
Chapter 19

The Adaptive Dynamic
Programming Theorem

John J. Murray, Chadwick J. Cox,∗ and Richard E. Saeks∗

Abstract: The centerpiece of the theory of dynamic programming is the Hamilton-
Jacobi-Bellman (HJB) equation, which can be used to solve for the optimal cost func-
tional V o for a nonlinear optimal control problem, while one can solve a second par-
tial differential equation for the corresponding optimal control law ko. Although the
direct solution of the HJB equation is computationally untenable, the HJB equation
and the relationship between V o and ko serves as the basis for the adaptive dynamic
programming algorithm. Here, one starts with an initial cost functional and stabiliz-
ing control law pair (V0, k0) and constructs a sequence of cost functional/control law
pairs (Vi, ki) in real time, which are stepwise stable and converge to the optimal cost
functional/control law pair, for a prescribed nonlinear optimal control problem with
unknown input affine state dynamics.

19.1 Introduction
Unlike the many soft computing applications where it suffices to achieve a “good
approximation most of the time,” a control system must be stable all of the time. As
such, if one desires to learn a control law in real-time, a fusion of soft computing
techniques (to learn the appropriate control law) with hard computing techniques (to
maintain the stability constraint and guarantee convergence) is required. To imple-
ment this fused/hard computing approach to control, an adaptive dynamic program-

∗This research was performed in part on the National Science Foundation SBIR contracts DMI-
9660604, DMI-9860370, and DMI-9983287.

379

刘德荣
文本框
Stability and Control of Dynamical Systems with Applications, 
D. Liu and P. J. Antsaklis, Eds. 
Boston, MA, USA: Birkhäuser, 2003, Chapter 19.



380 J. J. Murray, C. J. Cox, and R. E. Saeks

ming algorithm, which uses soft computing techniques to learn the optimal cost (or
return) functional for a stabilizable nonlinear system with unknown dynamics, and
hard computing techniques to verify the stability and convergence of the algorithm
was developed in [8], where

– the underlying fusion of soft and hard computing concepts was described,
– the adaptive dynamic programming algorithm was formulated,
– a global convergence theorem for the algorithm with a limited sketch of the

proof was introduced, and
– several examples of its application in flight control were presented.

The purpose of this chapter is to provide a detailed proof of the adaptive dynamic
programming theorem.

The centerpiece of dynamic programming is the Hamilton-Jacobi-Bellman (HJB)
equation [2, 3, 7], which one solves for the optimal cost functional V o(x0, t0). This
equation characterizes the cost to drive the initial state x0 at time t0 to a prescribed
final state using the optimal control. Given the optimal cost functional, one may
then solve a second partial differential equation (derived from the HJB equation)
for the corresponding optimal control law ko(x, t0), yielding an optimal cost func-
tional/optimal control law pair (V o, ko).

Although direct solution of the HJB equation is computationally untenable (the
so-called “curse of dimensionality”), the HJB equation and the relationship between
V o and the corresponding control law ko, derived therefrom, serves as the basis of
the adaptive dynamic programming algorithm [8]. In this algorithm we start with an
initial cost functional/control law pair (V0, k0), where k0 is a stabilizing control law
for the plant, and construct a sequence of cost functional/control law pairs (Vi, ki) in
real time, which converge to the optimal cost functional/control law pair (V o, ko) as
follows.

– Given (Vi, ki); i = 0, 1, 2, · · · ; run the system using control law ki from an
array of initial conditions x0, covering the entire state space (or that portion of
the state space where one expects to operate the system);

– Record the state xi(x0, ·) and control trajectories ui(x0, ·) for each initial con-
dition;

– Given this data, define Vi+1 to be the cost to take the initial state x0 at time t0
to the final state, using control law ki;

– Take ki+1 to be the corresponding control law derived from Vi+1 via the HJB
equation;

– Iterate the process until it converges.
In Sections 19.2 and 19.3, we will show that (with the appropriate technical as-

sumptions) this process is
– globally convergent to
– the optimal cost functional V o and is
– stepwise stable; i.e., ki is a stabilizing controller at every iteration with Lya-

punov function Vi.



Chapter 19. Adaptive Dynamic Programming 381

Since stability is an asymptotic property, technically it is sufficient that ki be
stabilizing in the limit. In practice, however, if one is going to run the system for any
length of time with control law ki, it is necessary that ki be a stabilizing controller at
each step of the iterative process. As such, for this class of adaptive control problems
we “raise the bar,” requiring stepwise stability, i.e., stability at each iteration of the
adaptive process, rather than simply requiring stability in the limit. This is achieved
by showing that Vi is a Lyapunov function for the feedback system with controller ki,
generalizing the classical result [7] that V o is a Lyapunov function for the feedback
system with controller ko.

