International Journal of Automation and Computing 12(3), June 2015, 229-242

DOI: 10.1007/s11633-015-0893-y

Feature Selection and Feature Learning for
High-dimensional Batch Reinforcement
Learning: A Survey
De-Rong Liu Hong-Liang Li Ding Wang

State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences,

Beijing 100190, China

Abstract: Tremendous amount of data are being generated and saved in many complex engineering and social systems every day.
It is significant and feasible to utilize the big data to make better decisions by machine learning techniques. In this paper, we focus
on batch reinforcement learning (RL) algorithms for discounted Markov decision processes (MDPs) with large discrete or continuous
state spaces, aiming to learn the best possible policy given a fixed amount of training data. The batch RL algorithms with hand-
crafted feature representations work well for low-dimensional MDPs. However, for many real-world RL tasks which often involve
high-dimensional state spaces, it is difficult and even infeasible to use feature engineering methods to design features for value function
approximation. To cope with high-dimensional RL problems, the desire to obtain data-driven features has led to a lot of works in
incorporating feature selection and feature learning into traditional batch RL algorithms. In this paper, we provide a comprehensive
survey on automatic feature selection and unsupervised feature learning for high-dimensional batch RL. Moreover, we present recent
theoretical developments on applying statistical learning to establish finite-sample error bounds for batch RL algorithms based on

weighted L, norms. Finally, we derive some future directions in the research of RL algorithms, theories and applications.

Keywords: Intelligent control, reinforcement learning, adaptive dynamic programming, feature selection, feature learning, big data.

1 Introduction

With the wide application of information technologies,
large volumes of data are being generated in many com-
plex engineering and social systems, such as power grid,
transportation, health care, finance, Internet, etc. Machine
learning techniques such as supervised learning and unsu-
pervised learning have come to play a vital role in the area
of big data. However, these techniques mainly focused on
the prediction tasks and automatic extraction of knowledge
from data. Therefore, techniques which can learn how to
utilize the big data to make better decisions are urgently
required.

As one of the most active research topics in machine
learning, reinforcement learning (RL)M is a computa-
tional approach which can perform automatic goal-directed
decision-making. The decision-making problem is usually
described in the framework of Markov decision processes
(MDPs). Dynamic programming® is a standard ap-
proach to solve MDPs, but it suffers from “the curse of
dimensionality” and requires the knowledge of models. RL
algorithms[4] are practical for MDPs with large discrete or
continuous state spaces, and can also deal with the learning
scenario when the model is unknown. A closely related area

Survey paper

Manuscript received November 5, 2014; accepted January 6, 2015

This work was supported by National Natural Science Foundation
of China (Nos. 61034002, 61233001 and 61273140).

Recommended by Associate Editor Jyh-Horong Chou

© Institute of Automation, Chinese Academy of Science and
Springer-Verlag Berlin Heidelberg 2015

is adaptive or approximate dynamic programmingw*l‘*]

which adopts a control-theoretic point of view and termi-
nology.

The RL methods can be classified into offline or online
methods based on whether data can be obtained in advance
or not. Online RL algorithms like @ learning are learn-
ing by interacting with the environment, and hence may
come up against inefficient use of data and stability issues.
The convergence proof of online RL algorithms is usually
given by the stochastic approximation method!*® 1. Of
fline or batch RL is a subfield of dynamic programming
based RL, and can make more efficient use of data and
avoid stability issues. Another advantage of batch RL al-
gorithms over online RL algorithms is that they can be
combined with many nonparametric approximation archi-
tectures. The batch RL refers to the learning scenario,
where only a fixed batch of data collected from the un-
known system is given a priori. The goal of batch RL is to
learn the best possible policy from the given training data.
The batch RL methods are more preferable than the online
RL methods in the context where more and more data are
being gathered every day.

A major challenge in RL is that it is infeasible to rep-
resent the solutions exactly for MDPs with large discrete
or continuous state spaces. Approximate value iteration

18] are two

(AVD)"®! and approximate policy iteration (API)!
classes of iterative algorithms to solve batch RL problems
with large or continuous state spaces. AVI starts from

an initial value function, and iterates between value func-

@ Springer

230 International Journal of Automation and Computing 12(3), June 2015

tion update and greedy policy update until the value func-
tion converges to the near-optimal one. API starts from
an initial policy, and iterates between policy evaluation
and policy improvement to find an approximate solution
to the fixed point of Bellman optimality equation. AVT or
API with state aggregation is essentially a discretization
method of state space, and becomes intractable when the
state space is high-dimensional. Function approximation
methods'® 2" can provide a compact representation for
value function by storing only the parameters of the approx-
imator, and thus hold great promise for high-dimensional
RL problems.

Fitted value iteration is a typical algorithm of AVI-based
batch RL approaches. Gordon!®? first introduced the fit-
ting idea into AVI and established the fitted value itera-
tion algorithm which has become the foundation of batch
RL algorithms. Ormoneit and Sen(®®! utilized the idea of
fitted value iteration to develop a kernel-based batch RL
algorithm, where kernel-based averaging was used to up-
date Q function iteratively. Ernst et al.?4 developed a
fitted @ iteration algorithm which allows to fit any para-
metric or nonparametric approximation architecture to the
Q@ function. They also applied several tree-based supervised
learning methods and ensemble learning algorithms to the
fitted @ iteration algorithm. Riedmiller!?”! proposed a neu-
ral fitted @ iteration by using a multilayer perception as
the approximator. The fitted @ iteration algorithm allows
to approximate the Q function from a given batch of data
by solving a sequence of supervised learning problems, and
thus it has become one of the most popular batch RL algo-
rithms.

Fitted policy iteration is another basic one of batch
RL algorithms which is constructed by combining func-
tion approximation architectures with API. Bradtke and
Barto!?¢! proposed a popular least-squares temporal differ-
ence (LSTD) algorithm to perform policy evaluation. LSTD
was extended to LSTD(X) in [27,28]. Lagoudakis and
Parr??! developed a least-squares policy iteration (LSPI)
algorithm by extending the LSTD algorithm to control
problems. The LSPI is off-policy and model-free algorithm
which is constructed by learning the @ function without the
generative model of MDPs, and it is easy to implement be-
cause of the use of linear parametric architectures. There-
fore, it has become the foundation of all the API-based
batch RL algorithms. Antos et al.* studied a model-free
fitted policy iteration algorithm based on the idea of Bell-
man residual minimization, which avoided the direct use
of the projection operator in LSPI. Because of the empiri-
cal risk minimization principle, existing tools of statistical
machine learning can be applied directly to the theoreti-
cal analysis of batch RL algorithms. Antos et al.®!l de-
veloped a value-iteration based fitted policy iteration algo-
rithm, where the policy evaluation was obtained by AVI.
Approximate modified policy iteration[32 34 represents a
spectrum of batch RL algorithms which contains the AVI
and the API. This algorithm is more preferable than API
when a nonlinear approximation architecture is used.

The batch RL algorithms with hand-crafted representa-

@ Springer

tions work well for low-dimensional MDPs. However, as
the dimension of the state space of MDPs increases, the
number of features required will explode exponentially. It
is difficult to design suitable features for high-dimensional
RL problems. When the features of a approximator are
improperly designed, the batch RL algorithms may have
poor performance. It is a natural idea to develop RL al-
gorithms by selecting or learning features automatically in-
stead of by designing features manually. Actually, there
has been rapidly growing interest in automating feature se-
lection for RL algorithms by regularization[%*w], which
is a very effective tool in supervised learning. Further-
more, some nonparametric techniques like manifold learn-
ing and spectral learning have been used to learn features
for RL algorithms[Gl_Sl]. Deep learning or representation
learning[sz_go] is now one of the hottest topics in machine
learning, and has been successfully applied to image recog-
nition and speech recognition. The core idea of deep learn-
ing is to use unsupervised or supervised learning methods to
automatically learn representations or features from data.
Recently, there have been few pioneering research results
on combining deep learning with RL to learn representa-
tions and controls in MDPs[?*~101
provide a comprehensive survey on feature selection and
feature learning for high-dimensional batch RL algorithms.

Another hot topic in RL is to apply statistical learning
to establish convergence analysis and performance analysis.
Bertsekas('° established error bounds for RL algorithms

. In this paper, we will

based on maximum or L. norms. The error bound in
Lo norms is expressed in terms of the uniform approxi-
mation error over the whole state space, hence it is difficult
to guarantee for large discrete or continuous state spaces.
Moreover, the Lo norm is not very practical since the L,
norm is more preferable for most function approximators,
such as linear parametric architectures, neural networks,
kernel machines, etc. Statistical machine learning can ana-
lyze the L,-norm approximation errors in terms of the num-
ber of samples and a capacity measure of the function space.
Therefore, some promising theoretical results°3~113 have
been developed by establishing finite-sample error bounds
for batch RL algorithms based on weighted L, norms.

