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Abstract—Unlike the many soft computing applications where dynamic programming algorithifADPA) which usesoft com-
it suffices to achieve a “good approximation most of the time,"a  puting techniqueto learn the optimal cost (or return) functional
control system must be stable all of the tim&s such, if one desires for a stabilizable nonlinear system with unknown dynamics and

to learn a control law in real-time, a fusion of soft computing tech- . . . -
niques to learn the appropriate control law with hard computing hard computing techniquets verify the stability and conver-

techniques to maintain the stability constraint and guarantee con- gence of the algorithm.

vergence is required. The objective of the present paper is to de- The centerpiece of dynamic programming is the Hamilton—
scribe anadaptive dynamic programming algorithfADPA) which  Jacobi—-Bellman (HJB) equation [3], [4], [19], which one solves
fusessoft computing techniqueto learn the optimal cost (or return) for theoptimal cost functionalV*(zo, t,). This equation char-

functional for a stabilizable nonlinear system with unknown dy- . . o .
namics and hard computing techniqueso verify the stability and acterizes the cost to drive the initial statgat timet, to a pre-

convergence of the algorithm. scribed final state using the optimal control. Given the optimal
Specifically, the algorithm is initialized with a (stabilizing) cost ~ cost functional, one may then solve a second partial differential
functional and the system is run with the corresponding control - equation (derived from the HJB equation) for the corresponding

law (defined by the Hamilton-Jacobi-Bellman equation), with the optimal control law,k°(z, #,), yielding an optimal cost func-
resultant state trajectories used to update the cost functional ina . : ’ L e 10
tional/optimal control law pairV?, k°).

soft computing mode. Hard computing techniques are then used to . ' .
show that this process is globally convergent with stepwise stability ~ Although direct solution of the HIB equation is computa-
to the optimal cost functional/control law pair for an (unknown) tionally intense (the so-called “curse of dimensionality”), the
input affine system with an input quadratic performance measure  HJB equation and the relationship betwgéh and the corre-

(modulo the appropriate technical conditions). sponding control law:°, derived therefrom, serves as the basis

Three specific implementations of the ADPA are developed for . . . .
1) the linear case, 2) for the nonlinear case using a locally quadratic of the ADPA developed in this paper. In this algorithm, we

approximation to the cost functional, and 3) the nonlinear case Start with an initial cost functional/control law pai¥o, ko),
using a radial basis function approximation of the cost functional; where kg is a stabilizing control law for the plant, and con-

illustrated by applications to flight control. struct a sequence of cost functional/control law pé¥s ;),
Index Terms—Adaptive control, adaptive critic, dynamic pro- in real-time, which converge to the optimal cost functional/con-
gramming, nonlinear control, optimal control. trol law pair (V?, k°) as follows.
» Given(V;, k;); ¢ =0, 1, 2, ...; we run the system using
|. INTRODUCTION control lawk; from an array of initial conditions,, cov-

ering the entire state space (or that portion of the state
space where one expects to operate the system).

» Recording the stater;(xo, -) and control trajectories
u;(xq, -) for each initial condition.

* Given this data, we defin&;_, to be the cost (it took) to
take the initial state:, at timet, to the final state, using
control lawk;.

» Take k;1 to be the corresponding control law derived

from V;; via the HIB equation.

Iterating the process until it converges.

HE PRESENT work has its roots in the approximate dy-
namic programming/adaptive critic concept [2], [30], [20],
[32], [16], in which soft computing techniques are used to ap-
proximate the solution of a dynamic programming algorithm
without the explicitimposition of a stability or convergence con-
straint, and the authors’ stability criteria for these algorithms
[6], [24]. Alternatively, a number of authors have combined hard
and soft computing techniques to develop tracking controllers.
These include Lyapunov synthesis techniques using both neural,
[25], [28], [18], [5], [21] and fuzzy learning laws [28], [29], [17],  Ajthough this algorithmic process is similar to many of the
sliding mode techniques [31], and input-output techniques [Ysf; computing algorithms which have been proposed for op-
The objective of the present paper is to describeadaptive i1 control [16], [20], [30], [32], it is supported by a hard con-
vergence and stability proof. Indeed, in Section Il and in [24],
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one is going to run the system for any length of time with corwith input quadratic utility functiod(z, «) = [¢(z)+u% r(x)x]
trol law &; to generate data for the next iteration, it is necessaayd performance measure

that k; be a stabilizing controller at each step of the iterative 00

process. As such, for this class of adaptive control problems we= l(z(zo0, A), u(zo, A)) dA

“raise the bar,” requiringtepwise stabilityi.e., stability at each fo

iteration of the adaptive process, rather than simply requiring= [q(x(%’ M) +uT (zo, Ar(z(zo, A))u(zo, )\)] d\.
stability in the limit. This is achieved by showing thgt is a to

Lyapunov function for the feedback system with controler ()

gen?ralirz]in? the claisical result.[ﬁg] that ilsaLyapunovfunc— Here,a(x), b(z), q(x), andr(z) are C> matrix valued func-
tion for the gedbac system wit .contro let. . tions of the state which satisfy
An analysis of the above algorithm (see Section Il for addi- 1) a(0) — 0 duci naularity gt (0. 0):
tional details) will reveal tha& priori knowledge of the state ) a(0) = U, producing a singufarity e, 7.“L) = (0, 0); .
2) the eigenvalues @fa(0)/dx have negative real parts, i.e.,

dynamics matrix is not required to implement the algorithm. the i i £ th irolled plant at .
Moreover, the requirement that the input matrix be known (to € linéarizalion 0T the uncontrolled piant at zero IS expo-
nentially stable;

