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MANAGEMENT SCIENCE
Vol. 23, No. 11, July 1977
Printed in USA.

A NOTE ON THE DYNAMIC INVENTORY PROBLEM
WITH UNKNOWN DEMAND DISTRIBUTION}

S. PAPACHRISTOSE

We point out some errors in Iglehart’s paper, “The Dynamic Inventory Problem with:
Unknown Demand Distribution,” published in Management Science in 1964.

1. Introduction

Iglehart in [1] studied the determination of optimal inventory control policies and
the behaviour of the critical levels of these policies in terms of the various parameters
involved. Some of his results are given without proof, and it turns out that they are
not true. The results in question are: the stochastic order property of the exponential
family, Lemma 8; the monotonicity of the sequence X, (s, n) of the critical levels,
Theorem 2.a; the convergence of this sequence and of the sequence x(s, n), Theorems
3.e and 6.b; and finally the uniform convergence of the sequence p(§/v, n), Lemma 2.

In §§2.1 and 2.2 we present counterexamples for the first part of Lemma 8 and
Theorem 2.a. In §3 we discuss the validity of Theorems 3.e, 6.b, and Lemma 2, and
finally in §4 we suggest some modifications which are felt to be necessary for
strengthening some of the results of the paper mentioned above. We use the notation
and assumptions of [1].

2. Counterexamples on Lemma 8 and Theorem 2.a

2.1.

Let§,, &, . . ., §, be the values of n independent observations of a random variable
¢ which is distributed exponentially with p.d.f. ¢(£/w) = B(w)e ~“(§), where ¢ > 0,
is an unknown parameter and [ B(w)]~' = [Fe ™ “r(£)dE.

The pair (s, n) or (Q, n), where s = Q/n and Q =37_,£, is a sufficient statistic for
the parameter w (see [5]). If f(w) is the p.d.f. of w, the conditional p.d.f. of £ given
(s, n) is

#(&/5,m = r@® [~ B @e e (@) de/ [ B @e (@) (1)

Let ®(x/s, n) be the c.d.f. of the random variable ¢ given (s, n) and define

D(x/s,n)=®(x/s,n+1)— ®(x/s, n). )
The first part of Lemma 8 of [1] says that
o(&/s,n+1)cC /s, n), ie, D(x/s,n)>0 3)

for every x > 0 and any given s, n.

* All Notes are refereed.

t Accepted by Edward J. Ignall, former Departmental Editor for Dynamic Programming and Inventory
Theory; received June 1976. This paper has been with the author 1 month, for 1 revision.

¥ University of Manchester. Current address: University of Ioannina, Greece.
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NOTES 1249

We shall illustrate that this part of the lemma is not true. Let us take
¢(¢/w) = (1/w)e™ ", 4)
f@)=(1/2)e™" (v /w)*(1/7), &)

with £> 0, @ >0 and » a known parameter. The density ¢({/w) belongs to the
exponential family as Lemma 8 requires and f(w) is a member of the Inverted
Gamma-1 family of densities (see [5]).

With ¢(¢/w), f(w) defined by (4), (5), the expression for ¢(¢/s, n) in (1) becomes

o(&/s, n)=(n+3) v+ ns)"* /(v + ns + )"+ (6)
We can easily find that ¢(x/s, n)=1— (v + ns/v + ns + x)"** and so (2) gives
D(x/s,n,v)y=@+ns/v+ns+x) " =@+ ((n+s/v+((n+Ds+x)"" (1)

where instead of D(x/s, n) we used D(x/s, n, ») to indicate its dependence on ».

Computational experience suggests that for some values of the parameters s, n, »,
D(x/s, n, v) may be negative when x € [0, z), where z is a suitable number. For
example: D(x/7.0, 4, 1.0) is negative for x < 60.56 (and positive for x > 60.5). The
validity or invalidity of Lemma 8 affects the values of the one period critical levels
X,(s, n + 1) (see [1, p. 437]). In this same case, for linear ordering, holding and penalty
costs with ¢ =10, =5, and p =30, we get, X,(7.0,4)=3.73 < Xx,(7.0, 5) = 4.02.
(This is not in general an expected result because D(x /7.0, 4, 1.0) is not negative over
[0, ).

We note that Karlin, using (Q, n) as a sufficient statistic for the parameter w,
showed ¢(&/Q, n+ 1) Co(x/Q, n) (see [3, p. 256]). Apparently the reason for the
error in the lemma was the use of s instead of Q.

The procedure for obtaining the numerical results is described in the Appendix.

2.2.

In the nonadaptive inventory control problem, and with the same conditions as in
Iglehart’s paper, one can prove that the sequence of critical levels X, is increasing in
N. Iglehart probably based the same result for the adaptive case, on this fact, stated in
Theorem 2.a, i.e., Xy (s, #) is increasing in N for any given (s, n). To the best of our
knowledge, no proof of this result has been given.