In this paper, we consider the problem of finding a near-
optimal policy for discounted MDPs with large discrete or
continuous state spaces. We focus on batch RL techniques,
i.e., learning the best possible policy given a fixed amount
of training data. The remainder of this paper is organized
as follows. Section 2 provides background on MDPs and
batch RL. In Section 3, we provide recent results on feature
selection and feature learning for high-dimensional batch
RL problems. Section 4 presents recent theoretical devel-
opments on error bounds of batch RL algorithms and is
followed by conclusions and future directions in Section 5.

2 Preliminaries

In this section, we first give the background on MDPs
and optimal control, and then present some basic batch RL
algorithms.

D. R. Liu et al. / Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning - - - 231

2.1 Background on MDPs

A discounted MDP is defined as a 5-tuple (X, A, P, R,~),
where X is the finite or continuous state space, A is the fi-
nite action space, P: X x A — P(:|z¢,a:) is the Markov
transition model which gives the next-state distribution
upon taking action a: at state z¢, R: ¥ x A x X — R
is the bounded deterministic reward function which gives
an immediate reward 7 = R(w¢,a¢,z1), and v € [0,1) is
the discount factor.

A mapping 7: X — A is called a deterministic stationary
Markov policy, and hence m(z;) indicates the action taken
at state x;. The state-value function V" of a policy = is
defined as the expected total discounted reward:

V™ (z) :Eﬂ[zwt o :m}. (1)
t=0

According to the Markov property, the value function V™

satisfies the Bellman equation

VT(z) =E, [R(ac, a,z’) +~yV" (a:')] (2)

and V7 is the unique solution of this equation.
The goal of RL algorithms is to find a policy that attains
the best possible values

Vi(z) = sup V™(z),Vz € X (3)

where V* is called the optimal value function. A policy 7*
is called optimal if it attains the optimal value V*(z) for
any state z € X, ie., VT = V*(z). The optimal value
function V™" satisfies the Bellman optimality equation

Viz) = Igleaj(IE[R(:r,a,x/) + V™ (a")]. (4)

The Bellman optimality operator 7" is defined as

(T*V)(z) = I;leaj(E[R(:L a,z') +~yV(a)]. (5)
The operator 7™ is a contraction mapping in the Lo, norm
with contraction rate v, and V™ is its unique fixed point,
ie., V:*=T*V".
To develop model-free batch RL algorithms, the action-
value function (or @ function) is defined as

Qﬂ'(xv a) =Ex I:Z ’YtTt

t=0

2o :x,ao:a]. (6)

The action-value function Q™ satisfies the Bellman equation
Q”(x,a) =]Eﬂ' I:R(x7aax/) +’}/QW({E/,G,/)]. (7)

A policy is called greedy with respect to the action-value
function if

n(2) = arg max Q(r,). (8)
The optimal action-value function Q*(x,a) is defined as

Q" (z,a) =sup Q™ (z,a),Vx € X,Va € A. 9)

The optimal state-value function V* and action-value func-
tion @Q* have the relationship as

Vi(z) = Teaj‘(Q*(m,a). (10)

The optimal action-value function satisfies the Bellman op-
timality equation

Q" (z,a) =E[R(z,a,z") —&—’ym&}xQ*(x/,a')]. (11)
The optimal policy 7™ can be obtained by
“(z) = * . 12
™ (z) = argmax Q" (z, a) (12)
The Bellman optimality operator is defined as
(T*Q)(z,a) = E[R(z,a,z") + 'ym@XQ(a:/, a)]. (13)

The operator is also a contraction mapping in the Lo, norm
with contraction rate -, and it has the unique fixed point
Q" ie, Q" =T"Q".
2.2 Batch RL

The task of batch RL algorithms is to learn the best
possible policy from a fixed batch of data which is given a
prioril!™. For a discounted MDP (X, A, P, R,~), the tran-
sition model P and the reward function R are assumed to
be unknown in advance, while the state space X, the ac-
tion space A and the discount factor « are available. The
basic framework of batch RL is shown in Fig.1. First, a
batch of data is collected from the environment with an
arbitrary sampling policy. Then, a batch RL algorithm
is implemented in order to learn the best possible policy.
Finally, the learned policy is applied to the real-world en-
vironment. The dashed line in Fig.1 means that the algo-
rithm is not allowed to interact with the environment during
learning. The learning phase is separated from data collec-
tion and application phases, hence there does not exist the
exploration-exploitation dilemma for batch RL algorithms.

Environment Data collection Batch RL N
' (MDP) &, a,r, x') (AVUAPI/--+) |7}

Application

In the batch RL scenario, the training set is given in the
form of a batch of data as

D:{(xk,akﬁk@;@”k:la'“7N} (14)

which are sampled from the unknown environment. These
samples may be collected by using a purely random pol-
icy or an arbitrary known policy. The states xx and zgi1
may be sampled independently, or may be sampled along a
connected trajectory, i.e., 11 = x},. The samples need to
cover the state-action space adequately, since the distribu-
tion of the training data will affect the performance of the
learned policy. The batch of data D can be reused at each
iteration, so the batch RL algorithms can make efficient use

@ Springer

232 International Journal of Automation and Computing 12(3), June 2015

Algorithm 1 Least-squares policy iteration

Algorithm 2 Fitted @ iteration

// €: convergence condition;
// imax: nmumber of iterations;
// ~v: discount factor;
// ¢: basis functions.
1 Data collection
Collect a set of D = {(zk, ar, Tk, z})|k =1,-- N}
by using either a random policy or a priori policy.
2 Initialization
Set ¢ = 0; Initialize a policy .
3 Repeat
4 A—0,b<0
5 for each (xy,ax, i, x}) € D do
6 A A+t $(ak, ar) (pwr, ar) — vo(@h, i) "
7 b<—b+¢(wk,ak)rk
8
9

end for

Ww; = A_lb
10 miga(wh) = argmaxys c 4 wi $(5, ai,)
11 +—7+1

12 Until the stopping criterion € or imax is reached.
13 Return the policy m;(z) = max,ea wi16(x, a).

of data. The batch RL algorithms implement a sequence of
supervised learning algorithms, thus enjoy the stability of
the learning process.

The LSPI algorithm®” is the most important one
of fitted policy iteration algorithms, which is shown in
Algorithm 1. It utilizes the LSTD learning to evaluate the
action-value function of a given policy (see Steps 4—-9) of
Algorithm 1. The action-value function is approximated by
a linear parametric architecture, i.e., Q(m, a) = wTo(z,a),
where w is a parameter vector and ¢(z, a) is a feature vec-
tor or basis functions. The basis function can be selected
as polynomial, radial basis function, wavelet, Fourier, etc.
Since the LSTD learning uses the linear parametric archi-
tecture, the policy evaluation can be solved by the least-
squares method. Given the training set D, the LSTD learn-
ing finds the parameter vector w such that the correspond-
ing action-value function satisfies the Bellman equation ap-
proximately by solving the fixed point

w = argmin || ®u — (R +v®'w)||3 (15)
where

¢(z1,a1)" o(z1,a)" T
o= : , @' = : ,R=
$(an, an)” Py, ay)" TN
The problem (15) can also be written as
u" = arg min [®u— (R +~®'w)|3 (16)

w* = arg min || Pw — du*||3 (17)

where (16) is the projection equation and (17) is the mini-
mization equation. Therefore, the parameter vector w has

@ Springer

// €: convergence condition;

// imax: number of iterations;

// v: discount factor.

1 Data collection
Collect a set of data D = {(zk, ar,rs, z}) |k =1,--- ,N}
by using either a random policy or a priori policy.

2 Initialization
Set ¢ = 0; Initialize an action-value function Q.

3 Repeat

4 for each (xk,ak, 7k, x}) € D do

5 Qiyi(wr,ar) =7k +ymaxy ca Qi(k,ai)
6 end for

7 Qiri(zr,ar) = fit ((zx, a), Qir1(, ax))

8 1+—i1+1

9 Until the stopping criterion € or imax is reached.
10 Return the policy 7;(z) = maxqea Qi(z,a).

a closed-form solution
w=(®T(®—~0))'OTRE A, (18)

Actually, the result of Steps 4—9 in Algorithm 1 is to solve
the policy evaluation equation as

Qi(wk, ar) = ri + Qi (), mi(wh))- (19)

It can be solved by AVI when using a nonlinear approxima-
tion architecture.