computek; -, from V;41), can be circumvented by the precom-
pensator technique described in Appendix A. As such, the above3) @(x) > 0,z # 05 ¢(0) = 0; _
described ADPA achieves one of the primary goals of soft con- qu) has 2 positive definite Hessian at = 0,
trol; applicability to plants with completely unknown dynamics. d*q(0)/dz* > 0, i.e,, any nonzero state is penalized
While one must eventually explore the entire state space ndependently of the direction from which it approaches
(probably repeatedly) in any (truly) nonlinear control problem 0;
with unknown dynamics, in the ADPA, one must explore 2) 7(x) > 0forall z.
the entire state spaca each iterationof the algorithm (by The goal of the ADPA is to use soft computing techniques to
running the system from an array of initial states which covédaptively construct an optimal contrat(zo, -), which takes
the entire state space). Unfortunately, thisiit feasible and an arbitrary initial statery at¢, to the singularity at (0, 0), while
is tantamount to fully identifying the plant dynamics at eadiinimizing the performance measufewith hard convergence
iteration of the algorithm. As such, Sections IlI-V of thisand stability criteria.
paper are devoted to the development of three approximateSince the plant and performance measure are time invariant,
implementations of the ADPA which do not require globathe optimal cost functional and optimal control law are in-
exploration of the state space at each iteration. These includdependent of the initial time&,, which we may, without loss
« the linear case where one can evaluafe,, andV;;, Of generality, take to be zero; i.8/°(zo, to) = V“(z0) and
from n local observations of the system state at each #° (. to) = £°(z). Even though the optimal cost functional is
eration; defined in terms of the initial state, it is a generic function of
« an approximation of the nonlinear control law at eacthe state}°(z), and is used in this form in the HIJB equation
point of the state space, derived usingj@adratic ap- and throughout the paper. Finally, we adopt the notation
proximation of the cost functionait that point, requiring £°(z) = a(z) 4+ b(x)k°(z), for the optimal closed loop
n(n + 1)/2 local observations of the system state at eadhedback system. Using this notation, the HIB equation then
iteration; takes the form
« anonlinear control law, derived at each iteration of the aljy° () . . oT .
gorithm from aradial basis function approximatioof the dx Fo(x) = —l(z, k°(x)) = —q(x) — k7 (x)r(x)k*(z)

cost functional, which is updated locally at each iteration o _ (3)
using data obtained along a single state trajectory. in the time-invariant case [19].
Differentiating the HJB equation (3) with respect#6 =
Il. ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM k?(x) now yields
In the formulation of the ADPA and theor(_am, we use the 1_‘0I- dv*(z) b(z) = —2k°T (2)r(x) ()
lowing notation for the state and state trajectories associated dx

with the plant. The variablez” denotes a generic state whileor equivalently

“xo” denotes an initial state,t* denotes a generic time, and 1 Ve (x) T
“to” denotes an initial time. We use the notatiotw,, -) for u="FE(z) = -1 (z)b"(2) { } (5)
the state trajectory produced by the plant (with an appropriate 2 d

control) starting at initial statey (at some implied initial time), which is the desired relationship between the optimal control
and the notatiom(x, -) for the corresponding control. Finally, law and the optimal cost functional. Note that an input quadratic
the state reached by a state trajectory at titiés‘denoted by performance measure is required to obtain the explicit form for
x = z(zg, t), while the value of the corresponding control ak® in terms ofV? of (5), though a similar implicit relationship

time “¢” is denoted byu = u(xo, t). can be derived in the general case. (See [24] for a derivation of
For the purposes of the present paper, we consider a stabilids result.)
able time-invariant input affine plant of the form Given the above preparation, we may now formulate the de-

sired adaptive dynamic programming learning algorithm as fol-
= flz,u) = alz) + b(z)y; x(to) = xo (1) lows.
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Adaptive Dynamic Programming Algorithm: The ADPA is characterized by the following Theorem.

1) Initialize the algorithm with a stabilizing cost functional/ Adaptive Dynamic Programming Theorerhet the se-
control law pair (Vo, ko), Where Vo(z) is a ¢° quence of cost functional/control law palfg;, k;); i = 0, 1,
function, Vo(z) > 0,z # 0; Vo(0) = 0, with a pos- 2, ---; be defined by, and satisfy the conditions of the ADPA.

itive definite Hessian at: = 0, d2Vy(0)/dz® > 0; Then

and ko(x) is the C*° control law, v = ko(z) = 1) Viy1(z) andk; 41 (x) exist, whereV, 1 (z) and k; 41 (z)
—(1/2)r~(2)b" (z)[dVo(z) /dx]*. areC™ functions withV; ;1 (z) > 0, z # 0; V;41(0) =
2) Fori = 0, 1, 2, ... run the system with control lavi;, 0; d*Vi1(0)/dz® > 0, =0, 1,2, ...
from an array of initial conditions;, att, = 0, recording 2) The control lawk; 1, stabilizes the plant [with Lyapunov
the resultant state trajectories(zo, -), and control in- functionV; 41 ()] forall< = 0, 1, 2, ..., and the eigen-
putsw; (zo, -) = ki(zi(zo, -)). values ofdZ;(0)/dx have negative real parts.
3) Fori =0,1,2,...let 3) The sequence of cost functional$,.;, converge to the
.00 optimal cost functional}y°.
Vig1(wo) = / l(zi(wo, A), ui(zo, A)) dA Note that in 2), the existence of the Lyapunov functién; ()
and 0 together with the eigenvalue condition @A;;(0)/dx implies
T that the closed loop systenk;;1(z), is exponentially stable
w=kip1(z) = _1 (@) (@) [M} [12], rather than asymptotically stable, as implied by the exis-
2 dx tence of the Lyapunov function alone.
where, as above, we have definiéd , in terms of initial In the following, we sketch the proof of the Adaptive Dy-
states but use it generically. namic Programming Theorem, while the details of the proof ap-
4) Goto 2. pear in [24]. The proof includes four steps, as follows.

Since the state dynamics matrix,z), does not appear in the 1) Show thatV;,,(xz) and k;4:(x) exist and areC*
above algorithm one can implement the algorithm for a systenctions, withV;.1(z) > 0, x # 0; V;41(0) = 0; ¢ = 0, 1,
with unknowna(z). Moreover, one can circumvent the require2 ---: The first step required to prove that;;(z) and
ment thatb(x) be known in Step 3, by augmenting the p|an}fi+1(.’l’) exist and areC>° fUnCtionS, is to show that the state
with a known precompensator at the cost of increasing its dajectories defined by the control laky and their derivatives
mensionality, as shown in Appendix A. As such, the ADPA Cay\(ith respect to the initial condition are integrable. Sirige
be applied to plants with completely unknown dynamics, whidfi @ stabilizing control law, the state trajectorieg o, -) are
is a primary goal of soft control. Unlike many soft control alSymptotic to zero. Although this implies that they are bounded,
gorithms, however, it is fused with a rigorous convergence aHdS not sufficient for integrability. In combination with the
stability theorem summarized below. condition that the elgenvalues_ ME(O_)_/da_: ha_ve negative _
As indicated in the introduction, however, the requiremefig2! values, however, asymptotic stability implies exponential
that one fully explore the state space at each iteration of the alg&RP!lIty [12], which is sufficient to guarantee integrability.
rithm is tantamount to identifying the plant dynamics. As suc ,tgmve!y, asymptotic stability guarantees that the state trajec-
the applicability of the ADPA to plants with unknown dynamicéor'es will eventually converge to a neighborhood o_f zero where
is only meaningful in the context of the approximate implemerlihe closed loop system defined By may be approximated by

tations of Sections IlI-V, where only a local search or explél—:ebl'lneqr sys:ﬁm d_eflnedlkwé,l?i((;?})?/ Cf)x \gh'ﬁh IS expontt_entlallyl
ration of the state space is required. stable since the eigenvalues @&F;(0)/dxz have negative rea

