
140 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Adaptive Dynamic Programming
John J. Murray, Senior Member, IEEE, Chadwick J. Cox, George G. Lendaris, Life Fellow, IEEE, and

Richard Saeks, Fellow, IEEE

Abstract—Unlike the many soft computing applications where
it suffices to achieve a “good approximation most of the time,”a
control system must be stable all of the time. As such, if one desires
to learn a control law in real-time, a fusion of soft computing tech-
niques to learn the appropriate control law with hard computing
techniques to maintain the stability constraint and guarantee con-
vergence is required. The objective of the present paper is to de-
scribe anadaptive dynamic programming algorithm(ADPA) which
fusessoft computing techniquesto learn the optimal cost (or return)
functional for a stabilizable nonlinear system with unknown dy-
namics andhard computing techniquesto verify the stability and
convergence of the algorithm.

Specifically, the algorithm is initialized with a (stabilizing) cost
functional and the system is run with the corresponding control
law (defined by the Hamilton–Jacobi–Bellman equation), with the
resultant state trajectories used to update the cost functional in a
soft computing mode. Hard computing techniques are then used to
show that this process is globally convergent with stepwise stability
to the optimal cost functional/control law pair for an (unknown)
input affine system with an input quadratic performance measure
(modulo the appropriate technical conditions).

Three specific implementations of the ADPA are developed for
1) the linear case, 2) for the nonlinear case using a locally quadratic
approximation to the cost functional, and 3) the nonlinear case
using a radial basis function approximation of the cost functional;
illustrated by applications to flight control.

Index Terms—Adaptive control, adaptive critic, dynamic pro-
gramming, nonlinear control, optimal control.

I. INTRODUCTION

T HE PRESENT work has its roots in the approximate dy-
namic programming/adaptive critic concept [2], [30], [20],

[32], [16], in which soft computing techniques are used to ap-
proximate the solution of a dynamic programming algorithm
without the explicit imposition of a stability or convergence con-
straint, and the authors’ stability criteria for these algorithms
[6], [24]. Alternatively, a number of authors have combined hard
and soft computing techniques to develop tracking controllers.
These include Lyapunov synthesis techniques using both neural
[25], [28], [18], [5], [21] and fuzzy learning laws [28], [29], [17],
sliding mode techniques [31], and input–output techniques [9].
The objective of the present paper is to describe anadaptive

Manuscript received March 20, 2001; revised June 11, 2002 This work was
supported in part by NSF SBIR Grants DMI-9660604, DMI-9860370, and DMI-
9983287, NASA Ames SBIR Contracts NAS2-98016 and NAS2-20008, and
NSF Grant ECS-9904378.

J. J. Murray is with the Department of Electrical Engineering, State University
of New York at Stony Brook, Stony Brook, NY 11790 USA.

C. J. Cox and R. Saeks are with Accurate Automation Corporation, Chat-
tanooga, TN 37421 USA (e-mail: richard@saeks.org).

G. G. Lendaris is with Accurate Automation Corporation, Chattanooga, TN
37421 USA, on sabbatical from Portland State University, Portland, OR 97207
USA (e-mail: lendaris@ieee.org).

Digital Object Identifier 10.1109/TSMCC.2002.801727.

dynamic programming algorithm(ADPA) which usessoft com-
puting techniquesto learn the optimal cost (or return) functional
for a stabilizable nonlinear system with unknown dynamics and
hard computing techniquesto verify the stability and conver-
gence of the algorithm.

The centerpiece of dynamic programming is the Hamilton–
Jacobi–Bellman (HJB) equation [3], [4], [19], which one solves
for theoptimal cost functional, . This equation char-
acterizes the cost to drive the initial stateat time to a pre-
scribed final state using the optimal control. Given the optimal
cost functional, one may then solve a second partial differential
equation (derived from the HJB equation) for the corresponding
optimal control law, , yielding an optimal cost func-
tional/optimal control law pair, .

Although direct solution of the HJB equation is computa-
tionally intense (the so-called “curse of dimensionality”), the
HJB equation and the relationship between and the corre-
sponding control law , derived therefrom, serves as the basis
of the ADPA developed in this paper. In this algorithm, we
start with an initial cost functional/control law pair ,
where is a stabilizing control law for the plant, and con-
struct a sequence of cost functional/control law pairs ,
in real-time, which converge to the optimal cost functional/con-
trol law pair as follows.

• Given ; ; we run the system using
control law from an array of initial conditions , cov-
ering the entire state space (or that portion of the state
space where one expects to operate the system).

• Recording the state and control trajectories
for each initial condition.

• Given this data, we define to be the cost (it took) to
take the initial state at time to the final state, using
control law .

• Take to be the corresponding control law derived
from via the HJB equation.

• Iterating the process until it converges.
Although this algorithmic process is similar to many of the

soft computing algorithms which have been proposed for op-
timal control [16], [20], [30], [32], it is supported by a hard con-
vergence and stability proof. Indeed, in Section II and in [24],
it is shown that (with the technical assumptions defined in Sec-
tion II) this process is

• globally convergentto
• the optimal cost functional, , and theoptimal control

law, , and is
• stepwise stable; i.e., is a stabilizing controller at every

iteration with Lyapunov function, .
Since stability is an asymptotic property, technically it is suf-

ficient that be stabilizing in the limit. In practice, however, if

1094-6977/02$17.00 © 2002 IEEE

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 141

one is going to run the system for any length of time with con-
trol law to generate data for the next iteration, it is necessary
that be a stabilizing controller at each step of the iterative
process. As such, for this class of adaptive control problems we
“raise the bar,” requiringstepwise stability; i.e., stability at each
iteration of the adaptive process, rather than simply requiring
stability in the limit. This is achieved by showing that is a
Lyapunov function for the feedback system with controller,
generalizing the classical result [19] that is a Lyapunov func-
tion for the feedback system with controller.