The fitted Q iteration®¥ is the most important one of
fitted value iteration algorithms, which is shown in Algo-
rithm 2. The dynamic programming operator (Step 5 in
Algorithm 2) is separated from the fitting process (Step 7
in Algorithm 2). Therefore, the function “fit” allows to
use both linear and nonlinear approximation architectures,
with all kinds of learning algorithms, such as gradient de-
scent and conjugate gradient.

3 Feature selection and feature learn-
ing for high-dimensional batch RL

Since many real-world RL tasks often involve high-
dimensional state spaces, it is difficult to use feature en-
gineering methods to design features for function approxi-
mators. To cope with high-dimensional RL problems, the
desire to design data-driven features has led to a lot of works
in incorporating feature selection and feature learning into
traditional batch RL algorithms. Automatic feature selec-
tion is to select features from a given set of features by using
regularization, matching pursuit, random projection, etc.
Automatic feature learning is to learn features from data
by learning the structure of the state space using unsuper-
vised learning methods, such as manifold learning, spectral
learning, deep learning, etc. In this section, we present a
comprehensive survey on these promising research works.

D. R. Liu et al. / Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning - - - 233

3.1 Batch RL based on feature selection

The regularized approaches have been applied to batch
RL to perform automatic feature selection and prevent over-
fitting when the number of samples is small compared to
the number of features. The basic idea is to solve Lo or
L1 penalized least-squares, also known as ridge or Lasso
regression, respectively. In this subsection, we introduce
data-driven automatic feature selection for batch RL algo-
rithms.

Farahmand et al.[3 proposed two regularized policy it-
eration algorithms by adding Lo regularization to two pol-
icy evaluation methods, i.e., Bellman residual minimiza-
tion and LSTD learning. Farahmand et al.13¢l presented a
regularized fitted @ iteration algorithm based on Lo reg-
ularization to control the complexity of the value func-
tion. Farahmand and Szepesvari®” developed a complex-
ity regularization-based algorithm to solve the problem of
model selection in the batch RL algorithms, which was for-
mulated as finding an action-value function with a small
Bellman error among a set of candidate functions. The Lo
regularized LSTD problem is presented by adding an Lo
penalty term into the projection equation (16)

u' = arg IILIH |Pu — (R + ’y<I>'w)H§ + ﬂHqu (20)

w* = arg min || dw — du”||3 (21)

where 3 € [0, 00) is a regularization parameter. This prob-
lem can be equivalently expressed as the fixed point

w = argmin [|®u — (B +7®"w)|3 + Blul- (22)

The closed-form solution of the parameter vector w can also
be obtained as

w= (T (® —~7®)+8) 'OTRE (A+8D) b (23)

The L1 regularization can provide sparse solutions, thus
it can achieve automatic feature selection in value function
approximation. Loth et al.138 proposed a sparse tempo-
ral different (TD) learning by applying the Lasso to the
Bellman residual minimization, and introduced an equi-
gradient descent algorithm which is similar to least angle
regression (LARS). Kolter and Ng[39] proposed an L reg-
ularization framework for the LSTD algorithm based on
state-value function, and presented an LARS-TD algorithm
to compute the fixed point of the L; regularized LSTD
problem. Johns et al.[* formulated the L regularized lin-
ear fixed point problem as a linear complementarity (LC)
problem, and proposed an LC-TD algorithm to solve this
problem. Ghavamzadeh et al.[11] proposed a Lasso-TD al-
gorithm by incorporating an L; penalty into the projec-
tion equation. Liu et al.*?! presented an L, regularized off-
policy convergent TD-learning (RO-TD) method based on
the primal-dual subgradient saddle-point algorithm. Ma-
hadevan and Liu/*® proposed a sparse mirror-descent RL
algorithm to find sparse fixed points of an L; regularized
Bellman equation involving only linear complexity in the
number of features. The L; regularized LSTD problem is

given by including an L; penalty term into the projection
equation (16)

u” = argmin || Pu — (R++@'w)|3+ Blluls (24)

w”* = arg min [®w — du*||3 (25)
which is the same as

w= argmin |[Su — (R+@'w)[3 + Bluls. (26)

This problem does not have a closed-form solution like the
Lo regularization problem, and cannot be expressed as a
convex optimization. Petrik et al.*¥ introduced an approx-
imate linear programming algorithm to find the L; regular-
ized solution of the Bellman equation.

Different from [36], Geist and Scherrer®” added the L,
penalty term to the minimization equation (17)

u* = argmin ||®u — (R + @ w)||3 (27)
w”* :arngnH@w—(I)u*Hg + Bllwllx (28)

which actually penalizes the projected Bellman residual and
yields a convex optimization problem. Geist et al.% pro-
posed a Dantzig-LSTD algorithm by integrating LSTD with
the Dantzig selector, and solved for the parameters by lin-
ear programming. Qin et al.l*") also proposed a sparse RL
algorithm based on this kind of L; regularization, and used
the alternating direction method of multipliers to solve the
constrained convex optimization problem.

Hoffman et al.*®! proposed an Lg; regularized LSTD al-
gorithm which added an L2 penalty to the projection equa-
tion (16) and added an L; penalty to the minimization
equation (17)

u* = argmin ||Pu — (R +~v®'w)|13 + Blull3 (29)
w” :argnbi)nH(I)w—fI)u*Hg—&—ﬁ/Hle. (30)

The above optimization problem can be reduced to a stan-
dard Lasso problem. An Lz regularized LSTD algorithm
was also given in [48]

*

ut = argmuin ||<i>u— (R—}-’y@'u})”% +B||u\|§ (31)
w” :argnhi)nH(i)w—'i)u*H% —&-ﬂ'Hng (32)

which has a closed-form solution.

Besides applying the regularization technique to perform
feature selection, matching pursuit can also find a sparse
representation of value function by greedily selecting fea-
tures from a finite feature dictionary. Two variants of
matching pursuit are orthogonal matching pursuit (OMP)
and order recursive matching pursuit (ORMP). Johns and
Mahadevan!*®! presented and evaluated four sparse feature
selection algorithms for LSTD, i.e., OMP, ORMP, Lasso,
and LARS, based on graph-based basis functions. Painter-
Wakefield and Parr®” applied the OMP to RL by propos-
ing the OMP Bellman residual minimization and OMP TD
learning algorithms. Farahmand and Percup[51] proposed a
value pursuit iteration by using a modified version of OMP,

@ Springer

234 International Journal of Automation and Computing 12(3), June 2015

where some new features based on the currently learned
value function were added to the feature dictionary at each
iteration.

As an alternative, random projection methods can be also
used to perform feature selection for high-dimensional RL
problems. Ghavamzadeh et al.[*? proposed an LSTD learn-
ing algorithm with random projections, where the value
function of a given policy was learned in a low-dimensional
subspace generated by linear random projection from the
original high-dimensional feature space. The dimension of
the subspace can be given in advance by the designer. Liu
and Mahadevan'®® extended the results of [52], and pro-
posed a compressive RL algorithm with oblique random
projections.

Kernelized RL* aims to obtain sparsity in the sam-
ples, which is different from regularized RL aiming to ob-
tain sparsity in the features given by the designer. Jung
and Polanil®® proposed a sparse least-squares support vec-
tor machine framework for the LSTD method. Xu et al.[5%
presented a kernel-based LSPI algorithm, where the kernel-
based feature vectors were automatically selected using the
kernel sparsification approach based on approximate linear
dependency.

Compared with the feature selection, there exists an op-
posite approach which is automatic feature generation. Fea-
ture generation is to iteratively add new basis functions to
the current set based on the Bellman error of the current
value estimate. Keller et al.®” used neighborhood com-
ponent analysis to map a high-dimensional state space to
a low-dimensional space, and added new features in the
low-dimensional space for the linear value function approx-
imation. Parr et al.’® provided a theoretical analysis of
the effects of generating basis functions based on the Bell-
man error, and gave some insights on the feature generation
method based on Bellman error basis functions in [59]. Fard
et al.[6%] presented a compressed Bellman error based fea-
ture generation approach for policy evaluation in sparse and
high-dimensional state spaces by random projections.

3.2 Batch RL based on feature learning

Recently, there has been rapidly growing interest in ap-
plying unsupervised feature learning to high-dimensional
RL problems. The idea is to use an unsupervised learn-
ing method for learning a feature-extracting mapping from
data automatically (see Fig.2). This section includes lin-
ear nonparametric methods, such as manifold learning and
spectral learning, and nonlinear parametric methods, such
as deep learning.