. P values. See [12] for the details of this theorem.
sylsr;etaegglflicr)lvewdngg/vtvr?eap()jlgztttar\]r?dng(;i?rcﬂ If&(:nr,the closed loop Similarly, one can show that the derivatives of the state tra-

jectories with respect to the initial conditio®} z;(zo, -)/9x§,

& =Fi(z) = a(x) + b(x)k;(x) are exponentially stable by showing that they also satisfy a
1 . . dV(xz) T differential equation which may be approximated in the limit
=a(z) = 5 b(z)r™ (2)b” (z) {W} ~ (6) by the linear system defined by;(0)/dx. Moreover, since

o the state trajectories and their derivatives with respect to the
To initialize the ADPA for a stable plant, one may takgx) = jnitial condition are exponentially stable, it follows from the

T . — —1 T i i ili
ex”x andko(x) = —er (x)b” (z)x which will stabilize the * yefining properties for the plant and performance measure, that
plant for sufﬂ_c@ntly smalk [thoy_gh in practice we often takel(xi(xm ), ui(2o, -)), and its derivatives with respect to the
ko(«) = 0]. Similarly, for a stabilizable plant, one can “prestayntia| condition are also exponentially convergent to zero.
bilize” the plant with any desired stabilizing control law such ag such,l(z;(zo, -), ui(xo, -)) and its derivatives with re-

thatd*Vo(0)/dz? > 0 and the eigenvalues affy(0)/dx have  gpect to the initial condition are integrable, while they &fe
negative real parts; and then initialize the ADPA with the aboy@nctions, sincet; is aC function [8]. As such

cost functional/control law pair. Moreover, since the state tra- oo

jectory going through any point in state space is unique, and Vit1(zo) = / {zi(zo, ), ui(o, A)) dA @)
the plant and controller are time-invariant, one can treat ever% 0

point on a given state trajectory as a new initial state when eval- T
uatingV;41 (o), by shifting the time scale analytically without ki1 (z) = 1 Y (2)b () {dvﬁl(w)} 8)
rerunning the system, thereby reducing the scope of the required 2 dx

search. exist and are”>° functions.
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2) Show that the iterative Hamilton Jacobi Bellman equa- Note, the requirement that> 1 in this step of the proof is a

tion: “physical fact” and not just a “mathematical anomaly,” as indi-
Vi (2) cated by the examples of Sections IlI-V, where the “cost-to-go”
AdE ) Li(z) = —l(x, ki(x)) from a given state typically jumps from its initial value fioe 0
dx to alarge value, and then monotonically decreases to the optimal
is satisfied, and that?V;;1(0)/dz® > 0;i =0, 1,2, .... cost as one runs the algorithm foe= 1, 2, 3, .. ..
The iterative HIB equation, which may be used as an alterna-
tive to (7) for implementing the ADPA, is derived by computing ll. LINEAR CASE

dVit1(i(x0, t))/dt via the chain rule to obtain the left side of e purpose of this section is to develop an implementation of
the iterative HIB equation, and by directly differentiating () tghe ADPA for the linear case, where local exploration of the state
obtain the right side of the equation. Then if one takes the secqfiflice at each iteration of the algorithm is sufficient, yielding a
derivative of both sides of the resultant equation, evaluates 'tc%tmputationally tractable algorithm. As above, the linear algo-
@ = 0, and drops those terms which contaiti,;(0)/dx Or  yithm preserves the fused soft computing/hard computing char-
F;(0), both of which are zero, one obtains the Linear LyapunQyter of the general ADPA, combining soft computing tech-

equation niques to iteratively solve the Matrix Riccati equation in real
dF;(0) T BVt (0)  d?Vie1 (0) [dF0) time fpr a plant with unknown dynamics, with harq computing
p U2 e pi techniques to guarantee convergence of the algorthastep-
. . . . wise stability of the controller.
_ d?q(0) 1 d?V;11(0) For this purpose, we consider a linear time-invariant plant
o dxz? 2 dxz? .
2 = Az + B z(to) = o (10)

-1 T dQViH (0) ’ i i
- (b(z)r~H(z)b" (2)) [7} ] . (9) with the quadratic performance measure
T T
Now, since the eigenvalues @f;(0)/dx have negative real J = /to [z (w0, N)Qz(x0, A) + ' (z0, ) Rulzo, A)] dA.
parts, and the right side of (9) is a negative definite sym- (12)
metric matrix, the unique symmetric solution of the LineaHere @} is a positive matrix, whileR? is positive definite. For
Lyapunov equation (9) is positive definite [1] and, as suclhis caseV’(z) = xT P°x is a quadratic form, wheré” is a
d*V;41(0)/dz* > 0, as required. positive definite matrix. As such% = 227 P° andu =
3) Show that/;,;(z) is a Lyapunov Function for the closedK°z = —R1BT P°x.
loop systemF;.1, and that the eigenvalues @f;.(0)/dx To implement the ADPA in the linear case, we initialize the

have negative real parts; = 0, 1, 2, ...: This is achieved algorithm with a quadratic cost functiondly(z) = =¥ Pox
by directly computing?V; 11 (zi+1(xo, t))/dt, i.e., the deriva- and Ky = —R~'BTPF,. Assuming thatV;(z) = 27 Pz is
tive of V;11 () along the trajectories of the closed loop systenquadratic andk; = —R'BTP;, F;(z) = [A — BK;]r =

Fi41, with the aid of the chain rule and the iterative HIB equdA — BR~'BY P,Jv = F,x; where, by abuse of notation, we

tion, implying thatk;; is a stabilizing controller for the plant have used the symbdi; for both the closed loop system and the

foralli =0,1,2, ... matrix which represents it. As such, the state trajectories for the
To show that the eigenvalues @F;1(0)/dz have negative plant with control lawk; can be expressed in the exponential

real parts, we use an argument similar to that used in f8rm z;(zg, t) = efitxzq, while the corresponding control is

taking the second derivative of the expression derived faf(zg, t) = K;ef**xy. As such