An analysis of the above algorithm (see Sections 19.2 and 19.3 for additional de-
tails) will reveal that a priori knowledge of the state dynamics is not required to im-
plement the algorithm. Moreover, the requirement that the input mapping be known
(to compute ki+1 from Vi+1) can be circumvented by the precompensator technique
described in [8] and [9]. As such the above-described adaptive dynamic program-
ming algorithm can be applied to plants with completely unknown dynamics.

19.2 Adaptive Dynamic Programming Algorithm
In the formulation of the adaptive dynamic programming algorithm and theorem,
we use the following notation for the state and state trajectories associated with the
plant. The variable x denotes a generic state while x0 denotes an initial state, t
denotes a generic time, and t0 denotes an initial time. We use the notation x(x0, ·)
for the state trajectory produced by the plant (with an appropriate control) starting
at initial state x0 (at some implied initial time), and the notation u(x0, ·) for the
corresponding control. Finally, the state reached by a state trajectory at time t is
denoted by x = x(x0, t), while the value of the corresponding control at time t is
denoted by u = u(x0, t).

For the purposes of this chapter, we consider a stabilizable time-invariant input
affine plant of the form

ẋ = f(x, u) ≡ a(x) + b(x)u; x(t0) = x0 (19.2.1)

with input quadratic performance measure

J =

∫

∞

t0

l(x((x0, λ), u(x0, λ)))dλ

≡

∫

∞

t0

[q(x(x0, λ)) + uT (x0, λ)r(x(x0, λ))u(x0, λ)]dλ. (19.2.2)

Here a(x), b(x), q(x), and r(x) are C∞ matrix-valued functions of the state that
satisfy

– a(0) = 0, producing a singularity at (x, u) = (0, 0);

– the eigenvalues of da(0)/dx have negative real parts, i.e., the linearization of
the uncontrolled plant at zero is exponentially stable;



382 J. J. Murray, C. J. Cox, and R. E. Saeks

– q(x) > 0, x 6= 0; q(0) = 0;

– q(x) has a positive-definite Hessian at x = 0, d2q(0)/dx2 > 0, i.e., any
nonzero state is penalized independently of the direction from which it ap-
proaches 0; and

– r(x) > 0 for all x.
The goal of the adaptive dynamic programming algorithm is to adaptively con-

struct an optimal control uo(x0, ·), which takes an arbitrary initial state x0 at t0 to
the singularity at (0, 0), while minimizing the performance measure J.

Since the plant and performance measure are time-invariant, the optimal cost
functional and optimal control law are independent of the initial time t0, which
we may, without loss of generality, take to be 0; i.e., V o(x0, t0) ≡ V o(x0) and
ko(x, t0) ≡ ko(x). Even though the optimal cost functional is defined in terms of
the initial state, it is a generic function of the state V o(x) and is used in this form in
the HJB equation and throughout the chapter. Finally, we adopt the notation

F o(x) ≡ a(x) + b(x)ko(x)

for the optimal closed-loop feedback system. Using this notation, the HJB equation
then takes the form

dV o(x)

dx
F o(x) = −l(x, ko(x)) = −q(x) − koT (x)r(x)ko(x) (19.2.3)

in the time-invariant case [7].
Differentiating the HJB equation (19.2.3) with respect to uo = ko(x) now yields

dV o(x)

dx
b(x) = −2koT (x)r(x) (19.2.4)

or equivalently

u = ko(x) =
1

2
r−1(x)bT (x)

[

dV o(x)

dx

]T

(19.2.5)

which is the desired relationship between the optimal control law and the optimal
cost functional. Note that an input quadratic performance measure is required to
obtain the explicit form for ko in terms of V o of (19.2.5), although a similar implicit
relationship can be derived in the general case. (See [9] for a derivation of this result.)

Given the above preparation, we may now formulate the desired adaptive dynamic
programming algorithm as follows.

Adaptive Dynamic Programming Algorithm.
(1) Initialize the algorithm with a stabilizing cost functional and control law pair

(V0, k0), where V0(x) is a C∞ function, V0(x) > 0, x 6= 0; V0(0) = 0, with
a positive-definite Hessian at x = 0, d2V0(0)/dx2 > 0; and k0(x) is the C∞

control law,

u = k0(x) = −
1

2
r−1(x)bT (x) [dV0(x)/dx]

T
.



Chapter 19. Adaptive Dynamic Programming 383

(2) For i = 0, 1, 2, · · · , run the system with control law ki from an array of initial
conditions x0 at t0 = 0, recording the resultant state trajectories xi(x0, ·) and
control inputs ui(x0, ·) = ki(xi(x0, ·)).