Environment Data collection Feature learning
(MDP) Xp G T X'

Batch RL
(AVI/APT/--)) 73

Fig.2 Batch RL based on feature learning
In pattern recognition, manifold learning (also referred

to as nonlinear dimensionality reduction) is to develop
low-dimensional representations for high-dimensional data.

@ Springer

Algorithm 3 Representation policy iteration

// €: convergence condition;

// imax: number of iterations;
// m: number of basis functions;
// ~v: discount factor.

1 Sample collection and subsampling
Collect a set of samples D = {(mk,ak,rk,az;ﬂk =
1. ,N} by using either a random policy or a priori
policy; Construct a subset of samples Ds C D by some
subsampling method.

2 Feature learning
Construct a graph from the data in Ds and compute the
Laplacian operator; Compute the m smoothest eigenvec-
tors of the Laplacian operator and construct the basis
functions.

3 Policy learning
Apply the LSPI algorithm (see Steps 3-12 in Algorithm
1) with the above basis functions to find an approximate
optimal policy 7 on the data set D.

4 Return the policy 7.

Some prominent manifold learning algorithms include
Laplacian elgenmaps , locally linear embeddlng[62]
(631, For many high-dimensional MDPs,

, and
isometric mapping
the states often lie on an embedded low-dimensional man-
ifold within the high-dimensional space. Therefore, it is
quite promising to integrate manifold learning into RL.

Mahadevan et al.%*=%! introduced a spectral learning
framework for learning representations and optimal poli-
cies in MDPs. The basic idea is to use spectral analysis of
symmetric diffusion operators to construct nonparametric
task-independent feature vectors which reflect the geome-
try of the state space. Compared to the hand-engineering
features (e.g., basis functions are selected uniformly in all
regions of the state space), this framework can extract sig-
nificant topological information by building a graph based
on samples. A representation policy iteration algorithm
(see Algorithm 3) was developed in [68] by combining rep-
resentation learning and policy learning. It includes three
main processes: collect samples from the MDP; learn fea-
ture vectors from the training data; and learn an optimal
policy.

For MDPs with discrete state spaces, assume that the un-
derlying state space is represented as an undirected graph
G = (V,E,W), where V and E are the set of vertices
and edges, and W is the symmetric weight matrix with
W(i,j) > 0if (¢,7) € E. The diffusion model can be defined
by the combinatorial graph Laplacian matrix L = D — W,
where D is the valency matrix. Another useful diffusion op-
erator is the normalized Laplacian £ = D 2LD" 2. Each
eigenvector of the graph Laplacian is viewed as a proto-
641 The basis functions for state value func-
tions can be constructed by computing the smoothest eigen-
vectors of the graph Laplacian. For scaling to large discrete
or continuous state spaces, the k-nearest neighbor rule can
be used to connect states and generate graphs, and the

value function!

D. R. Liu et al. / Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning - - - 235

Nystrom interpolation approach can be applied to extend
eigenfunctions computed on sample states to new unex-
plored states[®®
rather than the state value function, proto-value functions

. To approximate the action-value function

can be computed on state action graphs, in which vertices
represent state action pairs[m].

Johns and Mahadevan!™ extended the undirected graph
Laplacian to the directed graph Laplacian for expressing
state connectivity in both discrete and continuous domains.
Johns et al.[™ used Kronecker factorization to construct
compact spectral basis functions without significant loss
in performance. Petrik(™! presented a weighted spectral
method to construct basis functions from the eigenvectors
of the transition matrix. Metzen™ derived a heuristic
method to learn representations of continuous environments
based on the maximum graph likelihood. Xu et al.[7]
presented a clustering-based (K-means clustering or fuzzy
C-means clustering) graph Laplacian framework for auto-
matic learning of features in MDPs with continuous state
spaces. Rohanimanesh et al.["® applied the graph Lapla-
cian method to learn features for the actor critic algorithm
with function approximation architectures.

Generated by diagonalizing symmetric diffusion opera-
tors, a proto-value function is actually a Laplacian eigen-
maps embedding. Sprekeler[m showed that the Laplacian
eigenmaps are closely related to slow feature analysis[78]
which is an unsupervised learning method for learning in-
variant or slowly varying features from a vector input sig-
nal. Luciw and Schmidhuber!™ applied the incremental
slow feature analysis to learn proto-value functions directly
from a high-dimensional sensory data stream. Legenstein
et al.[8] proposed a hierarchical slow feature analysis to
learn features for RL problems on high-dimensional visual
input streams. Bohmer et al.18l proposed a regularized
sparse kernel slow feature analysis algorithm for LSPI in
both discrete and continuous state spaces, and applied this
algorithm to a robotic visual navigation task.

Deep learning!®27%4 aims to learn high-level features
from raw sensory data. Some prominent deep learning
techniques include deep belief networks (DBNs)®® deep
Boltzmann machines[%], deep autoencoders[sﬂ,
volutional neural networks (CNNs)®¥. To cope with the
difficulty of optimization, deep neural networks are learned
with greedy layer-wise unsupervised pretraining followed by
back-propagation fine-tuning phase. Although RL methods
with linear parametric architectures and hand-crafted fea-

and con-

tures have been very successful in many applications, learn-
ing control policies directly from high-dimensional sensory
inputs is still a big challenge. It is natural to utilize the
feature learning of deep neural networks for solving high-
dimensional RL problems. Different from pattern classifi-
cation problems, there exist some challenges when applying
deep learning to RL: the RL agent only learns from a scalar
delayed reward signal; the training data in RL may be im-
balanced and highly correlated; and the data distribution
in RL may be non-stationary.

Restricted Boltzmann machine (RBM)? is an undi-
rected graphical model (see Fig.3), in which there are no

connections between variables of the same layer. The top
layer represents a vector of hidden random variables h and
the bottom layer represents a vector of visible random vari-
ables v. For high-dimensional RL problems, Sallans and
Hinton®!! presented an energy-based TD learning frame-
work, where the action-value function was approximated as
the negative free energy of an RBM

Q(z,a) = —F([z; a]) &£ —F(v) =

NE

M
vITWh — Z fzz log iLl -
=1

=1

The expected value of the hidden random variables h is
given by h = o(v" W), where o(-) denotes the logistic func-
tion. The Markov chain Monte Carlo sampling was used to
select action from the large action spaces. Otsuka et al.[%%
extended the energy-based TD learning algorithm to par-
tially observable MDPs by incorporating a recurrent neural
network. Elfwing et al.[*] applied this algorithm to robot
navigation problems with raw visual inputs. Heess et al.l94
proposed actor critic algorithms with energy-based policies

based on [91].

Fig.3 Restricted Boltzmann machine

A DBNP 5 5 probabilistic graphical model built by
stacking up RBMs (see Fig.4). The top two layers of a
DBN form an undirected graph and the remaining layers
form a belief network with directed, top-down connections.
Abtahi and Fasel®! incorporated the DBN into the neural
fitted @ iteration algorithm for action-value function ap-
proximation in RL problems with continuous state spaces
(see Algorithm 4). The unsupervised pre-training phase in
DBNSs can learn suitable features and capture the structural
properties of the state-action space from the training data.
The action-value function is approximated by adding an ex-
tra output layer to the DBN, and the network is trained by
a supervised fine-tuning phase. To deal with the problem
of imbalanced data, a hint-to-goal heuristic approach was
used in [95], where samples from the desirable regions of the
state space were added to the training data manually. In
[96], a DBN based on conditional RBMs was proposed for
modeling hierarchical RL policies. Faulkner and Precup[gﬂ
applied the DBN to learn a generative model of the envi-
ronment for the Dyna-style RL architecture.

87,88] is a multilayer neural network

A deep autoencoderl
which can extract increasingly refined features and com-
pact representations from the input data (see Fig.5). It is
generated by stacking shallow autoencoders on top of each
other during layer-wise pretraining. Then, a fine-tuning
phase is performed by unfolding whole network and back-

propagating the reconstruction errors. After the training

@ Springer

236 International Journal of Automation and Computing 12(3), June 2015

Algorithm 4 Deep fitted @ iteration
// €: convergence condition;

// imax: nmumber of iterations;
// ~v: discount factor.

1 Data collection

Collect a set of samples D = {(wk,ak,rk,:r;ﬂk =
1, 7N} by using either a random policy or a priori
policy.

2 Feature learning
Initialize a DBN with the unsupervised pre-training on
the data set Dy = {(zx,ar)lk =1,--- ,N}.

3 Policy learning
Apply the fitted @ iteration algorithm (see Steps 3-9 in
Algorithm 2) with the above initial weights to find an
approximate optimal policy & on the date set D.