An analysis of the above algorithm (see Section II for addi-
tional details) will reveal thata priori knowledge of the state
dynamics matrix is not required to implement the algorithm.
Moreover, the requirement that the input matrix be known (to
compute from), can be circumvented by the precom-
pensator technique described in Appendix A. As such, the above
described ADPA achieves one of the primary goals of soft con-
trol; applicability to plants with completely unknown dynamics.

While one must eventually explore the entire state space
(probably repeatedly) in any (truly) nonlinear control problem
with unknown dynamics, in the ADPA, one must explore
the entire state spaceat each iterationof the algorithm (by
running the system from an array of initial states which cover
the entire state space). Unfortunately, this isnot feasible and
is tantamount to fully identifying the plant dynamics at each
iteration of the algorithm. As such, Sections III–V of this
paper are devoted to the development of three approximate
implementations of the ADPA which do not require global
exploration of the state space at each iteration. These include

• the linear case, where one can evaluate and
from local observations of the system state at each it-
eration;

• an approximation of the nonlinear control law at each
point of the state space, derived using aquadratic ap-
proximation of the cost functionalat that point, requiring

local observations of the system state at each
iteration;

• a nonlinear control law, derived at each iteration of the al-
gorithm from aradial basis function approximationof the
cost functional, which is updated locally at each iteration
using data obtained along a single state trajectory.

II. A DAPTIVE DYNAMIC PROGRAMMING ALGORITHM

In the formulation of the ADPA and theorem, we use the fol-
lowing notation for the state and state trajectories associated
with the plant. The variable “” denotes a generic state while
“ ” denotes an initial state, “” denotes a generic time, and
“ ” denotes an initial time. We use the notation for
the state trajectory produced by the plant (with an appropriate
control) starting at initial state (at some implied initial time),
and the notation for the corresponding control. Finally,
the state reached by a state trajectory at time “” is denoted by

, while the value of the corresponding control at
time “ ” is denoted by .

For the purposes of the present paper, we consider a stabiliz-
able time-invariant input affine plant of the form

(1)

with input quadratic utility function
and performance measure

(2)

Here, , , , and are matrix valued func-
tions of the state which satisfy

1) , producing a singularity at ;
2) the eigenvalues of have negative real parts, i.e.,

the linearization of the uncontrolled plant at zero is expo-
nentially stable;

3) ;
4) has a positive definite Hessian at ,

, i.e., any nonzero state is penalized
independently of the direction from which it approaches
0;

5) for all .
The goal of the ADPA is to use soft computing techniques to
adaptively construct an optimal control , which takes
an arbitrary initial state at to the singularity at (0, 0), while
minimizing the performance measurewith hard convergence
and stability criteria.

Since the plant and performance measure are time invariant,
the optimal cost functional and optimal control law are in-
dependent of the initial time , which we may, without loss
of generality, take to be zero; i.e., and

. Even though the optimal cost functional is
defined in terms of the initial state, it is a generic function of
the state, , and is used in this form in the HJB equation
and throughout the paper. Finally, we adopt the notation

, for the optimal closed loop
feedback system. Using this notation, the HJB equation then
takes the form

(3)
in the time-invariant case [19].

Differentiating the HJB equation (3) with respect to
now yields

(4)

or equivalently

(5)

which is the desired relationship between the optimal control
law and the optimal cost functional. Note that an input quadratic
performance measure is required to obtain the explicit form for

in terms of of (5), though a similar implicit relationship
can be derived in the general case. (See [24] for a derivation of
this result.)

Given the above preparation, we may now formulate the de-
sired adaptive dynamic programming learning algorithm as fol-
lows.

142 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Adaptive Dynamic Programming Algorithm:

1) Initialize the algorithm with a stabilizing cost functional/
control law pair , where is a
function, ; , with a pos-
itive definite Hessian at , ;
and is the control law,

.
2) For run the system with control law, ,

from an array of initial conditions, at , recording
the resultant state trajectories, , and control in-
puts .

3) For let

and

where, as above, we have defined in terms of initial
states but use it generically.

4) Go to 2.
Since the state dynamics matrix, , does not appear in the
above algorithm one can implement the algorithm for a system
with unknown . Moreover, one can circumvent the require-
ment that be known in Step 3, by augmenting the plant
with a known precompensator at the cost of increasing its di-
mensionality, as shown in Appendix A. As such, the ADPA can
be applied to plants with completely unknown dynamics, which
is a primary goal of soft control. Unlike many soft control al-
gorithms, however, it is fused with a rigorous convergence and
stability theorem summarized below.

As indicated in the introduction, however, the requirement
that one fully explore the state space at each iteration of the algo-
rithm is tantamount to identifying the plant dynamics. As such,
the applicability of the ADPA to plants with unknown dynamics
is only meaningful in the context of the approximate implemen-
tations of Sections III–V, where only a local search or explo-
ration of the state space is required.

In the following, we adopt the notation for the closed loop
system defined by the plant and control law:

(6)

To initialize the ADPA for a stable plant, one may take
and which will stabilize the

plant for sufficiently small [though in practice we often take
]. Similarly, for a stabilizable plant, one can “presta-

bilize” the plant with any desired stabilizing control law such
that and the eigenvalues of have
negative real parts; and then initialize the ADPA with the above
cost functional/control law pair. Moreover, since the state tra-
jectory going through any point in state space is unique, and
the plant and controller are time-invariant, one can treat every
point on a given state trajectory as a new initial state when eval-
uating , by shifting the time scale analytically without
rerunning the system, thereby reducing the scope of the required
search.

The ADPA is characterized by the following Theorem.
Adaptive Dynamic Programming Theorem:Let the se-

quence of cost functional/control law pairs ;
; be defined by, and satisfy the conditions of the ADPA.

Then
1) and exist, where and

are functions with ;
; ; .

2) The control law, , stabilizes the plant [with Lyapunov
function] for all , and the eigen-
values of have negative real parts.

3) The sequence of cost functionals, , converge to the
optimal cost functional, .

Note that in 2), the existence of the Lyapunov function
together with the eigenvalue condition on implies
that the closed loop system, , is exponentially stable
[12], rather than asymptotically stable, as implied by the exis-
tence of the Lyapunov function alone.