(3) For i = 0, 1, 2, · · · , let

Vi+1(x0) ≡

∫

∞

0

l(xi(x0, λ), ui(x0, λ))dλ

u = ki+1(x) = −
1

2
r−1(x)bT (x)

[

dVi+1(x)

dx

]T

where, as above, we have defined Vi+1 in terms of initial states but use it
generically.

(4) Go to (2).

Since the state dynamics matrix a(x) does not appear in the above algorithm, one
can implement the algorithm for a system with unknown a(x). Moreover, one can
circumvent the requirement that b(x) be known in Step 3 by augmenting the plant
with a known precompensator at the cost of increasing its dimensionality, as shown
in [8] and [9]. As such, the adaptive dynamic programming algorithm can be applied
to plants with completely unknown dynamics.

In the following, we adopt the notation Fi for the closed-loop system defined by
the plant and control law ki:

ẋ = Fi(x) ≡ a(x) + b(x)ki(x)

= a(x) −
1

2
b(x)r−1(x)bT (x)

[

dVi(x)

dx

]T

. (19.2.6)

To initialize the adaptive dynamic programming algorithm for a stable plant, one
may take

V0(x) = εxT x

and
k0(x) = −εr−1(x)bT (x)x

which will stabilize the plant for sufficiently small ε (although in practice we often
take k0(x) = 0). Similarly, for a stabilizable plant, one can “prestabilize” the plant
with any desired stabilizing control law such that d2V0(x)/dx2 > 0 and the eigen-
values of dF0(0)/dx have negative real parts and then initialize the adaptive dynamic
programming algorithm with the above cost functional/control law pair. Moreover,
since the state trajectory going through any point in state space is unique, and the
plant and controller are time invariant, one can treat every point on a given state tra-
jectory as a new initial state when evaluating Vi+1(x0), by shifting the time scale
analytically without rerunning the system.

The adaptive dynamic programming algorithm is characterized by the following
theorem.



384 J. J. Murray, C. J. Cox, and R. E. Saeks

Theorem 19.2.1 (Adaptive Dynamic Programming Theorem). Let the sequence
of cost functional/control law pairs (Vi, ki), i = 0, 1, 2, · · · be defined by and satisfy
the conditions of the adaptive dynamic programming algorithm. Then,

(i) Vi+1(x) and ki+1(x) exist, where Vi+1(x) and ki+1(x) are C∞ functions with
Vi+1(x) > 0, x 6= 0; Vi+1(0) = 0; d2Vi+1(0)/dx2 > 0; i = 0, 1, 2, · · · .

(ii) The control law ki+1 stabilizes the plant with Lyapunov function Vi+1(x) for
all i = 0, 1, 2, · · · , and the eigenvalues of dFi+1(0)/dx have negative real
parts.

(iii) The sequence of cost functionals Vi+1 converge to the optimal cost functional
V o.

Note that in (ii), the existence of the Lyapunov function Vi+1(x) together with the
eigenvalue condition on dFi+1(0)/dx implies that the closed-loop system Fi+1(x) is
exponentially stable [6] rather than asymptotically stable, as implied by the existence
of the Lyapunov function alone.

19.3 Proof of the Adaptive Dynamic Programming
Theorem

The proof of the adaptive dynamic programming theorem is divided into four steps.

(1) Show that Vi+1(x) and ki+1(x) exist and are C∞ functions with Vi+1(x) > 0,
x 6= 0; Vi+1(0) = 0; i = 0, 1, 2, · · · .

By construction Vi+1(x) > 0, x 6= 0;Vi+1(0), while the existence and smooth-
ness of ki+1(x) follows from that of Vi+1(x) since b(x) and r(x) are C∞ functions
and r−1(x) exists.

As such, it suffices to show that Vi+1(x) exists and is a C∞ function. Since
Vi+1(x) is defined by the state trajectories generated by the ith control law ki(x), we
begin by characterizing the properties of the state trajectories xi(x0, ·). In particular,
since the control law and the plant are defined by C∞ functions, the state trajectories
are also C∞ functions of both x0 and t [5]. Furthermore, since ki(x) is a stabiliz-
ing controller and the eigenvalues of dFi(0)/dx have negative real parts, the state
trajectories xi(x0, ·) converge to zero exponentially [6].