4 Return the policy 7.

process, the features can be generated in the output layer
of the encoder network. Lange et al [08—100] proposed a
deep fitted @ iteration framework to learn a control policy
directly for a visual navigation task only with raw sensory
input data. A deep autoencoder neural network was used
to learn compact features out of raw images automatically,
and the action-value function was approximated by adding
one output layer after the encoder.

Fig.4 Deep belief network

A CNN is a multilayer neural network which reduces
the number of weight parameters by sharing weights be-
tween the local receptive fields. The pretraining phase is
usually not required. Mnih et al.[101] presented a deep Q
learning algorithm to play Atari 2600 games successfully.
This algorithm can learn control policies directly from high-
dimensional, raw video data without hand-designed fea-
tures. A CNN was used as the action-value function ap-
proximator. To scale to large data set, the stochastic gradi-
ent descent instead of batch update was used to adapt the
weights. An experience replay idea was used to deal with
the problem of correlated data and non-stationary distribu-

@ Springer

tions. This algorithm outperformed all previous approaches
on six of the games and even surpassed a human expert on
three of them.

Decoder

Encoder

Fig.5 Deep autoencoder neural network

4 Error bounds for batch RL

Bertsekas['°? gave the error bounds in Lo norms for AVI
as

: . o 2e
lim sup [|[V7 = V"o < ———
Jim sup | e < sy

where sup;, |Vi+1 — T Vil < €, and gave the error bounds
in Lo, norms for API as

2ve
< =
T (=92

where sup, ||Vi — V™| < e. The Lo norm is expressed

lim sup [|[V* = V™|
11— 00

in terms of the uniform approximation error over all states,
and is difficult to compute in practice for large or contin-
uous state spaces. According to the equivalency of norms
IR, < llAllee < V/N|h|p, it is quite possible that the ap-
proximation errors have a small L, norm but a very large
L norm because of the factor v/N. Moreover, most func-
tion approximators use the L, norm to express approxima-
tion errors. In this section, we will summarize the recent
developments in establishing finite-sample error bounds in
L, norms for batch RL algorithms.

For discounted infinite-horizon optimal control problems
with a large discrete state space and a finite action space,
1031 provided error bounds for API using weighted
L2 norms as

Munos!

. * T4 2 . ™5
Jim sup [V = V7 < =g lim sup Vi = V7

(1—7)

104] provided performance bounds based on weighted

Munos!

D. R. Liu et al. / Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning - - - 237

L, norms for AVI as

1
o € o Caln e
where Ca(v,p) is the second order discounted future
state distribution concentration coefficient, and ||Viy1 —
TV|p.. < €. The new bounds consider a concentration
coefficient C'(v, 1) that estimates how much the discounted
future-state distribution starting from a probability distri-

lim sup [|[V* — V™|

bution v used to evaluate the performance of AVI can pos-
sibly differ from the distribution g used in the regression
process.

For MDPs with a continuous state space and a finite
action space, Munos and Szepesvari[105]
sults in [104] to finite-sample bounds for fitted value itera-
tion based on weighted L, norms. Murphy[106] established
finite-sample bounds of fitted @ iteration for finite-horizon
undiscounted problems. Antos et al.B% provided finite-

extended the re-

sample error bounds in weighted L2 norms for model-free
fitted policy iteration algorithm based on modified Bellman
residual minimization. The bounds considered the approx-
imation power of the function set and the number of steps
of policy iteration. Maillard et al.'%7! derived finite-sample
error bounds of API using empirical Bellman residual min-
imization. Antos et al.’'l established probably approxi-
mately correct finite-sample error bounds for the value-
iteration based fitted policy iteration, where the policies
were evaluated by AVI. They also analyzed how the errors
in AVI propagate through fitted policy iteration. Lazaric
et al.l'%! derived a finite-sample analysis of a classification-
based API algorithm. Farahmand et al.l'%” provided finite-
sample bounds of API/AVI by considering the propagation
of approximation errors/Bellman residuals at each itera-
tion. The results indicate that it is better to put more
effort on having a lower approximation error or Bellman
residual in later iterations, such as by gradually increas-
ing the number of samples and using more powerful func-
tion approximators[uo]. Scherrer et al.?% provided an error
propagation analysis for approximate modified policy itera-
tion and established finite-sample error bounds in weighted
L, norms for classification-based approximate modified pol-
icy iteration. For MDPs with a continuous state space and
a continuous action space, Antos et al.111]
sample performance bounds of fitted actor-critic algorithm,

provided finite-

where the action selection was replaced by searching for a
policy in a restricted set of candidate policies by maximiz-
ing the average action values.

Since LSTD is not derived from a risk minimization
principle, the finite-sample bounds in [30,107,109] cannot
be directly applied to the performance analysis of LSTD
and LSPIL Lazaric et al.l''?l established the first finite-
sample performance analysis of the LSTD learning algo-

1131 provided finite-sample

rithm. Moreover, Lazaric et al.l
performance bounds for the LSPI algorithm, and analyzed
the error propagation through the iterations. Farahmand
et al.[3%:30] provided finite-sample performance bounds and
error propagation analysis for the Ly regularized policy iter-

ation algorithm and the L regularized fitted Q iteration al-

gorithm. Ghavamzadeh et al.[1] presented the finite-sample
analysis of the Ly regularized TD algorithm.

5 Conclusions and future directions

Batch RL is a model-free and data efficient technique,
and can learn to make decisions from a large amount of
data. For high-dimensional RL problems, it is necessary
to develop RL algorithms which can select or learn fea-
tures automatically from data. In this paper, we have pro-
vided a survey on recent progress in feature selection and
feature learning for high-dimensional batch RL problems.
The automatic feature selection techniques like regulariza-
tion, matching pursuit, random projection can select suit-
able features for batch RL algorithms from a set of features
given by the designer. Unsupervised feature learning meth-
ods, such as manifold learning, spectral learning, and deep
learning, can learn representations or features, and thus
hold great promise for high-dimensional RL algorithms. It
will be an advanced intelligent control method by combin-
ing unsupervised learning and supervised learning with RL.
Furthermore, we have also presented a survey on recent the-
oretical progress in applying statistical machine learning to
establish rigorous convergence and performance analysis for
batch RL algorithms with function approximation architec-
tures.

To further promote the development of RL, we think that
the following directions need to be considered in the near
future. Most existing batch RL methods assume that the
action space is finite, but many real-world systems have
continuous action spaces. When the action space is large
or continuous, it is difficult to compute the greedy policy
at each iteration. Therefore, it is important to develop RL
algorithms which can solve MDPs with large or continu-
ous action spaces. RL has a strong relationship with su-
pervised learning and unsupervised learning, so it is quite
appealing to introduce more machine learning methods to
RL problems. For example, there have been some re-
search on combining transfer learning with RLOM aiming
to solve different tasks with transferred knowledge. When
the training data set is large, the computational cost of
batch RL algorithms will become a serious problem. It
will be quite promising to parallelize the existing RL al-
gorithms in the framework of parallel or distributed com-
puting to deal with large scale problems. For example, the
MapReduce framework!''?! was used to design parallel RL
algorithms. Last but not least, it is significant to apply the
batch RL algorithms based on feature selection or feature
learning to solve real-world problems in power grid, trans-
portation, health care, etc.

References

[1] R. S. Sutton, A. G. Barto. Reinforcement Learning: An
Introduction, Cambridge, MA, USA MIT Press, 1998.

[2] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming, New York, NY, USA:
John Wiley & Sons, Inc., 1994.

@ Springer

238

(3]

(4]

(5]

[6]

[7]

(8]

[9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

International Journal of Automation and Computing 12(3), June 2015

R. E. Bellman. Dynamic Programming, Princeton, NJ,
USA: Princeton University Press, 1957.

C. Szepesvari. Algorithms for Reinforcement Learning, San
Mateo, CA, USA: Morgan & Claypool Publishers, 2010.

P. J. Werbos. Approximate dynamic programming for real-
time control and neural modeling. Handbook of Intelligent
Control: Neural, Fuzzy, and Adaptive Approaches, D. A.
White, D. A. Sofge, Eds., New York, USA: Van Nostrand
Reinhold, 1992.

D. P. Bertsekas, J. N. Tsitsiklis. Neuro-dynamic Program-
ming, Belmont, MA, USA: Athena Scientific, 1996.

J. Si, A. G. Barto, W. B. Powell, D. C. Wunsch. Handbook
of Learning and Approximate Dynamic Programming, New
York, USA: Wiley-IEEE Press, 2004.

W. B. Powell. Approximate Dynamic Programming: Solv-
ing the Curses of Dimensionality, New York, USA: Wiley-
Interscience, 2007.