In the following, we sketch the proof of the Adaptive Dy-
namic Programming Theorem, while the details of the proof ap-
pear in [24]. The proof includes four steps, as follows.

1) Show that and exist and are
functions, with ; ;

: The first step required to prove that and
exist and are functions, is to show that the state

trajectories defined by the control law and their derivatives
with respect to the initial condition are integrable. Since
is a stabilizing control law, the state trajectories are
asymptotic to zero. Although this implies that they are bounded,
it is not sufficient for integrability. In combination with the
condition that the eigenvalues of have negative
real values, however, asymptotic stability implies exponential
stability [12], which is sufficient to guarantee integrability.
Intuitively, asymptotic stability guarantees that the state trajec-
tories will eventually converge to a neighborhood of zero where
the closed loop system defined by may be approximated by
the linear system defined by , which is exponentially
stable since the eigenvalues of have negative real
values. See [12] for the details of this theorem.

Similarly, one can show that the derivatives of the state tra-
jectories with respect to the initial condition, ,
are exponentially stable by showing that they also satisfy a
differential equation which may be approximated in the limit
by the linear system defined by . Moreover, since
the state trajectories and their derivatives with respect to the
initial condition are exponentially stable, it follows from the
defining properties for the plant and performance measure, that

, and its derivatives with respect to the
initial condition are also exponentially convergent to zero.

As such, , and its derivatives with re-
spect to the initial condition are integrable, while they are
functions, since is a function [8]. As such

(7)

and

(8)

exist and are functions.

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 143

2) Show that the iterative Hamilton Jacobi Bellman equa-
tion:

is satisfied, and that ; .
The iterative HJB equation, which may be used as an alterna-

tive to (7) for implementing the ADPA, is derived by computing
via the chain rule to obtain the left side of

the iterative HJB equation, and by directly differentiating (7) to
obtain the right side of the equation. Then if one takes the second
derivative of both sides of the resultant equation, evaluates it at

, and drops those terms which contain or
, both of which are zero, one obtains the Linear Lyapunov

equation

(9)

Now, since the eigenvalues of have negative real
parts, and the right side of (9) is a negative definite sym-
metric matrix, the unique symmetric solution of the Linear
Lyapunov equation (9) is positive definite [1] and, as such,

, as required.
3) Show that is a Lyapunov Function for the closed

loop system, , and that the eigenvalues of
have negative real parts; : This is achieved
by directly computing , i.e., the deriva-
tive of along the trajectories of the closed loop system,

, with the aid of the chain rule and the iterative HJB equa-
tion, implying that is a stabilizing controller for the plant
for all .

To show that the eigenvalues of have negative
real parts, we use an argument similar to that used in 2,
taking the second derivative of the expression derived for

derived
above.

4) Show that the sequence of cost functionals, , is
convergent: This is achieved by showing that the derivative
of is positive along the trajectories of ,

, for
. Moreover, since is asymptotically stable, its state

trajectories, , converge to zero, and hence so does
. Since

along these trajectories, however, this
implies that on the
trajectories of ; . Since every point in the
state space lies along some trajectory ofthis implies that

, or equivalently, for all
; . As such, is a decreasing sequence of

positive functions; ; and is therefore convergent
(as is the sequence ; ; since the behavior of
the first entry of a sequence does not affect its convergence).

Note, the requirement that in this step of the proof is a
“physical fact” and not just a “mathematical anomaly,” as indi-
cated by the examples of Sections III–V, where the “cost-to-go”
from a given state typically jumps from its initial value for
to a large value, and then monotonically decreases to the optimal
cost as one runs the algorithm for .

III. L INEAR CASE

The purpose of this section is to develop an implementation of
the ADPA for the linear case, where local exploration of the state
space at each iteration of the algorithm is sufficient, yielding a
computationally tractable algorithm. As above, the linear algo-
rithm preserves the fused soft computing/hard computing char-
acter of the general ADPA, combining soft computing tech-
niques to iteratively solve the Matrix Riccati equation in real
time for a plant with unknown dynamics, with hard computing
techniques to guarantee convergence of the algorithmandstep-
wise stability of the controller.

For this purpose, we consider a linear time-invariant plant

(10)

with the quadratic performance measure

(11)
Here is a positive matrix, while is positive definite. For
this case is a quadratic form, where is a
positive definite matrix. As such, and

.
To implement the ADPA in the linear case, we initialize the

algorithm with a quadratic cost functional,
and . Assuming that is
quadratic and ,

; where, by abuse of notation, we
have used the symbol for both the closed loop system and the
matrix which represents it. As such, the state trajectories for the
plant with control law can be expressed in the exponential
form , while the corresponding control is

. As such

(12)

Now, since is asymptotically stable, the integral of (12) ex-
ists, confirming that is also quadratic.
Moreover, the integral defining is the “well known” in-
tegral form of the solution of the Linear Lyapunov equation [1]

(13)

144 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

(a)

(b)

Fig. 1. (a) NASA X-43 (HyperX) and (b) its glide path.

As such, rather than directly evaluating the integral of (12),
one can iteratively solve for in terms of by solving
the Linear Lyapunov equation (13). Note, as an alternative
to the above derivation one can obtain (13) by expressing

and in the form and
, and substituting these expressions

into the Iterative HJB equation.
Although the matrix for the plant is implicit in

, one can estimate directly from measured data
without a priori knowledge of . To this end, one runs the
system using control law over some desired time interval,
and observes the state at(the dimension of the state space)
or more points, ; ; while (numerically) esti-
mating the time derivative of the state at the same set of points;

; . Now, since is the closed loop system ma-
trix for the plant with control law , ; ;
or equivalently where . As-
suming that the points where one observes the state are linearly
independent, one can then solve forfrom the observations via
the equality , yielding the alternative representa-
tion of the Linear Lyapunov equation

(14)

which can be solved for in terms of without a-priori
knowledge of . Moreover, one can circumvent the require-
ment that be known via the precompensation technique of
Appendix A.