(d‘/z+1(]})/d$).FZ+1(J}) = d‘/i+1(.7}i+1(]}0, t))/dt derived

above. Vig1(zo)
4) Show that the sequence of cost functiondls,;, is :/Oo [xr(xo NQzi(zo, N)+uf (zo, \)Rui(zo )\)] d\
convergent: This is achieved by showing that the derivative S ’ e ’

of Vii1(x) — V;(x) is positive along the trajectories df;,

_ T FIAA, FiA T FIA T LA
Vi1 (zi(zo, 1) — Vili(zo, £)]/dt > 0, fori = 1,2, —/0 [“’06 Qe o + g et TKG QRe “’0} dA

3, .... Moreover, sinceF; is asymptotically stable, its state [ [ ey - Foa

trajectories,z;(zo, t), converge to zero, and hence so does = %o [/0 Q4+ K RK ] e d)‘} %o

Vi1 (zi(zo, 1)) — Vi(wi(wo, 1)). Sinced[Viy1(wi(wo, 1)) — S

Vi(zi(wo, t))]/dt > 0 along these trajectories, however, this =z [/ eft[Q + P, BR'BTR] d)\} To
0

implies that V11 (z;(z0, t)) — Vi(zi(zo, t)) < 0 on the -
trajectories ofFy; i = 1,2, 3, .... Since every point in the = %o Fit 1o (12)
state space lies along some trajectoryfgfthis implies that Now, sincef’; is asymptotically stable, the integral of (12) ex-
Vi1(2) = Vi(z) <0, or equivalentlyViry (z) < Vi(z) forall g confirming thatV;,(z) = «7 P,z is also quadratic.
;i =1,2,3,.... As suchVii, is a decreasing sequence Of;,reqver, the integral defining’., is the “well known” in-

positive functionsj =1, 2, 3, ..., and is therefore convergentye o) form of the solution of the Linear Lyapunov equation [1]
(asis the sequendé.,;: =0, 1, 2, ...; since the behavior of

the first entry of a sequence does not affect its convergence). P,y F; + F/' Py, = — [Q+ BBR™'B"P)] . (13)
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Fig. 1. (a) NASA X-43 (HyperX) and (b) its glide path.

As such, rather than directly evaluating the integral of (12ADPA requires only local information at each iteration. Finally,

one can iteratively solve foF;,; in terms of F; by solving if one implements the above algorithm off-line to construct the

the Linear Lyapunov equation (13). Note, as an alternatioptimal controller for a system with known dynamics, usiig

to the above derivation one can obtain (13) by expressiageach iteration in lieu oXiXi_l, then the algorithm reduces

‘”;—;(’”) and K,11 in the form ‘”;—;(“”) = 2z7P,,; and tothe Newton—Raphson iteration for solving the matrix Riccati

K;y1 = —R7'BTP,,, and substituting these expressiongquation [13], [15].

into the lterative HIB equation. As an alternative to the above Linear Lyapunov equation im-
Although theA matrix for the plant is implicit inF;(=[A4 — plementation, one can formulae an alternative implementation

BR~!' BT P}]), one can estimatg; directly from measured data of the linear ADPA using local information along a single state

without a priori knowledge ofA. To this end, one runs thetrajectoryz;(xo, -), and the corresponding control(zo, ) =

system using control lawk; over some desired time interval, K;x;(xo, -), starting atinitial state, and converging to the sin-

and observes the statesat(the dimension of the state spacejularity at (0, 0). Indeed, for this trajectory one may evaluate

or more pointsz;; j = 1, 2, ...n; while (numerically) esti- Vj;1(xo) via

mating the time derivative of the state at the same set of points;

i;;§=1,2,...n. Now, sinceF; is the closed loop system ma- Vi+1(zo)

trix for the plant with control lawk;, ¢; = Fix;; 7 =1, 2, .. ; o T

; . ‘ v P = < A)Qxi(xo, A - (2o, A)Ru;(zo, A)| dA
or equivalentlyX; = F;X; whereX; = [z122 - z,]. As- o [a:z (w0, N)Qwi(zo, A)ui (w0, A)Rui (o )]
suming that the points where one observes the state are linearly— ,T'p,  , », (15)

independent, one can then solve foifrom the observations via
the equalityF; = X; X, 1, yielding the alternative representasince the plant and control law are time-invariant. More gener-
tion of the Linear Lyapunov equation ally, for any initial stateg; = x;(xo, t;), along this trajectory

. . T
Poa [T [+ [8X7] Pos = ~[Q+RBRTBIR] - Vin(e)
a4  — / [+F (20, \)Qui (o, N+ (0, A)Rui(xx0, A)] dA

t;

which can be solved foF’;; in terms of P, without a-priori
+1 P = a:(I;Pi_,_la:o. (16)

knowledge ofA. Moreover, one can circumvent the require-
ment thatB be known via the precompensation technique Now, since the positive definite matriX;.1 has onlyg = n(n-+

Appendix A. _ _ 1@/2 independent parameters, one can sejéot more) initial
As such, (14) can be used to implement the ADPA withoWates along this trajectory;; j = 1, 2, ..., ¢; and solve the

a-priori knowledge of the plant, achieving one of the primargq; of simultaneous equations

goals of soft control. Moreover, sindé — Xinl is asymp-

totically stable, (14) always admits a well defined positive def- a;]Tpinj = Vig1(z)); j=1
inite solution, P;;, while there are numerous numerical solu-

tion techniques for solving this class of Linear Lyapunov equéer F;.,. Equivalently, applying the matrix Kronecker product
tions [1] providing the required hard convergence proof. Unlikermula, vec(ABC) = [CT @ A]vec(B) where the “vec” op-
the full nonlinear algorithm, the linear implementation of therator maps a matrix into a vector by stacking its columns on

a2a"'aq (17)
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TABLE |
STATES OF LINEARIZED 6 DoF X-43 MODEL
State Symbol Units Trim Initial
Value Error
roll rate P rad/s 0.0 0.0850
yaw rate r rad/s 0.0 0.0850
pitch rate q rad/s 0.0 0.0850
roll phi rad 0.0 0.0850
yaw psi rad -0.0778 0.0850
pitch theta rad 0.0 0.0850
vertical component of airspeed w ft/s (positive in doewn 96.1442 ~20.0000
direction)
horizontal/(forward) component of airspeed u ft/s 0.0 -20.0000
side component of airspeed v ft/s 30.6225 -20.0000
side tracking error (side deviation from ft 0.0850
desired glide-path)
altitude tracking error (vertical deviation ft 0.0850
from desired glide-path)
TABLE I
INPUTS (SYMBOL, UNITS) OF LINEARIZED 6 DoF X-43 MODEL
control symbol units trim control symbol units trim
value value
elevator deflection de deg -15.86 | aileron deflection da deg 0.0
rudder deflection dr deg 0.0 thrust dt pounds | -10.728
top of one another, one may transform (17) inip>an? matrix B0 [ W) aMtudaeror). lsleral emort)
equation i :
af @af Vigr(z1)
T T
T3 © >3 Vigi(z2)
D vee(Pan) = | (18)
T T
T, @1, Vit1(zy)