F. Y. Wang, H. G. Zhang, D. R. Liu. Adaptive dynamic
programming: An introduction. IEEE Computational In-
telligence Magazine, vol. 4, no. 2, pp. 39-47, 2009.

F. L. Lewis, D. R. Liu. Reinforcement Learning and Ap-
proximate Dynamic Programming for Feedback Control,
Hoboken, NJ, USA: Wiley-IEEE Press, 2013.

F.Y. Wang, N. Jin, D. R. Liu, Q. L. Wei. Adaptive dynamic
programming for finite-horizon optimal control of discrete-
time nonlinear systems with e-error bound. IEEE Transac-
tions on Neural Networks, vol. 22, no. 1, pp. 24-36, 2011.

D. Wang, D. R. Liu, Q. L. Wei, D. B. Zhao, N. Jin. Op-
timal control of unknown nonaffine nonlinear discrete-time
systems based on adaptive dynamic programming. Auto-
matica, vol. 48, no. 8, pp. 1825-1832, 2012.

D. R. Liu, D. Wang, X. Yang. An iterative adaptive dy-
namic programming algorithm for optimal control of un-
known discrete-time nonlinear systems with constrained in-
puts. Information Sciences, vol. 220, pp. 331-342, 2013.

H. Li, D. Liu. Optimal control for discrete-time affine
non-linear systems using general value iteration. IET Con-
trol Theory and Applications, vol. 6, no. 18, pp. 2725-2736,
2012.

A. Gosavi. Simulation-based Optimization: Parametric Op-
timization Techniques and Reinforcement Learning, Secau-
cus, NJ, USA: Springer Science & Business Media, 2003.

V. S. Borkar. Stochastic Approximation: A Dynamical
Systems Viewpoint, Hindustan, India: Hindustan Book
Agency, 2008.

S. Lange, T. Gabel, M. Riedmiller. Batch reinforcement
learning. Reinforcement Learning: State-of-the-Art, Adap-
tation, Learning, and Optimization, M. Wiering, M. van
Otterlo, Eds., Berlin, Germany: Springer-Verlag, pp. 45—
73, 2012.

@ Springer

(18]

(19]

20]

(21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

(31]

D. P. Bertsekas. Approximate policy iteration: A survey
and some new methods. Journal of Control Theory and Ap-
plications, vol. 9, no. 3, pp. 310-335, 2011.

L. Busoniu, R. Babuska, B. D. Schutter, D. Ernst. Re-
inforcement Learning and Dynamic Programming Using
Function Approximators (Automation and Control Engi-
neering), Boca Raton, FL, USA: CRC Press, 2010.

L. Busoniu, D. Ernst, B. De Schutter, R. Babuska. Approx-
imate reinforcement learning: An overview. In Proceedings
of IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, IEEE, Paris, France, 2011.

M. Geist, O. Pietquin. Algorithmic survey of parametric
value function approximation. IEEE Transactions on Neu-
ral Networks and Learning Systems, vol. 24, no. 6, pp. 845—
867, 2013.

G. J. Gordon. Approximate Solutions to Markov Decision
Processes, Ph. D. dissertation, Carnegie Mellon University,
USA, 1999.

D. Ormoneit, $. Sen. Kernel-based reinforcement learning.
Machine Learning, vol. 49, no. 2-3, pp. 161-178, 2002.

D. Ernst, P. Geurts, L. Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Re-
search, vol. 6, pp. 503-556, 2005.

M. Riedmiller. Neural fitted @ iteration-first experiences
with a data efficient neural reinforcement learning method.
In Proceedings of the 16th European Conference on Ma-
chine Learning, Springer, Porto, Portugal, pp.317-328,
2005.

S. J. Bradtke, A. G. Barto. Linear least-squares algorithms
for temporal difference learning. Machine Learning, vol. 22,
no. 1-3, pp. 33-57, 1996.

J. A. Boyan. Technical update: Least-squares tempo-
ral difference learning. Machine Learning, vol.49, no.2-3,
pp- 233-246, 2002.

A. Nedié¢, D. P. Bertsekas. Least squares policy evalua-
tion algorithms with linear function approximation. Dis-
crete Event Dynamic Systems, vol. 13, no. 1-2, pp. 79-110,
2003.

M. G. Lagoudakis, R. Parr. Least-squares policy iteration.
Journal of Machine Learning Research, vol.4, pp.1107—
1149, 2003.

A. Antos, C. Szepesvari, R. Munos. Learning near-optimal
policies with Bellman-residual minimization based fitted
policy iteration and a single sample path. Machine Learn-
ing, vol. 71, no. 1, pp. 89-129, 2008.

A. Antos, C. Szepsevari, R. Munos. Value-iteration based
fitted policy iteration: Learning with a single trajectory.
In Proceedings of IEEE Symposium on Approximate Dy-
namic Programming and Reinforcement Learning, IEEE,
Honolulu, Hawaii, USA, 2007, pp. 330-337, 2007.

D. R. Liu et al. / Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning - - -

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

[43]

[44]

M. Puterman, M. Shin. Modified policy iteration algorithms
for discounted Markov decision problems. Management Sci-
ence, vol. 24, no. 11, pp. 1127-1137, 1978.

J. N. Tsitsiklis. On the convergence of optimistic policy iter-
ation. Journal of Machine Learning Research, vol. 3, pp. 59—
72, 2002.

B. Scherrer, V. Gabillon, M. Ghavamzadeh, M. Geist. Ap-
proximate modified policy iteration. In Proceedings of the
29th International Conference on Machine Learning, Edin-
burgh, Scotland, UK, pp. 1207-1214, 2012.

A. M. Farahmand, M. Ghavamzadeh, C. Szepesvdri, S.
Mannor. Regularized policy iteration. Advances in Neural
Information Processing Systems, D. Koller, D. Schuurmans,
Y. Bengio, L. Bottou, Eds., Cambridge, MA, USA: MIT
Press, pp. 441-448, 2008.

A. M. Farahmand, M. Ghavamzadeh, C. Szepesvari, S.
Mannor. Regularized fitted Q-iteration for planning in
continuous-space Markovian decision problems. In Proceed-
ings of American Control Conference, IEEE, St. Louis, MO,
USA, pp. 725-730, 2009.

A. M. Farahmand, C. Szepesvari. Model selection in re-
inforcement learning. Machine Learning, vol.85, no.3,
pp-299-332, 2011.

M. Loth, M. Davy, P. Preux. Sparse temporal difference
learning using LASSO. In Proceedings of IEEE Interna-
tional Symposium on Approximate Dynamic Programming
and Reinforcement Learning, IEEE, Honolulu, Hawaii,
USA, pp. 352-359, 2007.

J. Z. Kolter, A. Y. Ng. Regularization and feature selection
in least-squares temporal difference learning. In Proceed-
ings of the 26th Annual International Conference on Ma-
chine Learning, ACM, New York, NY, USA, pp.521-528,
2009.

J. Johns, C. Painter-Wakefield, R. Parr. Linear complemen-
tarity for regularized policy evaluation and improvement. In
Proceedings of Neural Information and Processing Systems,
Curran Associates, New York, USA, pp. 1009-1017, 2010.

M. Ghavamzadeh, A. Lazaric, R. Munos, M. W. Hoffman.
Finite-sample analysis of Lasso-TD. In Proceedings of the
28th International Conference on Machine Learning, Belle-
vue, USA, pp. 1177-1184, 2011.

B. Liu, S. Mahadevan, J. Liu. Regularized off-policy TD-
learning. In Proceedings of Advances in Neural Information
Processing Systems 25, pp. 845-853, 2012.

S. Mahadevan, B. Liu. Sparse Q-learning with mirror de-
scent. In Proceedings of the 28th Conference on Uncer-
tainty in Artificial Intelligence, Catalina Island, CA, USA,
pp. 564-573, 2012.

M. Petrik, G. Taylor, R. Parr, S. Zilberstein. Feature selec-
tion using regularization in approximate linear programs for
Markov decision processes. In Proceedings of the 27th In-
ternational Conference on Machine Learning, Haifa, Israel,
pp. 871-878, 2010.

[45]

[46]

[47)

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57)

239

M. Geist, B. Scherrer. L;-penalized projected Bellman
residual. In Proceedings of the 9th European Workshop on
Reinforcement Learning, Athens, Greece, pp.89-101, 2011.

M. Geist, B. Scherrer, A. Lazaric, M. Ghavamzadeh. A
Dantzig selector approach to temporal difference learning.
In Proceedings of the 29th International Conference on Ma-
chine Learning, Edinburgh, Scotland, pp. 1399-1406, 2012.