In addition to showing that the state trajectories xi(x0, ·) are exponentially stable,
we would also like to show that the partial derivatives of the state trajectories with
respect to the initial condition ∂nxi(x0, ·)/∂xn

0 are also exponentially stable. To this
end we observe that ∂xi(x0, ·)/∂x0 satisfies the differential equation

∂

∂t

[

∂xi(x0, ·)

∂x0

]

=
∂ẋi(x0, ·)

∂x0
=

∂Fi(xi(x0, ·))

∂x0

=

[

dFi(xi(x0, ·))

dx

] [

∂xi(x0, ·)

∂x0

]

,
∂xi(x0, 0)

∂x0
= 1. (19.3.1)



Chapter 19. Adaptive Dynamic Programming 385

Since xi(x0, ·) is asymptotic to zero, (19.3.1) reduces to the linear time-invariant
differential equation

∂

∂t

[

∂xi(x0, ·)

∂x0

]

=

[

dFi(0)

dx

] [

∂xi(x0, ·)

∂x0

]

,
∂xi(x0, 0)

∂x0
= 1 (19.3.2)

for large t. As such, the partial derivative of the state trajectory with respect to
the initial condition ∂xi(x0, ·)/∂x0 is exponentially stable since the eigenvalues of
dFi(0)/dx have negative real parts.

Applying the above argument inductively, we assume that xi(x0, ·) and

∂jxi(x0, ·)

∂xj
0

, j = 1, 2, · · ·n − 1

are exponentially stable and observe that ∂nxi(x0, ·)/∂xn
0 satisfies a differential

equation of the form

∂

∂t

[

∂nxi(x0, ·)

∂xn
0

]

=

[

dFi(xi(x0, ·)

dx

] [

∂nxi(x0, ·)

∂xn
0

]

+ D(t),
∂xi(x0, ·)

∂xn
0

= 0

(19.3.3)
where D(t) is a polynomial in xi(x0, ·) and the trajectories of the lower derivatives
∂jxi(x0, ·)/∂xj

0, j = 1, 2, · · · , n − 1. By the inductive hypothesis xi(x0, ·) and
∂jxi(x0, ·)/∂xj

0, j = 1, 2, · · · , n − 1 are all exponentially convergent to zero and,
therefore, so is D(t). As such, (19.3.3) reduces to the linear time-invariant differen-
tial equation

∂

∂t

[

∂nxi(x0, ·)

∂xn
0

]

=

[

dFi(0)

∂dx

] [

∂nxi(x0, ·)

∂xn
0

]

,
∂nxi(x0, ·)

∂xn
0

= 0 (19.3.4)

for large t, implying that nth partial derivative of the state trajectory ∂xi(x0, ·)/∂x0

with respect to the initial condition is exponentially stable, since the eigenvalues of
dFi(0)/dx have negative real parts. As such, xi(x0, ·) and ∂nxi(x0, ·)/∂xn

0 ; n =
1, 2, · · · are exponentially convergent to zero.

See [4] for an alternative proof that the derivatives of the state trajectories with
respect to the initial condition are exponentially convergent to zero directly in terms
of (19.3.1) and (19.3.3).

To verify the existence of Vi+1(x), we express l(xi(x0, ·), ui(x0, ·)) in the form

l(xi(x0, ·), ui(x0, ·)) = q(x) + kT
i (x)r(x)ki(x)

= q(x) +
1

4

[

dVi(x)

dx

]

b(x)r−1(x)bT (x)

[

dVi(x)

dx

]T

≡ li(xi(x0, ·)) (19.3.5)

where x denotes xi(x0, ·) and the notation li(xi(x0, ·)) is used to simplify the ex-
pression and emphasize that l(xi(x0, ·), ui(x0, ·)) is a function of the state trajectory.
Now, expanding q(x) as a power series around x = 0 and recognizing that q(0) = 0



386 J. J. Murray, C. J. Cox, and R. E. Saeks

and dq(0)/dx = 0, since x = 0 is a minimum of the positive-definite function q(x),
we obtain

q(x) = q(0)+
dq(0)

dx
x+xT d2q(0)

dx2
x+o(‖x‖3) = xT d2q(0)

dx2
x+o(‖x‖3). (19.3.6)

As such, there exists K1 such that q(x) < K1‖x‖
2 for small x. Similarly, upon

expanding dVi(x)/dx in a power series around x = 0, and recognizing dVi(0)/dx =
0 since x = 0 is a minimum of Vi, we obtain

dVi(x)

dx
=

dVi(0)

dx
+

d2Vi(x)

dx2
x + o(‖x‖2) =

d2Vi(x)

dx2
x + o(‖x‖2). (19.3.7)

As such, there exists K2 such that dVi(x)/dx < K2‖x‖ for small x. Finally, since
b(x)r(x)−1bT (x) is continuous at zero, there exists K3 such that b(x)r−1(x)bT (x) <
K3 for small x. Substituting the inequalities q(x) < K1‖x‖

