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 j ~~III

 A NOTE ON THE DYNAMIC INVENTORY PROBLEM
 WITH UNKNOWN DEMAND DISTRIBUTIONt

 S. PAPACHRISTOST

 We point out some errors in Iglehart's paper, "The Dynamic Inventory Problem with

 Unknown Demand Distribution," published in Management Science in 1964.

 1. Introduction

 Iglehart in [1] studied the determination of optimal inventory control policies and
 the behaviour of the critical levels of these policies in terms of the various parameters

 involved. Some of his results are given without proof, and it turns out that they are

 not true. The results in question are: the stochastic order property of the exponential

 family, Lemma 8; the monotonicity of the sequence .-N(s, n) of the critical levels,
 Theorem 2.a; the convergence of this sequence and of the sequence x-(s, n), Theorems

 3.e and 6.b; and finally the uniform convergence of the sequence p((/v, n), Lemma 2.
 In ??2.1 and 2.2 we present counterexamples for the first part of Lemma 8 and

 Theorem 2.a. In ?3 we discuss the validity of Theorems 3.e, 6.b, and Lemma 2, and

 finally in ?4 we suggest some modifications which are felt to be necessary for

 strengthening some of the results of the paper mentioned above. We use the notation
 and assumptions of [1].

 2. Counterexamples on Lemma 8 and Theorem 2.a

 2.1.

 Let (l, 421 . n be the values of n independent observations of a random variable
 ( which is distributed exponentially with p.d.f. 4(/c)= /3(c)e @r((), where ( > 0, co
 is an unknown parameter and [fi(@)]1 = foe -wtr(()d.

 The pair (s, n) or (Q, n), where s = Q/n and Q = i I, is a sufficient statistic for

 the parameter X (see [5]). If f(c) is the p.d.f. of c, the conditional p.d.f. of ( given
 (s, n) is

 +((Is, n) = r (() ?? n + I(co)e - n"'e - t`f(o) dco I 0 ,Bn (co) e -nXf(c)dco (1 cp(~/s, n) = (1)

 Let ID(x/s, n) be the c.d.f. of the random variable ( given (s, n) and define

 D(x/s, n) = ID(x/s, n + 1) - ((x/s, n). (2)
 The first part of Lemma 8 of [1] says that

 f((Is, n + 1) c p((/s, n), i.e., D(x/s, n) > 0 (3)

 for every x > 0 and any given s, n.

 * All Notes are refereed.
 t Accepted by Edward J. Ignall, former Departmental Editor for Dynamic Programming and Inventory

 Theory; received June 1976. This paper has been with the author 1 month, for 1 revision.
 t University of Manchester. Current address: University of Ioannina, Greece.
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 NOTES 1249

 We shall illustrate that this part of the lemma is not true. Let us take

 44k/co) = ( 1 /c)e -/(, (4)

 fQ(c) = ( 1/2)e - v/C(v/&)4( / v) (5)

 with > > 0, co > 0 and v a known parameter. The density ((/co) belongs to the

 exponential family as Lemma 8 requires and f(co) is a member of the Inverted
 Gamma-I family of densities (see [5]).

 With k((/c), f(Q) defined by (4), (5), the expression for p((/s, n) in (1) becomes

 0(4/s, n) = (n + 3)(v + ns)'+3/(v + ns + (),+4. (6)

 We can easily find that 4(x/s, n) = 1 - (Iv + ns/lv + ns + x)'+3 and so (2) gives

 D(xls, n, v) = (Iv + nslv + ns + X),+3_(1 + (n + I)s/lv + (n + l)s + x),+4, (7)

 where instead of D(x/s, n) we used D(x/s, n, v) to indicate its dependence on v.

 Computational experience suggests that for some values of the parameters s, n, v,
 D(x/s, n, v) may be negative when x E [0, z), where z is a suitable number. For

 example: D(x/7.0, 4, 1.0) is negative for x < 60.56 (and positive for x > 60.5). The
 validity or invalidity of Lemma 8 affects the values of the one period critical levels

 5l(s, n + 1) (see [1, p. 437]). In this same case, for linear ordering, holding and penalty

 costs with c = 10, h = 5, and p = 30, we get, 5x1(7.0, 4) = 3.73 < .l(7.0, 5) = 4.02.
 (This is not in general an expected result because D(x/7.0, 4, 1.0) is not negative over

 [0, 0))
 We note that Karlin, using (Q, n) as a sufficient statistic for the parameter co,

 showed k((/ Q, n + 1) c k(x/ Q, n) (see [3, p. 256]). Apparently the reason for the
 error in the lemma was the use of s instead of Q.

 The procedure for obtaining the numerical results is described in the Appendix.

 2.2.

 In the nonadaptive inventory control problem, and with the same conditions as in
 Iglehart's paper, one can prove that the sequence of critical levels XN is increasing in
 N. Iglehart probably based the same result for the adaptive case, on this fact, stated in

 Theorem 2.a, i.e., XN(s, n) is increasing in N for any given (s, n). To the best of our
 knowledge, no proof of this result has been given.

 The result is apparently false. Using the density function for the demand given by

 (6), and linear costs with coefficients c = 0, h = 2, p = 1000, we computed the first

 two terms of the sequence .XN(s, n) (i.e. N = 1, 2). The result so obtained is xl(25, 4)
 - 286.1 > x~2(25, 4) = 276.5 which disproves the theorem.

