initial states.

6 Computations for switched linear systems

Let us now specialise the results of Section 2 to the case of
switched linear systems. Define

V �ðz0; i0Þ ¼ min
uð0Þ;uð1Þ;���

X1
l¼1

zðlÞTQiðlÞuðlÞzðlÞ

where the relationship between u, i and z is defined by the
dynamics (15). Then the Hamilton–Jacobi–Bellman
equation becomes

V �ðz; iÞ ¼ min
u
fV �ðAiuz; uÞ þ zTQiuzg ð17Þ

For approximate solutions, a natural space L for a first
approximation of the optimal cost is the space of quadratic
forms V(z, i) ¼ zTPiz. For example, if P1, . . . , Pm are sym-
metric matrices satisfying the matrix inequalities

Pi � AT
iuPuAiu þ Qiu 8 ði; uÞ [ E

then Proposition 3 shows that zTPiz � V �(z, i) for every z, i.
With this parameterisation, the inequalities (11) can

equivalently be written

min
u
fzTAT

iuPu
j Aiuzþ azTQiuzg

� zTPi
jþ1z � zTAT

iuPu
jþ1Aiuzþ zT Qivz ð18Þ

for all z [ Rn, (i, v) [ E and the minimisation is over all u
with (i, u) [ E. At each step of the iteration, these inequal-
ities should be solved for the matrices P1

jþ1, . . . , Pm
jþ1. The

second inequality reduces to standard linear matrix inequal-
ities on the independent variables. The first inequality is
also a convex constraint on Pi

jþ1, but more cumbersome,
since the minimum expression on the left-hand side does
not have a simple representation.

A more conservative, but often useful, alternative
to (18), is to instead require existence of scalar parameters
u1

jþ1, . . . , um
jþ1 � 0 with

Pm
j¼1u

j
jþ1 ¼ 1 and such thatX

u

uu
jþ1ðA

T
iuPu

j Aiu þ aQiuÞ � Pi
jþ1 � AT

ivPv
jþ1Aiv þ Qiv

ð19Þ

for all (i, v) [ E. The parameters u i
jþ1 can be interpreted as

the probabilities of a stochastic control law, which ignores
the value of the continuous state z, hence the conservatism.
The inequalities can be solved for uu

jþ1 and P i
jþ1 by

semi-definite programming in order to generate a
sequence P i

0, P i
1, P i

2, . . . that converges to a solution of
the inequalities

X
u

uuðAT
iuPuAiu þ aQiuÞ � Pi � AT

ivPvAiv þ Qiv ð20Þ

for all (i, v) [ E. A precise statement is given in the follow-
ing corollary, stated similarly to Theorem 3.

Corollary 1: Assume V �(Aiuz, u) � gzTQiuz for all z, i, u.
Suppose there exist matrices P1, . . . , Pm such that

ð1� eÞV �ðz; iÞ � zTPiz � V �ðz; iÞ 0 � e � ð1þ gÞ�2

Let a ¼ 1 2 e(1þ g)2. Then, with P i
0 ¼ 0 for i [ N, the

iterative convex inequalities (19) have solutions P i
jþ1 and

uu
jþ1 for every j � 0. All such solutions generate approxi-

mations to the optimal cost according to the inequalities

ajV
�ðz; iÞ � zTPi

jz � V �ðz; iÞ aj ¼ ½1� ð1þ g�1Þ
�j
�a

Moreover, the control law mj(z, i) ¼ argminu

zT(AT
iuPu

j Aiuþ ajQiu)z defines a control law value function
Vmj

satisfying [aþ g(1 2 aj)]Vmj
� V �.

Remark 11: In general (19) is significantly more conserva-
tive than (18), but equivalence holds for example if the sum
on the left has only two terms, that is, if there are only two
options for u at every switch instance.

If instead policy iteration is used analogously for the
same problem, the iterative conditions (19) are replaced byX

u

uu
j ðA

T
iuPu

jþ1Aiu þ aQiuÞ � Pi
jþ1 � AT

iuPv
jþ1Aiu þ Qiv

ð21Þ

However, no analogy of theorem 2 and theorem 3 is avail-
able for policy iteration.

Let us conclude the section with a major computational
example to demonstrate the power of the proposed
algorithms.