Now, let “vecT” be the operator that maps anx n matrix, 5,
to ag = n(n + 1)/2 vector,vect(B), by stacking the upper
triangular part of its columnsy;, < < j, on top of one another.
Now, if B is symmetricyec™(B) fully characterizesB and, as
such, one may define aif x ¢ matrix, S, which mapsrect(B) 20}
to vec(B) for any symmetric matrix3. As such, one may ex-

press (18) in the form of @x ¢ matrix equation in the unknown

5 10 15 20 25 30 35 40 45 50
time in secands

vec+(]37¢+1), Fig. 2. X-43 autolander altitude error, lateral error, and sink rate.
af @ x] Vig1(z1) definite. As such, one can implement the ADPA for a linear
3 @ 2f + Vig1(z2) system by solving (19) foF;,, instead of (14).
: S| vec™(Pip) = : (19) Although both (14) and (19) require that one solve a linear
. ' equation ing = n(n + 1)/2 unknowns, the derivatives of the
Lg @4 Vi (2q) state are not required by the Kronecker product formulation of

As such, assuming that the points where one observes (h8), and since th&,; (x;) are computed by integrating along
state are chosen to guarantee that (19) has a unique solution,tbeeentire state trajectory, measurement noise is filtered. On the
can solve (19) for a unique symmetfit:, ; . Moreover, since the other hand, the Linear Lyapunov formulation of (14) requires
general theory implies that (19) has a positive definite solutiotihat one observe the state at omlypoints per iteration, and
the unique symmetric solution of (19) must, in fact, be positivalows one to adapt the control multiple times along a given state
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Contrals: da(x), da(o), dr{+), T(*}

T T T T

PO, qla), r(+)

degrees and pounds
radfs, rad/s, rad/s

15 20 25 30 35 40 45 50 1.5

ime in seconds 0 5 10 15 20 2§ 30 3 40 45 A0
time in seconds
@ (b)
phi(x), theta(o), psi(+) 200 u(x), v(o), w(H
80 ;‘/’“”‘“ """""""""""""""""""""""""""" =
[='1 ) DU, O S APPSO SO I AP A SN 4

rad, rad, rad

rad, rad, rad

0 5 10 15 20 25 3o 35 40 45 50

.03 H H H H H H H H H time in seconds
u] 5 10 15 20 25 30 35 40 45 3
time in seconds
(c) (d)

Fig. 3. (a) Aircraft controls (de, da, dr, and T); (b) Orientation rateg/( andr); (c) Orientation angles (phi, theta, and psi); and (d) Airspeed components (
v, andw).

trajectory. In both implementations one must assume that theThe initial flight test of the X-43A-LS was performed in the
x;S are chosen to guarantee that the appropriate matrix will Ball of 2001, while we are presently preparing for a flight test
invertible. Although this is generically the case, this assumptigmogram which will include flight testing the X-43A-LS with
may fail when one reaches the “tail” of the state trajectory. Asvo different adaptive flight control systems; one based on the
such, in our implementation of the algorithm, we dither the stafDPA described in the present paper and the other based on
in the “tail” of a trajectory, and cease to update the control laav Lyapunov Synthesis algorithm [21]. As a first step in this
when the state is near the singularity at (0, 0). process we developed an autolander for the X-43A-LS based
To illustrate the implementation of the ADPA in thieear on the linear version of the ADPA [6]. That is, a special purpose
case we developed an autolander for the NASA X-43A-LS (oflight control system designed to track a “glide path” from low
HyperX) [27]. The X-43A, shown in Fig. 1(a), is an unmannediltitude to the “flare” just above the end of the runway, as indi-
experimental aircraft for an advanced scramjet engine, opegted in Fig. 1(b). The simulated performance of the X-43A-LS
ating in the Mach 7-10 range [14]. In its present configuratioautolander, using a 6 degree-of-freedamarizedmodel of the
the X-43A is an expendable test vehicle, which will be launchett43A-LS, is described as follows.
from a Pegasus missile, perform a flight test program using itsThis linearized X-43A-LS model has eleven states (listed in
scramjet engine, after which it will crash into the ocean. ThEable I) and four inputs (listed in Table I1). To stress the adap-
purpose of the simulation described below was to evaluate tiiee controller, the simulation used an extremely steep glide path
feasibility of landing the planned X-43B. To this end, we deangle. Indeed, so steep that the drag of the aircraft was initially
signed, fabricated, and are in the process of flight testing thsufficient to cause the aircraft to fall fast enough, requiring
X-43A-LS; a full size subsonic version of the X43A with in-negative thrust. Of course, in practice one would never use such
creased wingspan, designed to evaluate the low speed perfosteep glide slope, alleviating the requirement for thrust re-
mance, landing, and takeoff characteristics of the X-43 desigrersers in the aircraft. To illustrate the adaptivity of the con-
The 12 long X-43A-LS is powered by a 130 Ib thrust AMT troller, noapriori knowledge of either thel or B matrices for
Phoenix turbojet engine, and is designed to fly at 250 kts [11{he X-43A-LS model was provided to the controller.
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G107 sstimated costlo-go fram initial stata .....  Following the model developed for the Kronecker Product for-
! : ! ’ : ’ : ’ i mulation of the linear algorithm in Section I, we observe the
state ay = n(n + 1)/2 points;z;; j =1, 2, ..., ¢; and solve

the set of simultaneous equations

@} Py = —qlag) — af Pibaw;)r™ (x,)b" (a7) Py

= i=12...¢q (22)
B
2 I e , : .
1.5 e nnee tooo o Rl RSttt CEEEREE SRR oneee i---- or, equivalently in matrix form
1 @t
L Lo e e LR L S S .
azg ®a:§
vec(Pit1)
0.5 i H i H H H H H H T b T
g 5 10 15 20 25 30 35 40 45 > Qx
time in seconds 4 4

—q(z1) — ¥ Pib(z1)r 26T (1) Pz,
—q(x2) — 23 Pib(z2)r =1 (22)bT (22) Py
A “trim routine” was used to calculate the steady state set- = . . (22)
tings of the aircraft control surfaces required to achieve the de- 3
sired flight conditions, with the state variables and controlled —q(zq) — 23 Pib(zg)r~ (z )b (24) Pizg
inputs for the flight control system taken to be the deviatio

from the trim point. In the present example, the trim was cal mber of degrees of freedom B, to ¢ by requiring it to be