The result is apparently false. Using the density function for the demand given by
(6), and linear costs with coefficients ¢ =0, 2 =2, p = 1000, we computed the first
two terms of the sequence X, (s, n) (i.e. N = 1, 2). The result so obtained is x,(25, 4)
= 286.1 > X,(25, 4) = 276.5 which disproves the theorem.

3. Theorems 3.e, 6.b and Lemma 2

The convergence of the sequence Xy (s, n) as N — oo cannot be proved based on
Theorem 2.a as we have seen in §2.2. Let us suppose that this has been established by
some other procedure. Theorem 3.e says that lim,_,  X,(s, n) = X(s, n), where
Xy (s, n) is the smallest minimizing point of the convex function Gu(y/s, n) and
X(s, n) is the smallest minimizing point of its limit function G(y/s, n), which is also
convex (see [1, p. 435)).

One can easily construct a sequence of convex functions (even strictly convex) that
converges uniformly to some function, with the sequence of their smallest minimizing
points converging to a limit different from the smallest minimizing point of the limit
function. Since the proof of Theorem 3.e assumes the contrary, there must be some
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1250 NOTES

doubt about its validity, even if we take Theorem 2.a to be true. However we note that
when X, (s, n) converges, its limit is a minimizing point for G(y/s, n).

The same comments apply to Theorem 6.b.

Lemma 2 says that the sequence of functions

e ! OO
p(E/v,n) = q(%) - . £>0,

S v @00

converges to the function
pE/D)=v(®)q(§) if 0<E<D,
=0 if £>0,

uniformly on any finite § interval. We observe that the limit function p({/v) is
discontinuous as the point § =, so that uniform convergence is impossible.

4. Conclusions

Since Lemma 8 is true with (Q, n) instead of (s, n) as a sufficient statistic, Theorem
5.a,b,c,d, which is a consequence of this lemma must be adjusted replacing (s, n) by
(Q, n).

Since Theorem 3.e seems not to be valid, the results of Theorem 4.d and 5.d cannot
be deduced as the author suggested. Despite this difficulty, these results remain valid
and their proof follows through different arguments.

If we add additional assumptions to ensure the strict convexity of L(y/s, n) (see [1,
p. 435]) Theorem 3.e becomes true, and its proof can be deduced without requiring
any monotonicity property for the sequence X, (s, n) (see [2]). The same comment
applies to Theorem 6.b.

We note that Scarf [6], when dealing with the same problem, stated the results of
Theorems 3.e and 6.b but, having assumed linear ordering, holding, and penalty costs,
he ensured strict convexity of L(y/s, #) and so uniqueness of X(s, n) and X(5).

The invalidity of Lemma 2 does not affect any subsequent results depending on it,
but some extra elaboration is needed to get their proofs.

Appendix
We can easily find that
Gi(y/s,m)=c+h—(h+p)v+ns/v+ns+y)y* 8)
and from this
%,(s, n) = (v + ns)(A/"*3 = 1) = %,(Q, n), )

where the parameter 4 = (h + p)/(h + ¢) and is greater than one in view of the
condition G{(0/s, n) < 0. So

Ci(x/s,n)=—c if x < X,(s,n),
= —c+ G{(x/s,n) if x> X, n). (10)
In view of (9), (10) we have
Cil(ly—¢&/(ns+&/n+1),n+1)=—c if £>68(y),
=—c+G(y—&/(ns+&/n+1),n+1) if £<8(p), (11)
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NOTES 1251

where 8(y) = (y — (v + ns)(A/"** = 1))/ A"/"** and & > 8(y) is the solution of the
inequality y —§ < X(ns+&/n+ 1,n+1). So

Gy(y/s,n)= G{(y/s, n) —ac + aj(;&(y)C,’(y —§/(ns+&/n+ 1), n+ 1)/, n)

if 8(y)>0,
= G{(y/s,n)—ac if 8(y)<0,

where G| is given by (8).

An analytic solution of equation G,(y/s, n) = 0 seems difficult to obtain. So to find
X,(s, n) we solved this equation numerically by Newton’s method. The discount factor
a was set equal to 1.

Note that, since backlog is permitted, x and subsequently y can take negative
values. However, because we impose the condition G{(0/s, n) <0, the critical levels
Xn (s, n) cannot be negative.
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A COMPUTATIONAL REFINEMENT FOR
DISCRETE-VALUED DYNAMIC PROGRAMS WITH
CONVEX FUNCTIONS{}

DON R. ROBINSON{

A search procedure is presented for discrete-valued dynamic programming problems with
the objective of minimizing the sum of convex functions. This procedure may be more
efficient than available methods if the sum is to be minimized over a uniform grid of values of
the state variable. Furthermore, the procedure can be used to reduce the computational effort
if only some of the return functions have a special structure.

* All Notes are refereed.

t Accepted by Edward J. Ignall, former Departmental Editor for Dynamic Programming and Inventory
Theory; received November 1975. This paper has been with the author 2 months, for 1 revision.
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