As such, (14) can be used to implement the ADPA without
a-priori knowledge of the plant, achieving one of the primary
goals of soft control. Moreover, since is asymp-
totically stable, (14) always admits a well defined positive def-
inite solution, , while there are numerous numerical solu-
tion techniques for solving this class of Linear Lyapunov equa-
tions [1] providing the required hard convergence proof. Unlike
the full nonlinear algorithm, the linear implementation of the

ADPA requires only local information at each iteration. Finally,
if one implements the above algorithm off-line to construct the
optimal controller for a system with known dynamics, using
at each iteration in lieu of , then the algorithm reduces
to the Newton–Raphson iteration for solving the matrix Riccati
equation [13], [15].

As an alternative to the above Linear Lyapunov equation im-
plementation, one can formulae an alternative implementation
of the linear ADPA using local information along a single state
trajectory, , and the corresponding control,

, starting at initial state and converging to the sin-
gularity at (0, 0). Indeed, for this trajectory one may evaluate

via

(15)

since the plant and control law are time-invariant. More gener-
ally, for any initial state, , along this trajectory

(16)

Now, since the positive definite matrix has only
independent parameters, one can select(or more) initial

states along this trajectory; ; ; and solve the
set of simultaneous equations

(17)

for . Equivalently, applying the matrix Kronecker product
formula, where the “vec” op-
erator maps a matrix into a vector by stacking its columns on

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 145

TABLE I
STATES OFLINEARIZED 6 DoF X-43 MODEL

TABLE II
INPUTS(SYMBOL, UNITS) OF LINEARIZED 6 DoF X-43 MODEL

top of one another, one may transform (17) into a matrix
equation

...
...

(18)

Now, let “ ” be the operator that maps an matrix, ,
to a vector, , by stacking the upper
triangular part of its columns, , , on top of one another.
Now, if is symmetric, fully characterizes and, as
such, one may define an matrix, , which maps
to for any symmetric matrix, . As such, one may ex-
press (18) in the form of a matrix equation in the unknown

,

...
...

(19)

As such, assuming that the points where one observes the
state are chosen to guarantee that (19) has a unique solution, one
can solve (19) for a unique symmetric . Moreover, since the
general theory implies that (19) has a positive definite solution,
the unique symmetric solution of (19) must, in fact, be positive

Fig. 2. X-43 autolander altitude error, lateral error, and sink rate.

definite. As such, one can implement the ADPA for a linear
system by solving (19) for , instead of (14).

Although both (14) and (19) require that one solve a linear
equation in unknowns, the derivatives of the
state are not required by the Kronecker product formulation of
(19), and since the are computed by integrating along
the entire state trajectory, measurement noise is filtered. On the
other hand, the Linear Lyapunov formulation of (14) requires
that one observe the state at onlypoints per iteration, and
allows one to adapt the control multiple times along a given state

146 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

(a) (b)

(c) (d)

Fig. 3. (a) Aircraft controls (de, da, dr, and T); (b) Orientation rates (p, q, andr); (c) Orientation angles (phi, theta, and psi); and (d) Airspeed components (u,
v, andw).

trajectory. In both implementations one must assume that the
s are chosen to guarantee that the appropriate matrix will be

invertible. Although this is generically the case, this assumption
may fail when one reaches the “tail” of the state trajectory. As
such, in our implementation of the algorithm, we dither the state
in the “tail” of a trajectory, and cease to update the control law
when the state is near the singularity at (0, 0).

To illustrate the implementation of the ADPA in thelinear
case, we developed an autolander for the NASA X-43A-LS (or
HyperX) [27]. The X-43A, shown in Fig. 1(a), is an unmanned
experimental aircraft for an advanced scramjet engine, oper-
ating in the Mach 7–10 range [14]. In its present configuration,
the X-43A is an expendable test vehicle, which will be launched
from a Pegasus missile, perform a flight test program using its
scramjet engine, after which it will crash into the ocean. The
purpose of the simulation described below was to evaluate the
feasibility of landing the planned X-43B. To this end, we de-
signed, fabricated, and are in the process of flight testing the
X-43A-LS; a full size subsonic version of the X43A with in-
creased wingspan, designed to evaluate the low speed perfor-
mance, landing, and takeoff characteristics of the X-43 design.
The 12′ long X-43A-LS is powered by a 130 lb thrust AMT
Phoenix turbojet engine, and is designed to fly at 250 kts [11].

The initial flight test of the X-43A-LS was performed in the
Fall of 2001, while we are presently preparing for a flight test
program which will include flight testing the X-43A-LS with
two different adaptive flight control systems; one based on the
ADPA described in the present paper and the other based on
a Lyapunov Synthesis algorithm [21]. As a first step in this
process we developed an autolander for the X-43A-LS based
on the linear version of the ADPA [6]. That is, a special purpose
flight control system designed to track a “glide path” from low
altitude to the “flare” just above the end of the runway, as indi-
cated in Fig. 1(b). The simulated performance of the X-43A-LS
autolander, using a 6 degree-of-freedomlinearizedmodel of the
X-43A-LS, is described as follows.

This linearized X-43A-LS model has eleven states (listed in
Table I) and four inputs (listed in Table II). To stress the adap-
tive controller, the simulation used an extremely steep glide path
angle. Indeed, so steep that the drag of the aircraft was initially
insufficient to cause the aircraft to fall fast enough, requiring
negative thrust. Of course, in practice one would never use such
a steep glide slope, alleviating the requirement for thrust re-
versers in the aircraft. To illustrate the adaptivity of the con-
troller, noapriori knowledge of either the or matrices for
the X-43A-LS model was provided to the controller.

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 147

Fig. 4. Cost-to-go from initial state as a function of time.