Example 5: First we generate a graph by randomly distribut-
ing 60 nodes in a square and defining edges by assigning
two possible jumps from each node. The resulting graph
is shown in Fig. 1.

We will use 30 continuous states in each node. The step
costs are chosen as

Qij ¼ dijI

where dij is the distance between two nodes. The dynamics,
defined by the matrices Aij will be chosen randomly, but
with significant restrictions. Recall that if Aij are all equal
to the identity, then we recover the shortest-path-problem
(provided that there is ‘target node’ where it is possible to
stay with step cost zero). The value iteration then works
without need for approximation. Similarly, if the Aij are
very small, then the cost function is essentially determined
by the cost of the first step, and therefore close to quadratic.
Relaxed value iteration will then work well with quadratic
approximations.

We will consider a case somewhere in between these two
extremes. Each Aij matrix is randomly generated, but with a

Fig. 1 Graph with 60 nodes has been randomly generated

From each node, there are two edges defining possible switches. For
each of the 120 edges, a 30 � 30 matrix Aij is used to define the
dynamics of the continuous states along that edge. The coefficients
of each matrix are randomly generated, but the matrix is scaled to
have eigenvalues in a prespecified disc of diameter 0.5. To the right,
all eigenvalues of the 120 Aij matrices are shown in one plot
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spectrum varying within a disc of diameter 0.5 arbitrarily
positioned with a centre at most 0.9 from the origin. As a
consequence, some of the matrices have eigenvalues
outside the unit disc and are therefore expanding the con-
tinuous state in some directions. See the eigenvalue plot
in Fig. 1. Once the graph and matrices Qij and Aij are
defined, we are ready to run the value iteration algorithm.
In each iteration let aj be the maximal value of a for
which (19) holds and let a j be the maximal number of a
for which the resulting P j

i also satisfy (20). We then get
the sequence

a1 ¼ 0:58 a1 ¼ �7:12

a2 ¼ 0:34 a2 ¼ �4:13

a3 ¼ 0:28 a3 ¼ �0:42

a4 ¼ 0:29 a4 ¼ 0:26

Hence, after only four value iterations, we have found a
quadratic approximation to the optimal cost satisfying

0:26V �ðz; iÞ � zTPiz � V �ðz; iÞ 8x; i ð22Þ

and the corresponding control law yields a cost which is
necessarily within a factor 4 from optimality

V �ðz0; i0Þ �
X

k

zðkÞTQiðkÞuðkÞzðkÞ �
1

0:26
V �ðz0; i0Þ

It is interesting to look closer at some details of the solution.
It turns out, as indicated in Fig. 2, that in most of the nodes
the inequalities (22) actually hold with a much higher value
of a than 0.26. These are usually the nodes where one jump
direction is clearly preferable to the other, regardless of the
continuous state. Compare to Fig. 3.

A natural step for refinement would therefore be to
increase the accuracy in the computations at the bottleneck
nodes, that is, where inequalities (22) are tight. One way to
improve the accuracy is to use a less conservative condition
than (19) to enforce the inequalities (18). Another way is to
introduce higher degree polynomials in the search for
approximations to the optimal cost V �(z, i).

The source files of this example are available on the web
site [30].

7 Proofs

Proof of Proposition 2: The assumption 0 � V �( f (x, u)) �
gl(x, u) gives

V �1 ðxÞ ¼ min
u
½V �0 ð f ðx; uÞÞ þ lðx; uÞ�

� min
u
½hV �ð f ðx; uÞÞ þ lðx; uÞ�

� min
u

hþ
1� h

gþ 1

� �
V �ð f ðx; uÞÞ

�

þ 1� g
1� h

gþ 1

� �
lðx; uÞ

�

¼
hgþ 1

gþ 1
min

u
½V �ð f ðx; uÞÞ þ lðx; uÞ�

¼
hgþ 1

gþ 1
V �ðxÞ

The lower bound in (6) is obtained by repeating the argu-
ment j times.