2, dVi(x)/dx < K2‖x‖,
and b(x)r−1(x)bT (x) < K3 into (19.3.5) therefore yields

l(xi(x0, ·), ui(x0, ·)) < K1‖xi(x0, ·)‖
2 + K3K

2
2‖xi(x0, ·)‖

2

= [K1 + K3K
2
2 ]‖xi(x0, ·)‖

2 ≡ K‖xi(x0, ·)‖
2. (19.3.8)

As such,

Vi+1(x0) ≡

∫

∞

0

l(xi(x0, λ), ui(x0, λ))dλ (19.3.9)

exists and is continuous in x0, since the state trajectory xi(x0, ·) is exponentially
convergent to zero.

Finally, to verify that Vi+1(x) is a C∞ function, it suffices to show that trajectories
dnli(xi(x0, ·))/dxn

0 are integrable, in which case one can interchange the derivative
and integral operators obtaining

dnVi+1(x0)

dxn
0

=

∫

∞

0

dnli(xi(x0, ·))

dxn
0

dλ. (19.3.10)

Now,
dli(xi(x0, ·))

dx0
=

dli(xi(x0, ·))

dx

dxi(x0, ·)

dx0
(19.3.11)

while dnli(xi(x0, ·))/dxn
0 is a sum of products composed of factors of the form

dj li(xi(x0, ·))/dxj and dkxi(x0, ·)/dxk
0 , where every term has at least one factor

of the latter type. Since the ith closed-loop system is stable each state trajectory
xi(x0, ·) is contained in a compact set and since li(xi(x0, ·)) is a C∞ function, the
derivatives dj li(xi(x0, ·))/dxj are bounded on the state trajectory xi(x0, ·), while
we have already shown that the derivatives of the state trajectories with respect
to the initial conditions dkxi(x0, ·)/dxk

0 converge to zero exponentially. As such,
dnli(xi(x0, ·))/dxn

0 converges to zero exponentially and is therefore integrable, val-
idating (19.3.10) and verifying that Vi+1(x) is a C∞ function.



Chapter 19. Adaptive Dynamic Programming 387

(2) Show that the iterative HJB equation

dVi+1(x)

dx
Fi(x) = −l(x, ki(x))

is satisfied and that d2Vi+1(0)/dx2 > 0; i = 0, 1, 2, · · · .

To verify the iterative HJB equation we compute dVi+1(xi(x0, t))/dt via the
chain rule, obtaining

dVi+1(xi(x0, t))

dt
=

dVi+1(xi(x0, t))

dx

dxi(x0, t)

dt

=
dVi+1(xi(x0, t))

dx
Fi(xi(x0, t)) (19.3.12)

and by directly differentiating the integral

Vi+1(xi(x0, t)) =

∫

∞

0

[l(xi(xi(x0, t), λ), ui(xi(x0, t), λ))]dλ. (19.3.13)

Since there is a unique state trajectory passing through the state xi(x0, t), the trajec-
tory xi(xi(x0, t), ·) must coincide with the tail, after time t, of the trajectory xi(x0, ·)
starting at x0 at t0 = 0. Translating this trajectory in time to start at t0 = 0 yields
the relationship

xi((xi(x0, t), λ)) = xi(x0, λ + t), λ ≥ 0 (19.3.14)

and similarly for the corresponding control. Substituting this expression into (19.3.13)
and invoking the change of variable γ = λ + t now yields

Vi+1(xi(x0, t)) =

∫

∞

0

l(xi(x0, λ + t), ui(x0, λ + t))dλ

=

∫

∞

t

l(xi(x0, γ), ui(x0, γ))dγ. (19.3.15)

Now,

dVi+1(xi(x0, t))
dt

= d
dt

∫

∞

t

l(xi(x0, γ), ui(x0, γ))dγ

= l(xi(x0, γ), ui(x0, γ))
∣

∣

∣

∞

t
= −l(xi(x0, t), ui(x0, t))

(19.3.16)

since l(xi(x0, ·), ui(x0, ·)) ≡ li(xi(x0, ·)) is asymptotic to zero (see (1) above).
Finally, the iterative HJB equation follows by equating the two expressions for

dVi+1(xi(x0, t))/dt of (19.3.12) and (19.3.16).
To show that

d2Vi+1(0)

dx2
> 0,



388 J. J. Murray, C. J. Cox, and R. E. Saeks

we note that dVi(0)/dx = 0 since zero is a minimum of Vi(x) and, similarly
dVi+1(0)/dx = 0, while