A “trim routine” was used to calculate the steady state set-
tings of the aircraft control surfaces required to achieve the de-
sired flight conditions, with the state variables and controlled
inputs for the flight control system taken to be the deviations
from the trim point. In the present example, the trim was cal-
culated to put the aircraft on the specified glide slope. The per-
formance of the X-43A-LS autolander is summarized in Fig. 2
where the altitude and lateral errors from the glide path and
the vertical component of the aircraft velocity (sink rate) along
the glide path are plotted. After correcting for the initial devia-
tion from trim, the autolander brings the aircraft to, and main-
tains it on, the glide path. The control values employed by the
autolander to achieve this level of performance are shown in
Fig. 3(a), all of which are well within the dynamic range of the
X-43A-LS’s controls, while the remaining states of the aircraft
during landing are shown in Fig. 3(b)–(d).

To evaluate the adaption rate of the autolander, the “cost-to-
go” from the initial state is plotted as a function of timeas the con-
troller adapts in Fig. 4. As expected, the cost-to-go jumps from
the low initial value associated with the initial guess,, to a
relatively high value, and then decays monotonically to the op-
timal value as the controller adapts. Although the theory predicts
that the cost-to-go jump should occur in a single iteration, a filter
was used to smooth the adaptive process in our implementation,
which spreads the initial cost-to-go jump over several iterations.

IV. QUADRATIC APPROXIMATION OF THECOSTFUNCTIONAL

The purpose of this section is to develop an approximate
implementation of the ADPA in which the actual cost functional
is approximated by a quadratic at each point in state space. As
above, the quadratic approximation preserves the fused soft
computing/hard computing character of the general ADPA,
combining soft computing techniques to iteratively solve for an
approximatecost functional in real time for a plantwith unknown
dynamics, with hard computing techniques to guarantee conver-
gence of the algorithmandstepwise stability of the controller.

To this end, we let , , , and be functions
as defined in Section II, and we let in which
case and
are also functions. Substituting these expression into the
Iterative HJB equation we obtain

(20)

Following the model developed for the Kronecker Product for-
mulation of the linear algorithm in Section III, we observe the
state at points; ; ; and solve
the set of simultaneous equations

(21)

or, equivalently in matrix form

...

...
(22)

Unlike the linear case, however, where one could reduce the
number of degrees of freedom of to by requiring it to be
hermitian, with positivity following from the fact that a positive
definite solution of (19) is known to exist, in the nonlinear case
one cannot guarantee that a hermitian solution to (22) will be
positive definite. As such, we reduce the number of degrees of
freedom of to by expressing it as the product of an upper
triangular matrix with positive diagonal entries, , and its
transpose, , forcing to be positive def-
inite hermitian. Substituting this expression into (22) we then
solve the quadratic equation

...

...
(23)

for , yielding an approximation of the actual cost functional
in the form .

To circumvent the differentiation of the observed state tra-
jectory, one can formulate an alternative implementation of the
above algorithm using observations obtained along a state tra-
jectory, , starting at initial state and converging to
the singularity at (0, 0). As before, we approximate by
a quadratic, , but work with the integral expression for

rather than the Iterative HJB equation, obtaining the
set of equations

(24)

148 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Fig. 5. Mass constrained to a parabolic track.

for a sequence of initial states ;
; along . Converting (24) to Kronecker

Product form now yields the matrix equation

...
...

(25)

or equivalently, letting

...
...

(26)

which may be solved for , yielding an approximation of the
actual cost functional in the form .

Although both (22) and (26) require that one solve a quadratic
equation in unknowns, the derivatives of the
state are not required by the formulation of (26) and, as in the
linear case, the are filtered by integrating along the
entire state trajectory, , from to the singularity at
(0, 0). On the other hand, the formulation of (22) allows one to
adapt the control multiple times along a given state trajectory. In
both implementations one must assume that thes are chosen
to guarantee that the appropriate matrix will be invertible. As in
the linear case, this assumption may fail when one reaches the
“tail” of the state trajectory.

To evaluate the performance of the ADPA of (22), we selected
the system illustrated in Fig. 5, in which a unit mass is
constrained to follow a parabolic track under the influ-
ence of horizontal and vertical forces, gravity , and
a small amount of viscous damping . This 2nd order
system, though somewhat academic, is highly nonlinear yet suf-
ficiently well understood to allow us to evaluate the performance
of the adaptive controller. Taking the state variables to be
and , this system has the input affine state model

(27)

Moreover, it is stable with a Lyapunov function taken to be the
total (kinetic potential) energy

(28)

(a)

(b)

Fig. 6. (a) Uncontrolled and (b) controlled response of parabolically
constrained mass.

Fig. 7. LoFLYTE UAV at Edwards AFB.

while the derivative of along the trajectories of the system
takes the form

(29)

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 149

TABLE III
STATES OFNONLINEAR LONGITUDINAL LoFLYTE MODEL

(a) (b)

(c) (d)

Fig. 8. Aircraft state variables on the 0th, first, second, third, fourth, fifth, and sixtieth iteration: (a) vertical velocity; (b) horizontal velocity; (c) pitch rate; and
(d) pitch angle.

To evaluate the performance of the ADPA withoutapriori
knowledge of either or , a 1st order precompensator
was used (increasing the order of the system to 3 as per Ap-

pendix A). The state response of the system starting from ini-
tial state at without control is shown in
Fig. 6(a) while the response of the controlled system is shown in

150 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Fig. 6(b). Here, the controlled response converges to the singu-
larity at (0, 0) in less than 3 s with a reasonably smooth response,
while the minimally damped uncontrolled system oscillates for
several minutes before settling down.

V. RADIAL BASIS APPROXIMATION OF THECOSTFUNCTIONAL

Unlike the nonlinear implementation of the ADPA of Sec-
tion IV, where one approximates locally by a quadratic
function of the state, the purpose of this section is to develop
an implementation of the algorithm in which is ap-
proximated nonparametrically by a linear combination of radial
basis functions. Since radial basis functions are “local approxi-
mators,” however, one can update the approximation locally in
a neighborhood of each trajectory, , without waiting
to explore the entire state space. As such, an approximation of

, updated on the basis of a local exploration of the state
space at each iteration, which is “potentially” globally conver-
gent is obtained. As above the radial basis approximation pre-
serves the fused soft computing/hard computing character of the
general ADPA, combining soft computing and radial basis func-
tion techniques to iteratively solve for an approximate cost func-
tional in real time for a plant with unknown dynamics, with hard
computing techniques used to guarantee convergence of the al-
gorithmandstepwise stability of the controller.