Z. W. Qin, W. C. Li, F. Janoos. Sparse reinforcement
learning via convex optimization. In Proceedings of the
31st International Conference on Machine Learning, Bei-
jing, China, pp. 424-432, 2014.

M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, R. Munos.
Regularized least squares temporal difference learning with
nested [> and [; penalization. In Proceedings of the 9th
European Conference on Recent Advances in Reinforcement
Learning, Athens, Greece, pp. 102-114, 2012.

J. Johns, S. Mahadevan. Sparse Approximate Policy Evalu-
ation Using Graph-based Basis Functions, Technical Report
UM-CS-2009-041, University of Massachusetts, Amherst,
USA, 2009.

C. Painter-Wakefield, R. Parr. Greedy algorithms for sparse
reinforcement learning. In Proceedings of the 29th Interna-
tional Conference on Machine Learning, Edinburgh, Scot-
land, pp. 1391-1398, 2012.

A. M. Farahmand, D. Precup. Value pursuit iteration. In
Proceedings of Advances in Neural Information Processing
Systems 25, Stateline, NV, USA pp. 1349-1357, 2012.

M. Ghavamzadeh, A. Lazaric, O. A. Maillard, R. Munos.
LSTD with random projections. In Proceedings of Advances
in Neural Information Processing Systems 23, Vancourer,
Canada, pp. 721-729, 2010.

B. Liu, S. Mahadevan. Compressive Reinforcement Learn-
ing with Oblique Random Projections, Technical Report
UM-CS-2011-024, University of Massachusetts, Amherst,
USA, 2011.

G. Taylor, R. Parr. Kernelized value function approxi-
mation for reinforcement learning. In Proceedings of the
26th Annual International Conference on Machine Learn-
ing, ACM, New York, NY, USA, pp.1017-1024, 2009.

T. Jung, D. Polani. Least squares SVM for least squares TD
learning. In Proceedings of the 17th European Conference
on Artificial Intelligence, Trento, Italy, pp.499-503, 2006.

X. Xu, D. W. Hu, X. C. Lu. Kernel-based least squares pol-
icy iteration for reinforcement learning. IEEE Transactions
on Neural Networks, vol. 18, no. 4, pp. 973-992, 2007.

F. W. Keller, S. Mannor, D. Precup. Automatic basis func-
tion construction for approximate dynamic programming
and reinforcement learning. In Proceedings of the 23rd In-
ternational Conference on Machine Learning, ACM, New
York, NY, USA, pp. 449-456, 2006.

@ Springer

240

(58]

59]

[60]

[61]

(62]

[63]

[64]

[65]

(6]

[67]

[68]

(69]

[70]

International Journal of Automation and Computing 12(3), June 2015

R. Parr, C. Painter-Wakefield, L. H. Li, M. L. Littman.
Analyzing feature generation for value-function approxima-
tion. In Proceedings of the 24th International Conference
on Machine Learning, Corvallis, USA, pp. 737744, 2007.

R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, M. L.
Littman. An analysis of linear models, linear value-function
approximation, and feature selection for reinforcement
learning. In Proceedings of the 25th International Confer-
ence on Machine Learning, ACM, New York, NY, USA,
pp. 752-759, 2008.

M. M. Fard, Y. Grinberg, A. M. Farahmand, J. Pineau,
D. Precup. Bellman error based feature generation using
random projections on sparse spaces. In Proceedings of Ad-
vances in Neural Information Processing Systems 26, State-
line, NV, USA, pp. 3030-3038, 2013.

M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensional-
ity reduction and data representation. Neural Computation,
vol. 15, no. 6, pp. 1373-1396, 2003.

S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science, vol. 290, no. 5500,
pp- 2323-2326, 2000.

J. Tenenbaum, V. de Silva, J. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science,

vol. 290, no. 5500, pp. 2319-2323, 2000.

S. Mahadevan. Proto-value functions: Developmental re-
inforcement learning. In Proceedings of the 22nd Interna-
tional Conference on Machine Learning, Bonn, Germany,
pp- 553-560, 2005.

S. Mahadevan. Representation policy iteration. In Proceed-
ings of the 21st Conference on Uncertainty in Artificial In-
telligence, Edinburgh, Scotland, pp. 372-379, 2005.

S. Mahadevan, M. Maggioni, K. Ferguson, S. Osentoski.
Learning representation and control in continuous Markov
decision processes. In Proceedings of the 21st National Con-
ference on Artificial Intelligence, Boston, USA, pp.1194-
1199, 2006.

S. Mahadevan, M. Maggioni. Value function approxima-
tion with diffusion wavelets and Laplacian eigenfunctions.
In Proceedings of Advances in Neural Information Process-
ing Systems 18, Vancourer, Canada, pp. 843-850, 2005.

S. Mahadevan, M. Maggioni. Proto-value functions: A
Laplacian framework for learning representation and con-
trol in Markov decision processes. Journal of Machine
Learning Research, vol. 8, no. 10, pp. 2169-2231, 2007.

S. Mahadevan. Learning representation and control in
Markov decision processes: New frontiers. Foundations and
Trends in Machine Learning, vol. 1, no. 4, pp. 403-565, 2009.

S. Osentoski, S. Mahadevan. Learning state-action basis
functions for hierarchical MDPs. In Proceedings of the 24th
International Conference on Machine Learning, ACM, New
York, NY, USA, pp. 705-712, 2007.

@ Springer

[71]

[72]

(73]

(74]

[75]

[76]

[77)

[78]

[79]

(80]

(81]

(82]

(83]

J. Johns, S. Mahadevan. Constructing basis functions from
directed graphs for value function approximation. In Pro-
ceedings of the 24th International Conference on Machine
Learning, Corvallis, USA, pp. 385-392, 2007.

J. Johns, S. Mahadevan, C. Wang. Compact spectral bases
for value function approximation using Kronecker factor-
ization. In Proceedings of the 22nd National Conference on
Artificial Intelligence, AAAI, California, USA, pp. 559-564,
2007.

M. Petrik. An analysis of Laplacian methods for value func-
tion approximation in MDPs. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, Hy-
derabad, India, pp.2574-2579, 2007.

J. H. Metzen. Learning graph-based representations for con-
tinuous reinforcement learning domains. In Proceedings of
the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases,
Czech Republic, pp. 81-96, 2013.

X. Xu, Z. H. Huang, D. Graves, W. Pedrycz. A clustering-
based graph Laplacian framework for value function ap-
proximation in reinforcement learning. IEEE Transactions
on Cybernetics, vol. 44, no. 12, pp. 2613-2625, 2014.

K. Rohanimanesh, N. Roy, R. Tedrake. Towards feature se-
lection in actor-critic algorithms. In Proceedings of Work-
shop on Abstraction in Reinforcement Learning, Montreal,
Canada, pp. 1-9, 2009.

H. Sprekeler. On the relation of slow feature analysis and
Laplacian eigenmaps. Neural Computation, vol.23, no. 12,
pp. 3287-3302, 2011.

L. Wiskott, T. Sejnowski. Slow feature analysis: Uunsuper-
vised learning of invariances. Neural Computation, vol. 14,
no. 4, pp. 715-770, 2002.

M. Luciw, J. Schmidhuber. Low complexity proto-value
function learning from sensory observations with incremen-
tal slow feature analysis. In Proceedings of the 22nd Inter-
national Conference on Artificial Neural Networks and Ma-
chine Learning, Lausame, Switzerland, pp. 279-287, 2012.

R. Legenstein, N. Wilbert, L. Wiskott. Reinforcement learn-
ing on slow features of high-dimensional input streams.
PLoS Computational Biology, vol. 6, no. 8, Article number
1000894, 2010.

W. Béhmer, S. Griinewélder, Y. Shen, M. Musial, K.
Obermayer. Construction of approximation spaces for rein-
forcement learning. Journal of Machine Learning Research,
vol. 14, pp. 2067-2118, 2013.

G. E. Hinton, R. Salakhutdinov. Reducing the dimensional-
ity of data with neural networks. Science, vol. 313, no. 5786,
pp- 504-507, 2006.

Y. Bengio, A. Courville, P. Vincent. Representation learn-
ing: A review and new perspectives. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no.8,
pp- 1798-1828, 2013.

D. R. Liu et al. / Feature Selection and Feature Learning for High-dimensional Batch Reinforcement Learning - - - 241

[84] I. Arel, D. C. Rose, T. P. Karnowski. Deep machine learning
— A new frontier in artificial intelligence research. IEEE
Computational Intelligence Magazine, vol. 5, no.4, pp. 13—
18, 2010.