Fig. 4. Cost-to-go from initial state as a function of time.
nlike the linear case, however, where one could reduce the
culated to put the aircraft on the specified glide slope. The per- "~ ; L . "
formance of the X-43A-LS autolander is summarized in Fig. ermitian, with positivity following from the fact that a positive
the vertical component of the aircraft velocity (sink rate) along <. cannot guarantee that a hermitian solution to (22) will be
i ; o ositive definite. As such, we reduce the number of degrees of
the glide path are plotted. After correcting for the initial devia:
tion from trim, the autolander brings the aircraft to, and ma'QFiangular matrix with positive diagonal entriei;. 1, and its
transposepf; 1 = UﬂlUiH, forcing P, to be positive def-
Fig. 3(a), all of which are well within the dynamic range of thén'te hermitian. Substituting this expression into (22) we then
X-43A-LS’s controls, while the remaining states of the aircra
during landing are shown in Fig. 3(b)—(d). il @27

where the altitude and lateral errors from the glide path angﬂmte solution of (19) is known to exist, in the nonlinear case
reedom ofF;; to g by expressing it as the product of an upper
tains it on, the glide path. The control values employed by the
autolander to achieve this level of performance are shown.in v
ﬁolve the quadratic equation
To evaluate the adaption rate of the autolander, the “cost-t lT

go” fromthe initial state is plotted as a function of time as the cor}-*2 ® e vec(UL ,Uit1)

troller adapts in Fig. 4. As expected, the cost-to-go jumps fro : o

the low initial value associated with the initial gueg$y, toa | ;7 g T

relatively high value, and then decays monotonically to the op- * ’ (1) — 2T Pib(a)r— (26T (21) Pix

timal value as the controller adapts. Although the theory predicts A Lo ' e

that the cost-to-go jump should occur in asingle iteration, afilter  _ —q(x2) — 23 Pb(z2)r= (z2)b" (22) P2 (23)
was used to smooth the adaptive process in our implementation, :

which spreads the initial cost-to-go jump over several iterations. —q(zy) - x{II“Pib(xqu—l(xq)bT(xq)Pixq

IV. QUADRATIC APPROXIMATION OF THECOSTFUNCTIONAL  for U4, yielding an approximation of the actual cost functional

; Tr:T :
The purpose of this section is to develop an approxima'féthe forma= Uiy, Uiy,

implementation of the ADPA in which the actual cost functional Igrc'rgz;nzzgtfé?; Sg{irzr;tz;g%givtfmo?:;rgﬁfaﬁéitift:ﬁ'e
is approximated by a quadratic at each point in state space JAEOY, P

above, the quadratic approximation preserves the fused 'SQRPVG algorithm using observations obtained along a state tra-

- . ectory, z,;(xo, -), starting at initial state:, and converging to
computing/hard computing character of the general ADpﬁQe singularity at (0, 0). As before, we approximaféz) by

combining soft computing techniques to iteratively solve for a o . . /
approximate costfunctional in real time for a plantwith unknowf, adraticz~ iz, but work with the integral expression for

dynamics, with hard computing techniques to guarantee convsglo(f; ra;?_irr]';han the lterative HJB equation, obtaining the
gence of the algorithrand stepwise stability of the controller. quati
Tothisend, welet(z), b(x), ¢(x), andr(x) beC>° functions

as defined in Section I, and we &t(x) = z¥ P,z in which V“’l(x]zo

case(dV;/dz)(x) = 227 P andk;(2) = —r~H(2)b? () Pryrz = / [q(zi (0, M)+ (z0, N Pib(w;(zo, A))r~
are alsoC*° functions. Substituting these expression into the t;

Iterative HIB equation we obtain < (@i(wo, MY (wi(wo, N) Py (w0, )] dA

et Py = —g(x) — " Bb(x)yr— ()b (@) Pz, (20) =z] Pz §=1,2,...,¢q (24)
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v Velocity in red; Pasition in Blue

l.;é
u -
Fig. 5. Mass constrained to a parabolic track.
for a sequence of initial states; = x;(xo,t;); § = 1,
2, ..., q, along z;(xo, -). Converting (24) to Kronecker 10 : : : ; :
Product form now yields the x n? matrix equation ] 10 20 30 40 50
T T time in seconds
Ty @1 Vigr(z1)
va T ¢=0.01; ul=[1 2J'; uncontrolled
T3 @ Vigi(x
2772 veo(Pryy) = wie2) (25) @
: Yeloolty I red; Position h Bive
ol @l Vig1(wg) TUTTTTTT
or equivalently, lettingP; 1, = UZL Ui 44 1T ro
oF @af Viga (1) - Bt i
i @2l Visa(z SREEEE Foee
2O ot Uiy = | | (26 Lo
T @ Vit(e,) : e
which may be solved fa/; , 1, yielding an approximation of the 1, _____ '_|
actual cost functional in the form” U},  U; 11 . oo
Although both (22) and (26) require that one solve a quadra T P
equation ing = n(n + 1)/2 unknowns, the derivatives of the 1. SN S S SO Lo
state are not required by the formulation of (26) and, asintl N/ L L
linear case, thé’;,(x;) are filtered by integrating along the : : :r :
entire state trajectory;; (zo, -), from zo to the singularity at -2 e

(0, 0). On the other hand, the formulation of (22) allows one =01; 03T 21 horzontal oo
adapt the control multiple times along a given state trajectory. In (b)
both implementations one must assume thatdfseare chosen Fig. 6. (a) Uncontrolled and (b) controlled response of parabolically
to guarantee that the appropriate matrix will be invertible. As igpnstrained mass.
the linear case, this assumption may fail when one reaches the
“tail” of the state trajectory.