Fi(0) = a(0) −
1

2
b(0)r−1(0)bT (0) [dVi(0)/dx]

T
= 0

since a(0) = 0. As such, taking the second derivative on both sides of the iter-
ative HJB equation, evaluating it at x = 0, and deleting those terms that contain
dVi(0)/dx, dVi+1(0)/dx, or Fi(0) as a factor yields

2
d2Vi+1(0)

dx2

dFi(0)

dx
= −

[

d2q(0)

dx2
+

1

2

[

d2Vi(0)

dx2

]

(b(x)r−1(x)bT (x))×

[

d2Vi(0)

dx2

]T
]

. (19.3.17)

Since the right-hand side of (19.3.17) is symmetric, so is the left-hand side. As such,
one can replace one of the two terms

d2Vi+1(0)

dx2

dFi(0)

dx

on the left-hand side of (19.3.17) by its transpose yielding the linear Lyapunov equa-
tion [1]

[

dFi(0)

dx

]T
d2Vi+1(0)

dx2
+

d2Vi+1(0)

dx2

[

dFi(0)

dx

]

= −

[

d2q(0)

dx2
+

1

2

[

d2Vi+1(0)

dx2

]

(b(x)r−1(x)bT (x))

[

d2Vi+1(0)

dx2

]T
]

(19.3.18)

where we have used the fact that d2Vi+1(0)/dx2 is symmetric in deriving (19.3.18).
Moreover, since the eigenvalues of dFi(0)/dx have negative real parts, while

d2q(0)

dx2
> 0 and

[

d2Vi(0)

dx2

]

b(x)r−1(x)bT (x)

[

d2Vi(0)

dx2

]T

≥ 0,

the unique symmetric solution of (19.3.18) is positive-definite [1]. As such,

d2Vi+1(0)

dx2
> 0,

as required.

(3) Show that Vi+1(x) is a Lyapunov function for the closed-loop system Fi+1

and that the eigenvalues of dFi+1(0)/dx have negative real parts, i = 0, 1, 2, · · · .

To show that ki+1 is a stabilizing control law for the plant, we show that Vi+1(x)
is a Lyapunov function for the closed-loop system, Fi+1, i = 0, 1, 2, · · · . Since
Vi+1(x) is positive-definite it suffices to show that the derivative of Vi+1(x) along the



Chapter 19. Adaptive Dynamic Programming 389

state trajectories defined by the control law ki+1, dVi+1(xi+1(x0, t))/dt is negative-
definite. To this end we use the chain rule to compute

dVi+1(xi+1(x0, t))

dt
=

d[Vi+1(xi+1(x0, t))]

dx

dxi+1(x0, t)

dt

=
d[Vi+1(xi+1(x0, t))]

dx
Fi+1(xi+1(x0, t)). (19.3.19)

Now, upon substituting

Fi+1(xi+1) = a(xi+1) −
1

2
b(xi+1)r

−1(xi+1)b
T (xi+1)

[

dVi+1(xi+1)

dx

]T

(19.3.20)
(where we have used xi+1 as a shorthand notation for xi+1(x0, t)) into (19.3.19), we
obtain

dVi+1(xi+1(x0, t))

dt
=

[

dVi+1(xi+1)

dx

]

a(xi+1)

−
1

2

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi+1(xi+1)

dx

]T

. (19.3.21)

Similarly, we may substitute the equality

Fi(xi+1) = a(xi+1) −
1

2
b(xi+1)r

−1(xi+1)b
T (xi+1)

[

dVi(xi+1)

dx

]T

(19.3.22)

into the iterative HJB equation obtaining
[

dVi+1(xi+1)

dx

]

a(xi+1) =
1

2

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)×

[

dVi(xi+1)

dx

]T

− l(xi+1, ki(xi+1)). (19.3.23)

Substituting (19.3.23) into (19.3.21) now yields

dVi+1(xi+1(x0, t))

dt
=

1

2

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)×

[

dVi(xi+1)

dx

]T

− l(xi+1, ki(xi+1))

−
1

2

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi+1(xi+1)

dx

]T

(19.3.24)

while expressing l(xi+1, ki(xi+1)) in the form

l(xi+1, ki(xi+1)) = q(xi+1) +
1

4

[

dVi(xi+1)

dx

]

×



390 J. J. Murray, C. J. Cox, and R. E. Saeks

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi(xi+1)

dx

]T

(19.3.25)

and substituting this expression into (19.3.24) yields

dVi+1(xi+1(x0, t))

dt
=

1

2

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi(xi+1)

dx

]T

−q(xi+1) −
1

4

[

dVi(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi(xi+1)

dx

]T

−
1

2

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi+1(xi+1)

dx

]T

. (19.3.26)