To demonstrate the radial basis function implementation of
the ADPA we chose a fourth-order longitudinal model of the
LoFLYTE1 aircraft [10], illustrated in Fig. 7, with a nonlinear
pitching moment coefficient. LoFLYTE is an unmanned
subsonic testbed for a Mach 5 waverider which was built to
evaluate the low speed, landing, and takeoff performance of
the waverider design. It is eight feet long, powered by a 40–lb
thrust AMT Olympus turbojet, and designed to fly at 150
knots. LoFLYTE was extensively flight tested in the late 1990s.
An upgraded version of LoFLYTE, which is presently being
prepared for flight testing, will be used as an adaptive flight
control testbed; for the ADPA, a Lyapunov Synthesis algorithm
[21], [22] and system ID based algorithm developed at NASA.

The states of the nonlinear longitudinal LoFLYTE model are
indicated in Table III, with the zero point in the state space
shifted to correspond to a selected trim point for the aircraft. The
input for this model was the elevator deflection, with in
the model corresponding to a downward elevator deflection of

2.784 .
For our radial basis function implementation of the ADPA,

each axis of the state space is covered by 21 radial-basis-func-
tions, from a predetermined minimum to a predetermined max-
imum value indicated in Table III. As such, that part of state
space where the UAV operates is covered by

radial-basis-functions. Given the local nature of
the radial basis functions, however, at any point in the state space

is computed by summing the values a 5
block of radial basis functions in a neighborhood of,

corresponding to a 4-cube in state space centered atwith
ft/s ft/s rad/s, and
rad.

1LoFLYTE is a registered trademark of Accurate Automation Corporation,
Chattanooga, TN 37421 USA.

Fig. 9. Elevator deflection on the 0th, first, second, third, fourth, and fifth and
sixtieth iteration.

Figs. 8–11 illustrate the performance of the radial basis func-
tion implementation of the ADPA, learning an “optimal” control
strategy from a given initial point in the state space, using the
quadratic performance measure
with and

. The algorithm was initiated on the 0th iteration with
. After the state converged to the trim point, the

iteration count was incremented, a radial basis function approx-
imation of was computed, the new control law
was constructed, and the system was restarted at the same
initial state. In these simulations, the aircraft state was updated
100 times/s while the elevator deflection angle was updated
ten times/s. The performance of the radial basis function
implementation of the ADPA is illustrated in Figs. 8–11, where
we have plotted each of the key system variables on the 0th,
first, second, third, fourth, and fifth iterations of the algorithm
and the limiting value of these plots (at the sixtieth iteration).

The state variables of the aircraft are plotted in Fig. 8. For
each state variable the initial (0th) response (indicated by “x”s)
is at one extreme (high for the vertical velocity, pitch, and pitch
rate; and low for the horizontal velocity), with the response
jumping to the opposite extreme on the 1st iteration (indicated
by “o”s) and then converging toward the limiting value, with the
adaption process effectively convergent after 10 iterations. The
elevator deflection required to achieve these responses is show
in Fig. 9. Since the initial (0th) elevator deflection re-
mains constant at the trim point of2.784 (indicated by “x”s).
The elevator deflection then jumps to a high value on the first
iteration (indicated by “o”s), and then converges toward the lim-
iting value. All variables are well within a reasonable dynamic
range for the LoFLYTE UAV except for the initial drop of the
aircraft [indicated by the initial positive spike in the vertical ve-
locity curve of Fig. 8(a)], due to the use of a “null” controller
on the first iteration [which would not be the case for the ac-

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 151

(a) (b)

Fig. 10. (a) Computed and (b) RBF approximation of the optimal cost functional on the 0th, first, second, third, fourth, and fifth and sixtieth iteration.

Fig. 11. Cost-to-go based on the computed (“x”s) and RBF approximation
(“o”s) of the optimal cost functional versus iteration number.

tual aircraft where would be selected on the basis of prior
simulation].

The performance of the ADPA is illustrated in Fig. 10 where
the computed [Fig. 10(a)] and radial basis function approxima-
tion [Fig. 10(b)] of the optimal cost functional are plotted as
a function of time along the state trajectory, on the 0th, first,
second, third, fourth, and fifth and sixtieth (limiting) iteration
of the algorithm. In both cases, the initial estimate (indicated
by “x”s) is low and converges upward to the limiting value,

with the RBF approximation error decreasing in parallel with
the adaption process. Finally, the cost-to-go based on the com-
puted (“x”s) and radial basis function approximation (“o”s) of
the optimal cost functional is plotted as a function of the itera-
tion number in Fig. 11. As predicted by the theory, the cost-to-go
has an initial spike and then declines monotonically to the lim-
iting value.

VI. CONCLUSIONS

Unlike the many soft computing applications where it suffices
to achieve a “good approximation most of the time,”a control
system must be stable all of the time. As such, if one desires
to learn a control law in real-time, a fusion of soft computing
techniques to learn the appropriate control law with hard com-
puting techniques to maintain the stability constraint and guar-
antee convergence is required. Our goal in the preceding has
been to provide the framework for a family of ADPAs, fusing
hard and soft computing techniques, by developing a general
theory and the three implementations of Sections III–V.

Indeed, several alternative implementations are possible.
First, by taking advantage of the intrinsic adaptivity of the algo-
rithm, one could potentially use a linear adaptive controller on
a nonlinear system, letting it adapt to a different linearization of
the plant at each point in state space, effectively implementing
an “adaptive gain scheduler.” Secondly, since the control law
is based on , not , any approximation of the
cost functional should consider the gradient error as well
as the direct approximation error. Therefore, in Section V
one might replace the radial basis function approximation,
which produces a “bumpy” Tchebychev-like approximation of

, with a “smoother” neural network approximation, or
an alternative local approximator (cf., a cubic spline). Finally,
by requiring the plant and performance measure matrices to
be “real analytic” rather than (and extending the proof of
the theorem to guarantee that the matrices generated by the

152 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Fig. 12. Control system with precompensator.

iterative process are also “real analytic”) one might consider
the possibility of using analytic continuation to extrapolate
local observations of the state space to the entire (or a larger
region in the) state space, implementing the process with one
of the modern symbolic mathematics codes.