To evaluate the performance of the ADPA of (22), we selectec
the system illustrated in Fig. 5, in which aunitmgss = 1) is
constrained to follow a parabolic tra¢k = »?) under the influ-
ence of horizonta]fy ) and vertica( fy) forces, gravity ¢), and
a small amount of viscous dampifig = 0.001). This 2nd order
system, though somewhat academic, is highly nonlinear yet su
ficiently well understood to allow us to evaluate the performance.
of the adaptive controller. Taking the state variables tebe- « -
andz; = >, this system has the input affine state model

. —4x%372 — 2gxs  —cxy
[”5 L } = 14 4a2 m
2
T 0
2.7}2 I
+ | m(1+4z3) m(1+423) vl (27) Fig. 7. LoFLYTE UAV at Edwards AFB.
fu
0 0
Moreover, it is stable with a Lyapunov function taken to be th&hile the derivative oft” along the trajectories of the system
total (kinetic+ potential) energy takes the form

m .
E= (14 423) =7 + mgz; (28) E = —c (1 + 423) =f. (29)
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TABLE 1lI
STATES OF NONLINEAR LONGITUDINAL LOFLYTE MODEL
State Symbol Units Min Trim Max
Point
pitch rate q rad/s -0.3491 0.0000 0.3491
pitch theta rad -0.6850 -0.3359 0.0132
vertical component of airspeed w ft/s (positive in down -4.116 16.12 36.12
direction)
horizontal/(forward) component of air- u ft/s 95.97 115.97 135.97
speed
vertical componert of airspeed as function of time for each iteration horizontal component of airspeed as function of time for each iteration
17.4
= 1
e o
c o
§17.2 ?
® limiting response B124
& 7N y — &
E =
& =
= / $ 122
16.8 - o
E: mitial response £
> A =
e O S
‘o 166 ! \ £ 120
-l ! AN e
= ,I \g/ > §-
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L
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time in seconds
(@) (b)
pitch rate as function of time for each iteration pitch angle as function of time for each iteration
03
OLOIS [ | empveveoreees e eeeess e e et et e e i 03 initial response /—ﬁ?”"
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M = -0.
2 oo ] t e N | g5 L.
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Fig. 8. Aircraft state variables on the Oth, first, second, third, fourth, fifth, and sixtieth iteration: (a) vertical velocity; (b) horizont#y véd pitch rate; and
(d) pitch angle.

To evaluate the performance of the ADPA withagriori pendix A). The state response of the system starting from ini-
knowledge of either(z) or b(x), a 1st order precompensatotial statexo, = [1, 2]* att, = 0 without control is shown in
was used (increasing the order of the system to 3 as per Ag. 6(a) while the response of the controlled system is shown in
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Fig. 6(b). Here, the controlled response converges to the sini elevator deflection as function of time for each iteration

larity at (0, 0) in less than 3 s with a reasonably smooth respon

while the minimally damped uncontrolled system oscillates fc  , | A
. . g st . .
several minutes before settling down. A\\\\\ ) 1% iteration
25

V. RADIAL BASIS APPROXIMATION OF THECOST FUNCTIONAL

ees
S
e 2
—

2.5 ..

/

A
Unlike the nonlinear implementation of the ADPA of Sec - |

tion IV, where one approximaté$, ; () locally by a quadratic ¢ \\g\\ limiting control

function of the state, the purpose of this section is to devel 5 26 -~

an implementation of the algorithm in whidi;(xz) is ap- ‘g_m/ &(

proximated nonparametrically by a linear combination of radis L\\)/// \

basis functions. Since radial basis functions are “local appro:s - -/ m\\

mators,” however, one can update the approximation locally g \ \J/ N

a neighborhood of each trajectory;(zo, -), without waiting © ,

to explore the entire state space. As such, an approximatior

Vi+1(z), updated on the basis of a local exploration of the sta 28l

space at each iteration, which is “potentially” globally convel

gent is obtained. As above the radial basis approximation p 285

serves the fused soft computing/hard computing character of 0

general ADPA, combining soft computing and radial basis func-

tion techniques to iteratively solve for an approximate cost 1Eunﬁfg. 9. Elevator deflection on the Oth, first, second, third, fourth, and fifth and

tional in real time for a plant with unknown dynamics, with hardixtieth iteration.

computing techniques used to guarantee convergence of the al-

gorithmandstepwise stab|!|ty of the controllgr. : Figs. 8—11 illustrate the performance of the radial basis func-
To demonstrate the radial basis function implementation %

the ADPA we chose a fourth-order longitudinal model of thgtrgt'empligfnnf“?vlﬁf:Si(;QDZﬁ’tli?;Eglggt]ec;pt;rgsl UC;QU?LG
LOFLYTE? aircraft [10], illustrated in Fig. 7, with a nonlinear 9y 9 P pace, 9

:  poor p
pitching moment coefficient. LOFLYTE is an unmanne uadratic performance measufe= " [¢* Qz + u’ Ruld)

subsonic testbed for a Mach 5 waverider which was built with @ = diag[0.0015, 0.0015, 0.0015, 0.0015] and & =

: 05]. The algorithm was initiated on the Oth iteration with
evaluate the low speed, landing, and takeoff performance o . .
; ; T () = 0. After the state converged to the trim point, the
the waverider design. It is eight feet long, powered by a 40| . ) : . .
; : eration count was incremented, a radial basis function approx-
thrust AMT Olympus turbojet, and designed to fly at 15 .
; . . Imation ofV, ; () was computed, the new control laky, ; ()
knots. LOFLYTE was extensively flight tested in the late 1990s.
was constructed, and the system was restarted at the same

An upgraded version of LoFLYTE, which is presently bem%ﬁitial state. In these simulations, the aircraft state was updated

prepared for flight testing, will be used as an adaptive f”g%o times/s while the elevator deflection angle was updated
control testbed; for the ADPA, a Lyapunov Synthesis algorithin™ =~ . / h ‘ t th dial basis f )
[21], [22] and system ID based algorithm developed at NASAE.en times S The per ormarnce o the racial basis unction
' . A Implementation of the ADPA is illustrated in Figs. 8-11, where
The states of the nonlinear longitudinal LOFLYTE model are :
indicated in Table Ill, with the zero point in the state spaca. have plotted each of the key system variables on the Oth,
: ’ » poin . b ﬁrst, second, third, fourth, and fifth iterations of the algorithm
shifted to correspond to a selected trim point for the aircraft. The

input for this model was the elevator deflection, with= 0 in an_?;he limiting Yatl)llje Offthﬁ s€ plotsft(at the|S|xt|§th |t|(:a.rat|§n3:.
the model corresponding to a downward elevator deflection of e state variables of the aircrait are plotted In Fig. "or
_2 788 each state variable the initial (Oth) response (indicated by “x”s)

For our radial basis function implementation of the ADP. is at one extreme (high for the vertical velocity, pitch, and pitch
‘ate; and low for the horizontal velocity), with the response

each axis of the state space is covered by 21 radial-basis—fu??é-e’ . . . . S
dg_mpmg to the opposite extreme on the 1st iteration (indicated

N

X&@t

»

N T
e

imitial control

-
N

3 4 5 6
time in seconds

tions, from a predetermined minimum to a predetermined max. . . - )
y “0”s) and then converging toward the limiting value, with the

adaption process effectively convergent after 10 iterations. The
21 = 194 481 radial-basis-functions. Given the local nature Oﬁ:le\{ator dgflection required_tq _achieve these responses is show
the radial basis functions, however, at any pointin the state spé{?:g_'g' 9. Sinceko(z) = che ”?'“a' (Oth) ele_vafcor deflect‘!o”n re-