Similarly

V �1 ðxÞ ¼ min
u
½V �0 ð f ðx; uÞÞ þ lðx; uÞ�

� min
u
½dV �ð f ðx; uÞÞ þ lðx; uÞ�

� min
u

d�
d� 1

gþ 1

� �
V �ð f ðx; uÞÞ

�

þ 1þ g
d� 1

gþ 1

� �
lðx; uÞ

�

¼
dgþ 1

gþ 1
min

u
½V �ð f ðx; uÞÞ þ lðx; uÞ�

¼
dgþ 1

gþ 1
V �ðxÞ

and the upper bound in (6) is obtained by repeating j
times. A

Proof of Proposition 3: For every solution to (1) the right
inequality (7) implies

VðxðkÞÞ � Vðxðk þ 1ÞÞ � blðxðkÞ; uðkÞÞ

Fig. 3 For each node, there is a number ui, which appears in the
left hand side of (20) and indicates the optimal switch

The histogram over the u-values shows a preference for u ¼ 1, which
corresponds to switching to the nearest node in the graph. This is
natural, since the nearest node has lowest step cost. Values between
0 and 1 can be interpreted as probabilities for jumps in different
directions

Fig. 2 For each node, the Hamilton–Jacobi–Bellman equation
needs a certain amount of relaxation to be satisfied

This histogram reflects the fact that in most nodes of the graph, the
equation can be satisfied with a around 0.9, much better than what
is indicated by the worst case value a ¼ 0.26
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Summing over k gives

Vðxð0ÞÞ � VðxðT ÞÞ � b
XT�1

k¼0

lðxðkÞ; uðkÞÞ

Taking limits as T! 1 shows that V is a lower bound on
bVm for every control law m. Hence V � bV �.

Similarly, when u(k) ¼ m(x(k)), the left inequality
becomes

alðxðkÞ; uðkÞÞ � VðxðkÞÞ � Vðxðk þ 1ÞÞ

and summing over k gives

a
XT�1

k¼0

lðxðkÞ; uðkÞÞ � Vðxð0ÞÞ � VðxðT ÞÞ � Vðxð0ÞÞ

This shows that V is an upper bound on aVm. Hence

aV � � aVm � V � bV �

and the proof is complete. A

Proof of Theorem 3: Define Vs U (1 2 eg)U. Repeating the
argument of Proposition 2, we have

min
u
fV sð f ðx; uÞÞ þ lðx; uÞg

¼ min
u
½ð1� egÞUð f ðx; uÞÞ þ lðx; uÞ�

� min
u
½ð1� egÞð1� eÞV �ð f ðx; uÞÞ þ lðx; uÞ�

� min
u
½ðð1� egÞð1� eÞ þ eÞV �ð f ðx; uÞÞ

þ ð1� egÞlðx; uÞ�

� ð1� egÞmin
u
½V �ð f ðx; uÞÞ þ lðx; uÞ�

¼ ð1� egÞV �ðxÞ � ð1� egÞUðxÞ ¼ V sðxÞ

This proves the right inequality in (12). Similarly

min
u
½V �ð f ðx; uÞÞ þ alðx; uÞ�

� min
u
ð½1� e ð1þ gÞ�V �ð f ðx; uÞÞ

þ ½aþ e ð1þ gÞg�lðx; uÞÞ

¼ ½1� e ð1þ gÞ�min
u
½V �ð f ðx; uÞÞ þ lðx; uÞ�

¼ ½1� e ð1þ gÞ�V �ðxÞ

� ð1� egÞð1� eÞV �ðxÞ

� ð1� egÞU ðxÞ ¼ V sðxÞ

which proves the left inequality in (12). Hence, the convex
constraints (11) on Vjþ1 are feasible at every step and the
desired conclusions follow from theorem 2. A

8 Conclusions

The main conclusion in this paper, as expressed in
theorem 3, is that finding approximately optimal control
laws requires complex computations only if the cost
function is complex.

Algorithms for control synthesis should therefore be
designed to take advantage of this fact. They should give
a simple answer quickly whenever there is one, and enter
into more involved computations only when simpler
alternatives have been exhausted.

Let us finally remark that although example 5 was gener-
ated randomly within some restrictions, those restrictions
were indeed essential. For a vast majority of problems in
the class defined in Section 5, quadratic approximations
of the optimal cost will most likely not be sufficient for con-
vergence of the value iteration. Higher-order polynomials
will increase the computational burden significantly, but
the decentralised nature of the iteration should still leave
room for a considerable number of continuous states.
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