APPENDIX A
PRECOMPENSATIONPROCEDURE

The purpose of this appendix is to derive the precompensa-
tion technique originally described in [23], which embeds the

matrix of an input affine plant into the matrix of the
combined precompensator/plant model, thereby allowing one to
apply the Adaptive Dynamic Programming techniques devel-
oped in the present paper for a plant with an unknown ma-
trix, to a plant with both and unknown. This technique
is illustrated in Fig. 12, where the precompensator is defined
by any desired (controllable) input affine differential equation,

, whose state vector is of the same dimen-
sion as the input vector for the given plant, with a singularity at

.
Now, the dynamics of the augmented plant, obtained by com-

bining the precompensator with the original plant, take the form

(30)

which is also input affine, with the augmented state vector,
and a singularity at . Moreover, all

of the dynamics of the original plant are now embedded in the
matrix of the augmented plant with known (since the

dynamics of the precompensator are specified by the system de-
signer). Furthermore, we may define an augmented performance
measure by

(31)

where with equality if and only if .
As such, one can apply the above described ADPA to a plant

in which both and are unknown by applying the al-
gorithm to the augmented system of (30) with the augmented
performance measure of (31), yielding a control law of the form

. This is, however, achieved at the cost of
using a modified performance measure and increasing the di-
mension of the state space.

REFERENCES

[1] S. Barnett,The Matrices of Control Theory. New York: Van Nostrand
Reinhold, 1971.

[2] A. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive el-
ements that can solve difficult learning problems,”IEEE Trans. Syst.,
Man, Cybern., vol. SMC–13, no. 5, pp. 834–846, 1983.

[3] R. E. Bellman,Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[4] D. P. Bertsekas,Dynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[5] C. J. Cox, M. Lothers, R. Pap, and C. Thomas, “A neurocontroller for
robotics applications,” inProc. Syst., Man, Cybernetics Conf., Chicago,
IL, 1992, pp. 712–716.

[6] C. J. Cox, S. W. Stepniewski, C. C. Jorgensen, and R. Saeks, “On the
design of a neural network autolander,”Int. J. Robust Nonlinear Contr.,
vol. 9, pp. 1071–1096, 1999.

[7] A. Devinatz and J. L. Kaplan, “Asymptotic estimates for solutions of
linear systems of ordinary differential equations having multiple char-
acteristics roots,”Indiana Univ. Math J., vol. 22, p. 335, 1972.

[8] J. Dieudonne,Foundations of Mathematical Analysis. New York: Aca-
demic, 1960.

[9] S. S. Ge, C. C. Hang, and T. Zhang, “Adaptive neural network control of
nonlinear systems by stable output feedback,”IEEE Trans. Syst., Man,
Cybern. B, pp. 818–828, Dec. 1999.

[10] C. S. Gibson, J. K. Buckner, L. A. Carlton, C. J. Cox, M. P. Kocher, and
C. E. Lewis, “The LoFLYTE Program,” inProc. AIAA 9th Int. Space
Planes and Hypersonic Systems and Technologies Conf., 1999.

[11] C. S. Gibson, J. C. Neidhoefer, S. M. Cooper, and L. A. Carlton, “Devel-
opment and flight test of the X-43A-LS hypersonic configuration UAV,”
in Proc. 1st AIAA Unmanned Aerospace Vehicles, Systems, Technolo-
gies, and Operations Conf. and Workshop, 2002.

[12] A. Halanay and V. Rasvan,Applications of Lyapunov Methods in Sta-
bility. Dordrecht, The Netherlands: Kluwer, 1993.

[13] W. E. Holley and S. Y. Wei, “An improvement in the MacFarlane-Potter
method for solving the algebraic Riccati equation,” inProc. Joint Auto.
Cont. Conf., 1979, pp. 921–923.

[14] “Jour. of Spacecraft and Rockets, Special Section on Hyper-X,”, (eight
papers), vol. 38, 2001.

[15] H. Kwakernaak and R. Sivan,Linear Optimal Control Systems. New
York: Wiley, 1972.

[16] G. G. Lendaris, L. Schultz, and T. Shannon, “Adaptive critic design for
intelligent steering and speed control of a 2-axle vehicle,” inProc. Int.
Joint Conf. on Neural Networks, Como, 2000, Paper 28-03.

[17] G. Lingari and M. Tomizuko, “Stability of fuzzy linguistic control sys-
tems,” inProc. IEEE Decision and Control, 1990, pp. 2185–2190.

[18] G. P. Liu, V. Kadkivkamanthan, and S. A. Billings, “Variable neural net-
work for adaptive control of nonlinear systems,”IEEE Trans. Syst., Man,
Cybern. C, vol. 29, pp. 34–43, Feb. 1999.

[19] D. G. Luenberger,Introduction to Dynamic Systems: Theory, Models,
and Applications. New York: Wiley, 1979.

[20] D. Prokhorov and L. Feldkamp, “Primitive adaptive critics,” inProc.
1997 Int. Conf. Neural Networks, vol. 4, 1997, pp. 2263–2267.

[21] R. E. Saeks and C. J. Cox, “LoFLYTE: A neurocontrols testbed,” in35th
AIAA Aerospace Sciences Meeting, 1997, AIAA Paper 97-0085.

MURRAY et al.: ADAPTIVE DYNAMIC PROGRAMMING 153

[22] R. E. Saeks, C. J. Cox, J. C. Neidhoefer, and G. G. Lendaris, “Neural
adaptive control of LoFLYTE,” inProc. Amer. Control Conf., 2001, pp.
2913–2917.

[23] R. E. Saeks and C. J. Cox, “Adaptive critic control and functional link
networks,” inProc. 1998 IEEE Conf. Systems, Man, Cybernetics, 1998,
pp. 1652–1657.