Viya () is computed by summing the values 3% 5x 5x 5 — mains constant at th_e trim p0|_nt of2.784 (|rjd|cated by “x"s). _

625 block of radial basis functions in a neighborhoodxof The gleva_ltor. deflect|o‘rl1 Ehen Jumps to a high value on the f|rst
corresponding to a 4-cube in state space centere ith iteration (indicated by “0”s), and then converges toward the lim-

Au = +4.76 ftfs, Aw = +4.76 ft/sAq = +0.083 rad/s, and iting value. All variables are well within a reasonable dynamic
AG — 10083 rad ) ) ’ range for the LOFLYTE UAV except for the initial drop of the

aircraft [indicated by the initial positive spike in the vertical ve-

1LOFLYTE is a registered trademark of Accurate Automation CorporatiofOCIty curve of Fig. 8(a)], due to the use of a “null” controller
Chattanooga, TN 37421 USA. on the first iteration [which would not be the case for the ac-

imum value indicated in Table lll. As such, that part of stat
space where the UAV operates is covere®@byx 21 x 21 x
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computed Vi as function of time for each iteration RBF output as function of time for each iteration
0.3
_________________ o] |
0.2
- - )
= approxumnation - \ - : .
= g \\\ lllmtlng approx1matlon
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S 1™ iteration
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time in seconds time in seconds

@ (b)
Fig. 10. (a) Computed and (b) RBF approximation of the optimal cost functional on the Oth, first, second, third, fourth, and fifth and sixtieth iterati

calculated Vi (x-) & RBF cutput (-0-); same initial stete used in each iteration  with the RBF approximation error decreasing in parallel with
03 the adaption process. Finally, the cost-to-go based on the com-
puted (“x"s) and radial basis function approximation (“0”s) of
the optimal cost functional is plotted as a function of the itera-
tion number in Fig. 11. As predicted by the theory, the cost-to-go
has an initial spike and then declines monotonically to the lim-
iting value.

028

026
VI. CONCLUSIONS

Unlike the many soft computing applications where it suffices
to achieve a “good approximation most of the tima,tontrol
system must be stable all of the tinfes such, if one desires
to learn a control law in real-time, a fusion of soft computing
techniques to learn the appropriate control law with hard com-

puting techniques to maintain the stability constraint and guar-
antee convergence is required. Our goal in the preceding has
been to provide the framework for a family of ADPAs, fusing
l hard and soft computing techniques, by developing a general
theory and the three implementations of Sections IlI-V.
018 ; ; Indeed, several alternative implementations are possible.
0 10 20 0 40 50 g0 First, by taking advantage of the intrinsic adaptivity of the algo-
iteration number rithm, one could potentially use a linear adaptive controller on
a nonlinear system, letting it adapt to a different linearization of
Fig. 11. Cost-to-go based on the computed ("x’s) and RBF approximatigRe plant at each point in state space, effectively implementing
(“0"s) of the optimal cost functional versus iteration number. « . . " .
an “adaptive gain scheduler.” Secondly, since the control law
is based ondV;(x)/dz, not V;(z), any approximation of the
tual aircraft wheré:o(«) would be selected on the basis of priocost functional should consider the gradient error as well
simulation]. as the direct approximation error. Therefore, in Section V

The performance of the ADPA is illustrated in Fig. 10 wherene might replace the radial basis function approximation,
the computed [Fig. 10(a)] and radial basis function approximeasich produces a “bumpy” Tchebychev-like approximation of
tion [Fig. 10(b)] of the optimal cost functional are plotted a¥;(z), with a “smoother” neural network approximation, or
a function of time along the state trajectory, on the Oth, firsan alternative local approximator (cf., a cubic spline). Finally,
second, third, fourth, and fifth and sixtieth (limiting) iteratiorby requiring the plant and performance measure matrices to
of the algorithm. In both cases, the initial estimate (indicatdzk “real analytic” rather thad@> (and extending the proof of
by “x"s) is low and converges upward to the limiting valuethe theorem to guarantee that the matrices generated by the

024

022

calculated Vi and RBF estimate of Vi

02
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4 = o(u)+ P(uyv
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x = a(x)+ b(x)u

v

> u(0) = u

y = I:to(x, u)

x(0) = x

Fig. 12. Control system with precompensator.

iterative process are also “real analytic”) one might considéf(#) = k°(x, ). This is, however, achieved at the cost of
the possibility of using analytic continuation to extrapolatasing a modified performance measure and increasing the di-
local observations of the state space to the entire (or a largeension of the state space.

region in the) state space, implementing the process with one
of the modern symbolic mathematics codes.

(1
[2

The purpose of this appendix is to derive the precompensa-
tion technique originally described in [23], which embeds the [3!
b(z) matrix of an input affine plant into the(x) matrix of the
combined precompensator/plant model, thereby allowing one to
apply the Adaptive Dynamic Programming techniques devel-[!
oped in the present paper for a plant with an unkneyu) ma-
trix, to a plant with bottu(z) andb(x) unknown. This technique
is illustrated in Fig. 12, where the precompensator is defined
by any desired (controllable) input affine differential equation, (7]
1 = ao(u) + B(u)r, whose state vector is of the same dimen-
sion as the input vector for the given plant, with a singularity at i8]
(v =0,v=0).

Now, the dynamics of the augmented plant, obtained by com-[9]
bining the precompensator with the original plant, take the form

APPENDIX A
PRECOMPENSATIONPROCEDURE

(6]

PR a(z) +b(z)u| | alx)+b(z)u " 0], [10]
| [ a(w)+pu)r | a(u) Blu) |
=z, u) + bz, v = a(i) + b(&)v (30) [
which is also input affine, with the augmented state vedte,
[+ «|T and a singularity atz = 0, » = 0). Moreover, all [12]

of the dynamics of the original plant are now embedded in the
a(z) matrix of the augmented plant witliz) known (since the  [13]
dynamics of the precompensator are specified by the system de-
signer). Furthermore, we may define an augmented performanggy
measure by

50 15

I /0 [i(gz(xo, ), (o, A))] X LG;

= /0 " [[(z(z0, A), u(zo, N) + L (v(z0, A))] dA -

o / (o, \)] (31) 08
wherel,, (1/(zo, tto)) > 0 with equality if and only ifv = 0. [19]

As such, one can apply the above described ADPA to a plant
in which botha(z) andb(z) are unknown by applying the al- [20]
gorithm to the augmented system of (30) with the augmenteg,,
performance measure of (31), yielding a control law of the form
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