Finally, upon completing the square, (19.3.26) reduces to

dVi+1(xi+1(x0, t))

dt
= −q(xi+1) −

1

4

[

d[Vi+1(xi+1) − Vi(xi+1)]

dx

]

×

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

d[Vi+1(xi+1) − Vi(xi+1)]

dx

]T

−
1

4

[

dVi+1(xi+1)

dx

]

b(xi+1)r
−1(xi+1)b

T (xi+1)

[

dVi+1(xi+1)

dx

]T

. (19.3.27)

As such,
dVi+1(xi+1(x0, t))

dt
< 0 for xi+1(x0, t) 6= 0

verifying that Vi+1(x) is a Lyapunov function for Fi+1 and that ki+1 is a stabilizing
controller for the plant, as required.

To show that the eigenvalues of dFi+1(0)/dx have negative real parts, we note
that dVi+1(0)/dx = 0 since it is a minimum of Vi+1(x), and similarly that

dVi(0)

dx
= 0,

while

Fi+1(0) = a(0) −
1

2
b(0)r−1(0)bT (0)

[

dVi+1(0)

dx

]T

= 0

since a(0) = 0. Now, substituting (19.3.19) for the left-hand side of (19.3.27), taking
the second derivative on both sides of the resultant equation, evaluating it at x =
0, and deleting those terms that contain dVi+1(0)/dx, dVi(0)/dx, or Fi+1(0) as a
factor, yields

2
d2Vi+1(0)

dx2

dFi+1(0)

dx
=−

d2q(0)

dx2
−

1

2

[

d2Vi+1(0)

dx2

]

b(0)r−1(0)bT (0)

[

d2Vi+1(0)

dx2

]T



Chapter 19. Adaptive Dynamic Programming 391

−
1

4

[

d2[Vi+1(0) − Vi(0)]

dx2

]

b(0)r−1(0)bT (0)

[

d2[Vi+1(0) − Vi(0)]

dx2

]T

. (19.3.28)

Now, since the right-hand side of (19.3.28) is symmetric so is the left-hand side and,
as such, we may equate the left-hand side of (19.3.28) to its hermitian part. More-
over, since −d2q(0)/dx2 < 0 while the second and third terms on the right-hand
side of (19.3.28) are negative semidefinite, the right-hand side of (19.3.28) reduces
to a negative-definite symmetric matrix −Q. As such, (19.3.28) may be expressed in
the form

[

dFi+1(0)

dx

]T
d2Vi+1(0)

dx2
+

d2Vi+1(0)

dx2

[

dFi+1(0)

dx

]

= −Q. (19.3.29)

Finally, to verify that the eigenvalues of dFi+1(0)/dx have negative real parts
we let λ be an arbitrary eigenvalue of dFi+1(0)/dx with eigenvector v. As such,
(dFi+1(0)/dx)v = λv, while premultiplying this relationship by v∗d2Vi+1(0)/dx2

yields

v∗
d2Vi+1(0)

dx2

dFi+1(0)

dx
v = λv∗

d2Vi+1(0)

dx2
v. (19.3.30)

Now, upon taking the complex conjugate of (19.3.30) and adding it to (19.3.30), we
obtain

v∗

(

[

dFi+1(0)

dx

]T
d2Vi+1(0)

dx2
+

d2Vi+1(0)

dx2

[

dFi+1(0)

dx

]

)

v=2Re(λ)v∗
d2Vi+1(0)

dx2
v.

(19.3.31)
Finally, substituting (19.3.29) in (19.3.31) yields

−v∗Qv = 2Re(λ)v∗
d2Vi+1(0)

dx2
v (19.3.32)

from which it follows that Re(λ) < 0, since d2Vi+1(0)/dx2 > 0 (see part (2) of the
proof), and −v∗Qv < 0.

(4) Show that the sequence of cost functionals Vi+1 is convergent.