[24] R. E. Saeks and J. Murray, “Proof of the adaptive dynamic programming
theorem,”, Chattanooga, TN, Internal Tech. Rep., Accurate Automation
Corp., 2001.

[25] R. M. Sanner and J. E. Slotine, “Gaussian networks for direct adaptive
control,” in Proc. Amer. Control Conf., 1991, pp. 2153–2159.

[26] S. N. Singh, W. Yim, and W. R. Wells, “Direct adaptive and neural
control of wing-rock motion of slender delta wings,”J. Guid., Contr.
Dynam., vol. 18, pp. 25–30, 1995.

[27] J. Sitz, “HYPER-X: Hypersonic experimental research vehicle,”, NASA
Fact Sheet, FS-1994-11-030, 1998.

[28] L.-X. Wang, “Stable adaptive fuzzy control with applications to inverted
pendulum tracking,”IEEE Trans. Fuzzy Syst., vol. 1, pp. 146–155, 1993.

[29] , “Stable adaptive fuzzy control of nonlinear systems,”IEEE Trans.
Syst., Man, Cybern. B, vol. 26, pp. 677–691, Oct. 1996.

[30] P. J. Werbos, “Approximate dynamic programming for real time control
and neural modeling,” inHandbook of Intelligent Control, P. J. White
and P. J. Sofge, Eds. New York: Van Nostrand, 1994, pp. 493–525.

[31] J. C. Wu and T. S. Liu, “Fuzzy control stabilization with applications
to motorcycle control,”IEEE Trans. Syst., Man, Cybern. B, vol. 26, pp.
836–847, Dec. 1996.

[32] R. Zaman, D. Prokhorov, and D. Wunsch, “Adaptive critic design in
learning to play game of go,” inProc. 1997 Int. Conf. Neural Networks,
vol. I, 1997, pp. 1–4.

John J. Murray (S’78–SM’88) received the Ph.D.
degree from the University of Notre Dame, Notre
Dame, IN.

He is currently an Associate Professor, Electrical
Engineering Department, State University of New
York at Stony Brook. He was previously on the
faculty at Texas Tech University, Lubbock, and has
taught courses at the undergraduate and graduate
levels in digital signal processing, circuit theory,
electronics, and control systems.

Chadwick J. Cox received the B.S. degree in mathe-
matics and computer science from Jacksonville State
University, Jacksonville, AL, in 1990.

He then joined Accurate Automation Corporation
and has since worked on a wide variety of projects,
some involving trajectory optimization, fault
diagnosis, robotic manipulation, aircraft engine
control, neural networks, flight control, aircraft
safety, robotic surface finishing, and ground vehicle
control. He is currently with Accurate Automation,
Chattanooga, TN. His primary interests are nonlinear

control, adaptive control, learning control, autonomous systems, and image
processing.

George G. Lendaris (M’58–SM’74–F’83–LF’97)
received the B.S., M.S., and Ph.D. degrees from the
University of California, Berkeley.

He then joined the GM Defense Research Lab-
oratories, where he did extensive work in control
systems, neural networks, and pattern recognition.
In 1969, he went to academia, first joining Oregon
Graduate Institute, where he was Chair of the
Faculty, and, two years later, moved to Portland State
University (PSU), Portland, OR, where he became
one of the founders and developers of their Systems

Science Ph.D. Program, where he has served for the past 30–plus years. In this
context, he expanded his academic and research activities into general system
theory and practice, and, more recently, to computational intelligence. He has
served a number of capacities at PSU, including Director of the SySc Ph.D.
Program, and President of the Faculty Senate. He is currently Director, Systems
Science Ph.D. Program and the NW Computational Intelligence Laboratory.
He has been active in neural network research since the early 1960s, and, in
particular, the past 15 years. During recent years, his research has focused on
application of adaptive critic and dynamic programming methods to control
system design.

Dr. Lendaris developed the optical Diffraction Pattern Sampling methods of
pattern recognition and was declared “Father of Diffraction Pattern Sampling”
by the SPIE in 1977, and was elevated to Fellow of the IEEE in 1982 in recog-
nition of this seminal work. He is past Vice President of the SMC Society, and,
more recently, on its AdCom. He has been active in the neural network profes-
sional arena, serving a number of capacities, such as General Chair of the 1993
IJCNN, up to his just-completed term as President of the International Neural
Network Society.

Richard Saeks (M’65–SM’74–F’77) received
the B.S. degree from Northwestern University,
Evanston, IL, the M.S. degree from Colorado State
University, Fort Collins, and the Ph.D. degree from
Cornell University, Ithaca, NY, all in electrical
engineering.

He is Chief Technical Officer of the Accurate
Automation Corporation, Chattanooga, TN, where
he is responsible for the activities of a team of
electrical and aeronautical engineers doing research
in advanced aeronautics and adaptive systems.

Ongoing programs include the development and flight test of Accurate
Automation’s LoFLYTE, HYFlyte, X-43A-LS, and GLOV demonstrator
aircraft; and research and development in weakly ionized plasma shock wave
modification, adaptive flight control, and neural network based fault diagnosis.
He has led Accurate Automation’s research programs in adaptive control
and plasma shock wave modification, he is the Principal Investigator for the
NASA/Air Force LoFLYTE program and R&D programs in neurocontrol and
hypersonics, and the architect of Accurate Automation’s MIMD parallel Neural
Network Processor and its special purpose programming language. Prior to
joining Accurate Automation, he was Dean of Engineering, Illinois Institute of
Technology, Chicago, Chairman of the Electrical Engineering Department at
Arizona State University, Tempe, and a faculty member with joint appointments
in electrical engineering, computer science, and mathematics at Texas Tech
University (TTU), Lubbock. He held the Paul Whitfield Horn Professorship at
TTU, where his research activities spanned the areas of mathematical systems
theory control, large-scale systems, and fault diagnosis.

Dr. Saeks is Past-President of the IEEE Systems, Man, and Cybernetics So-
ciety and an Associate Fellow of the AIAA.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