 3. Theorems 3.e, 6.b and Lemma 2

 The convergence of the sequence .NN(s, n) as N--> o cannot be proved based on
 Theorem 2.a as we have seen in ?2.2. Let us suppose that this has been established by

 some other procedure. Theorem 3.e says that limN--,oN(s, n) = x~(s, n), where
 XN(s, n) is the smallest minimizing point of the convex function GN(y/s, n) and

 x~(s, n) is the smallest minimizing point of its limit function G(y/s, n), which is also
 convex (see [1, p. 435]).

 One can easily construct a sequence of convex functions (even strictly convex) that
 converges uniformly to some function, with the sequence of their smallest minimizing
 points converging to a limit different from the smallest minimizing point of the limit

 function. Since the proof of Theorem 3.e assumes the contrary, there must be some
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 doubt about its validity, even if we take Theorem 2.a to be true. However we note that

 when 5-N(s, n) converges, its limit is a minimizing point for G(y/s, n).
 The same comments apply to Theorem 6.b.

 Lemma 2 says that the sequence of functions

 A0 n+ 1(0 )f(0 )d0
 p(~/v, n) q() max(, v) , 0

 f yn (9 )f(9 )do

 converges to the function

 p(/i) = y(O)q(() if 0 < O < vi,
 - 0 if > v,

 uniformly on any finite ( interval. We observe that the limit function p(D/v) is

 discontinuous as the point V = v, so that uniform convergence is impossible.

 4. Conclusions

 Since Lemma 8 is true with (Q, n) instead of (s, n) as a sufficient statistic, Theorem

 5.a,b,c,d, which is a consequence of this lemma must be adjusted replacing (s, n) by

 (Q, n).
 Since Theorem 3.e seems not to be valid, the results of Theorem 4.d and 5.d cannot

 be deduced as the author suggested. Despite this difficulty, these results remain valid

 and their proof follows through different arguments.
 If we add additional assumptions to ensure the strict convexity of L(y/s, n) (see [1,

 p. 435]) Theorem 3.e becomes true, and its proof can be deduced without requiring

 any monotonicity property for the sequence 5-N(s, n) (see [2]). The same comment
 applies to Theorem 6.b.

 We note that Scarf [6], when dealing with the same problem, stated the results of
 Theorems 3.e and 6.b but, having assumed linear ordering, holding, and penalty costs,

 he ensured strict convexity of L(y/s, n) and so uniqueness of x~(s, n) and x(s).
 The invalidity of Lemma 2 does not affect any subsequent results depending on it,

 but some extra elaboration is needed to get their proofs.

 Appendix

 We can easily find that

 GQ(y/s, n) = c + h - (h + p)(,v + ns/v + ns +y))n+3 (8)

 and from this

 i-1(s, n) = (v + ns)(A 1/n+3 1) = X1(Q n), (9)

 where the parameter A = (h + p)/(h + c) and is greater than one in view of the
 condition G'(O/s, n) < 0. So

 CQ(x/s, n) =-c if x < .-1(s, n),

 =-c + Gj(x/s, n) if x > .1(s, n). (10)

 In view of (9), (10) we have

 Cj(y- /(ns + l/n + 1), n + 1) -c if t > V)

 =-c + G(y-(/(ns + /n +1), n+ 1) if ( () (11)
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 NOTES 1251

 where 8(y) = (y - (v + ns)(A 1/n+4 _ 1))/A 1/n+4 and ( > 8(y) is the solution of the
 inequality y-? < 5-1(ns + (/n + 1, n + 1). So

 G'(y/s, n) = G'(y/s, n) - ac + af (C( - ((ns + (/n + 1), n + 1)0((/s, n)

 if a(y) > 0,

 = G'(y/s, n) - ac if 6(y) < 0,

 where GQ is given by (8).
 An analytic solution of equation G'(y/s, n) = 0 seems difficult to obtain. So to find

 X-2(s, n) we solved this equation numerically by Newton's method. The discount factor
 a was set equal to 1.

 Note that, since backlog is permitted, x and subsequently y can take negative
 values. However, because we impose the condition G'(0/s, n) < 0, the critical levels
 X5N(s, n) cannot be negative.

 References

 1. IGLEHART, D. L., "The Dynamic Inventory Problem with Unknown Demand Distribution," Manage-
 ment Science, Vol. 10, No. 5 (April 1964), pp. 429-440.

 2. , "Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem," Manage-
 ment Science, Vol. 9, No. 2 (1963), pp. 259-267.

 3. KARLIN, S., "Dynamic Inventory Policy with Varying Stochastic Demands," Management Science, Vol.
 6, No. 3 (April 1960), pp. 231-258.

 4. PAPACHRISTOS, S., "Adaptive Dynamic Programming and Inventory Control," Ph.D. Thesis, University
 of Manchester, England, 1977.

 5. RAIFFA, H. AND SCHLAIFER, R., Applied Statistical Decision Theory, Harvard University Press,
 Cambridge, Massachusetts, 1967.

 6. SCARF, H., "Bayes Solutions of Statisitical Inventory Problem," Annals of Mathematical Statistics, Vol.
 30 (1959), pp. 490-508.

 MANAGEMENT SCIENCE

 Vol. 23, No. 11, July 1977

 Printed in U.S4A.

 IV

 A COMPUTATIONAL REFINEMENT FOR
 DISCRETE-VALUED DYNAMIC PROGRAMS WITH

 CONVEX FUNCTIONSt

 DON R. ROBINSONt

 A search procedure is presented for discrete-valued dynamic programming problems with
 the objective of minimizing the sum of convex functions. This procedure may be more
 efficient than available methods if the sum is to be minimized over a uniform grid of values of
 the state variable. Furthermore, the procedure can be used to reduce the computational effort
 if only some of the return functions have a special structure.
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