The key step in our convergence proof is to show that

d[Vi+1(xi(x0, t)) − Vi(xi(x0, t))]

dt
=

d[Vi+1(xi(x0, t))]

dt
−

d[Vi(xi(x0, t))]

dt
(19.3.33)

is positive along the trajectories defined by the control law ki. Substituting (19.3.5)
into (19.3.16) yields

d[Vi+1(xi(x0, t))]

dt
= −l(xi, ui)

= −q(xi) −
1

4

[

dVi(xi)

dx

]

b(xi)r
−1(xi)b

T (xi)

[

dVi(xi)

dx

]T

(19.3.34)



392 J. J. Murray, C. J. Cox, and R. E. Saeks

(where we have used xi as a shorthand notation for xi(x0, t) and similarly for ui)
while one can obtain an expression for [dVi(x, t)/dt]

∣

∣

xi(x0,t)
from (19.3.27) by re-

placing the index i + 1 by the index i

dVi(xi(x0, t))

dt
= −q(xi) −

1

4

[

d[Vi(xi) − Vi−1(xi)]

dx

]

b(xi)r
−1(xi)b

T (xi)×

[

d[Vi(xi) − Vi−1(xi)]

dx

]T

−
1

4

[

dVi(xi)

dx

]

b(xi)r
−1(xi)b

T (xi)

[

dVi(xi)

dx

]T

(19.3.35)
which is valid for i = 1, 2, 3, · · · after reindexing. Finally, substituting (19.3.34) and
(19.3.35) into (19.3.33) yields

d[Vi+1(xi(x0, t))−Vi(xi(x0, t))]

dx
=−q(xi)−

1

4

[

dVi(xi)

dx

]

b(xi)r
−1(xi)b

T (xi)×

[

dVi(xi)

dx

]T

q(xi) +
1

4

[

d[Vi(xi) − Vi−1(xi)]

dx

]

b(xi)r
−1(xi)b

T (xi)×

[

d[Vi(xi) − Vi−1(xi)]

dx

]T

+
1

4

[

dVi(xi)

dx

]

b(xi)r
−1(xi)b

T (xi)

[

dVi(xi)

dx

]T

=
1

4

[

d[Vi(xi) − Vi−1(xi)]

dx

]

b(xi)r
−1(xi)b

T (xi)

[

d[Vi(xi) − Vi−1(xi)]

dx

]T

> 0

(19.3.36)
for i = 1, 2, 3, · · · .

Since Fi is asymptotically stable, its state trajectories xi(x, ·) converge to zero,
and hence so does Vi+1(xi(x0, ·)) − Vi(xi(x0, ·)). Since

d[Vi+1(x) − Vi(x)

dt
> 0

on these trajectories, however, this implies that

Vi+1(xi(x0, ·)) − Vi(xi(x0, ·)) < 0

on the trajectories of Fi, i = 1, 2, 3, · · · . Since every point x in the state space lies
along some trajectory of Fi, x = xi(x0, t), however, this implies that Vi+1(x) −
Vi(x) < 0 for all x in the state space, or equivalently, Vi+1(x) < Vi(x) for all
x; i = 1, 2, 3, · · · . As such, Vi+1(x), i = 1, 2, 3, · · · is a decreasing sequence of
positive numbers, i = 1, 2, 3, · · · , and is therefore convergent (as is the sequence,
Vi+1(x), i = 0, 1, 2, · · · , since the behavior of the first entry of a sequence does not
affect its convergence), completing the proof of the adaptive dynamic programming
theorem.

Although an initial cost functional of the form V0(x) = εxT x is technically re-
quired to initialize the algorithm for a stable plant (to guarantee that d2V0(0)/dx2 >
0), a review of the proof will reveal that one can, in fact, initiate the adaptive dynamic
programming algorithm for a stable system with V0(x) = 0.



Chapter 19. Adaptive Dynamic Programming 393

19.4 Conclusions
Our goal was to provide a detailed proof of the adaptive dynamic programming theo-
rem. The reader is referred to [8] for a discussion of the techniques used to implement
the theorem in a computationally efficient manner, and examples of its application to
both linear and nonlinear systems.

Bibliography
[1] S. Barnett, The Matrices of Control Theory, Van Nostrand Reinhold, New York,

1971.

[2] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton,
NJ, 1957.

[3] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[4] A. Devinatz and J. L. Kaplan, “Asymptotic estimates for solutions of linear sys-
tems of ordinary differential equations having multiple characteristics roots,”
Indiana University Math J., vol. 22, p. 335, 1972.

[5] J. Dieudonne, Foundations of Mathematical Analysis, Academic Press, New
York, 1960.

[6] A. Halanay and V. Rasvan, Applications of Liapunov Methods in Stability,
Kluwer, Dordrecht, 1993.

[7] D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Ap-
plications, John Wiley, New York, 1979.

[8] J. Murray, C. Cox, G. Lendaris, and R. Saeks, “Adaptive dynamic program-
ming,” IEEE Trans. Systems, Man and Cybernetics: Part C, vol. 32, pp. 140–
153, 2002.

[9] R. Saeks and C. Cox, “Adaptive critic control and functional link networks,”
Proc. 1998 IEEE Conference on Systems, Man and Cybernetics, San Diego, CA,
pp. 1652–1657, 1998.