[85] G. E. Hinton, S, Osindero, Y. W. Teh. A fast learning al-
gorithm for deep belief nets. Neural Computation, vol. 18,
no. 7, pp. 1527-1554, 2006.

[86] R. Salakhutdinov, G. E. Hinton. A better way to pretrain
deep Boltzmann machines. In Proceedings of Advances in
Neural Information Processing Systems 25, MIT Press,
Cambridge, MA, pp. 24562464, 2012.

[87] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle. Greedy
layer-wise training of deep networks. In Proceedings of Ad-
vances in Neural Information Processing Systems 19, State-
line, NV, USA, pp. 153-160, 2007.

[88] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P. A.
Manzagol. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research, vol.11,
pp- 3371-3408, 2010.

[89] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of
the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[90] G. E. Hinton. A practical guide to training restricted Boltz-
mann machines. Neural Networks: Tricks of the Trade, 2nd
ed., G. Montavon, G. B. Orr, K. R. Miiller, Eds., Berlin,
Germany Springer, pp. 599-619, 2012.

[91] B. Sallans, G. E. Hinton. Reinforcement learning with fac-
tored states and actions. Journal of Machine Learning Re-
search, vol. 5, pp. 1063—-1088, 2004.

[92] M. Otsuka, J. Yoshimoto, K. Doya. Free-energy-based rein-
forcement learning in a partially observable environment. In
Proceedings of the 18th European Symposium on Artifical
Neural Networks, Bruges, Belgium, pp. 541-546, 2010.

[93] S. Elfwing, M. Otsuka, E. Uchibe, K. Doya. Free-energy
based reinforcement learning for vision-based navigation
with high-dimensional sensory inputs. In Proceedings of
the 17th International Conference on Neural Information
Processing: Theory and algorithms, Sydney, Australia,
pp. 215-222, 2010.

[94] N. Heess, D. Silver, Y. W. Teh. Actor-critic reinforce-
ment learning with energy-based policies. In Proceedings of
the 10th European Workshop on Reinforcement Learning,
pp. 43-58, 2012.

[95] F. Abtahi, I. Fasel. Deep belief nets as function approxi-
mators for reinforcement learning. In Proceedings of IEEE
ICDL-EPIROB, Frankfurt, Germany, 2011.

[96] P. D. Djurdjevic, D. M. Huber. Deep belief network for
modeling hierarchical reinforcement learning policies. In
Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics, IEEE, Manchester, UK, pp.2485—
2491, 2013.

[97] R. Faulkner, D. Precup. Dyna planning using a feature
based generative model. In Proceedings of Neural Informa-
tion Processing Systems Workshop on Deep Learning and
Unsupervised Feature Learning, Vancourer, Canada, pp. 1—-
9, 2010.

[98] S. Lange, M. Riedmiller, A. Voigtlander. Autonomous re-
inforcement learning on raw visual input data in a real
world application. In Proceedings of International Joint
Conference on Neural Networks, Brisbane, Australia, pp. 1—
8, 2012.

[99] S. Lange, M. Riedmiller. Deep auto-encoder neural net-
works in reinforcement learning. In Proceedings of In-
ternational Joint Conference on Neural Networks, IEEE,
Barcelona, Spain, 2010.

[100] J. Mattner, S. Lange, M. Riedmiller. Learn to swing up
and balance a real pole based on raw visual input data. In
Proceedings of Advances on Neural Information Processing,
Springer-Verlag, Stateline, USA, pp. 126-133, 2012.

[101] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. An-
togoglou, D. Wierstra, M. Riedmiller. Playing Atari with
deep reinforcement learning. In Proceedings of Neural In-
formation Processing Systems Workshop on Deep Learning
and Unsupervised Feature Learning, Nevada, USA, pp. 1-9,
2013.

[102] D. P. Bertsekas. Weighted Sup-norm Contractions in Dy-
namic Programming: A Review and Some New Applica-
tions, Technical Report LIDS-P-2884, Laboratory for In-
formation and Decision Systems, MIT, USA, 2012.

[103] R. Munos. Error bounds for approximate policy iteration.
In Proceedings of the 20th International Conference on Ma-
chine Learning, Washington DC, USA, pp. 560-567, 2003.

[104] R. Munos. Performance bounds in L,-norm for approxi-
mate value iteration. SIAM Journal on Control and Opti-
mization, vol. 46, no. 2, pp. 541-561, 2007.

[105] R. Munos, C. Szepesvari. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research,
vol. 9, pp. 815857, 2008.

[106] S. A. Murphy. A generalization error for Q-learning. Jour-
nal of Machine Learning Research, vol.6, pp.1073-1097,
2005.

[107] O. Maillard, R. Munos, A. Lazaric, M. Ghavamzadeh.
Finite-sample analysis of Bellman residual minimization.
In Proceedings of the 2nd Asian Conference on Machine
Learning, Tokyo, Japan, pp.299-314, 2010.

[108] A. Lazaric, M. Ghavamzadeh, R. Munos. Analysis of
classification-based policy iteration algorithms. In Proceed-
ings of the 27th International Conference on Machine
Learning, Haifa, Israel, pp. 607-614, 2010.

[109] A. Farahmand, R. Munos, C. Szepesvéari. Error propaga-
tion for approximate policy and value iteration. In Proceed-
ings of Advances on Neural Information and Processing Sys-
tems 23, Vancourer, Canada, pp. 568-576, 2010.

@ Springer

242 International Journal of Automation and Computing 12(3), June 2015

[110] A. Almudevar, E. F. de Arruda. Optimal approximation
schedules for a class of iterative algorithms, with an appli-
cation to multigrid value iteration. IEEE Transactions on
Automatic Control, vol. 57, no. 12, pp. 3132-3146, 2012.

[111] A. Antos, R. Munos, C. Szepsevari. Fitted Q-iteration in
continuous action-space MDPs. In Proceedings of Advances
in Neural Information and Processing Systems 20, pp. 1-8,
2007.

[112] A. Lazaric, M. Ghavamzadeh, R. Munos. Finite-sample
analysis of LSTD. In Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, pp. 615622,
2010.

[113] A. Lazaric, M. Ghavamzadeh, R. Munos. Finite-sample
analysis of least-squares policy iteration. Journal of Ma-
chine Learning Research, vol. 13, no. 1, pp. 3041-3074, 2012.

[114] A. Lazaric. Transfer in reinforcement learning: A frame-
work and a survey. Reinforcement Learning: State-of-the-
Art, Adaptation, Learning, and Optimization, M. Wiering,
M. van Otterlo, Eds., Berlin, Germeny: Springer-Verlag,
pp. 143-173, 2012.

[115] Y. X. Li, D. Schuurmans. MapReduce for parallel rein-
forcement learning. In Proceedings of the 9th European
conference on Recent Advances in Reinforcement Learning,
Athens, Greece, pp. 309-320, 2011.

De-Rong Liu received the Ph. D. degree
in electrical engineering from 1993 to 1995,
University of Notre Dame, USA in 1994.
From 1993 to 1995, he was a staff fellow
with General Motors Research and Devel-
opment Center, USA. From 1995 to 1999,
he was an assistant professor with Depart-
ment of Electrical and Computer Engineer-
ing, Stevens Institute of Technology, USA.
He Jomed University of Illinois at Chicago in 1999, and became
a full professor of electrical and computer engineering and of
computer science in 2006. He was selected for the “100 Tal-
ents Program” by the Chinese Academy of Sciences, China in
2008. He has published 15 books (6 research monographs and
9 edited volumes). Currently, he is an elected AdCom member
of the IEEE Computational Intelligence Society and he is the

@ Springer

editor-in-chief of the IEEE Transactions on Neural Networks and
Learning Systems. He was the general chair of 2014 IEEE World
Congress on Computational Intelligence and is the general chair
of 2016 World Congress on Intelligent Control and Automation.
He received the Faculty Early Career Development Award from
the National Science Foundation in 1999, the University Scholar
Award from University of Illinois from 2006 to 2009, and the
Overseas Outstanding Young Scholar Award from the National
Natural Science Foundation of China in 2008. He is a Fellow
of the IEEE and a Fellow of the International Neural Network
Society.

His research interests include intelligent control, computa-
tional intelligence, and complex systems theory.

E-mail: derong.liu@ia.ac.cn (Corresponding author)

ORCID iD: 0000-0002-7140-2344

Hong-Liang Li received the B. Sc. de-
gree in mechanical engineering and automa-
tion from Beijing University of Posts and
Telecommunications, China in 2010. He is
currently a Ph.D. candidate in State Key
Laboratory of Management and Control
for Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, China.

He is also with the University of Chinese
Academy of Sciences, China.

His research interests include machine learning, neural net-
works, reinforcement learning, adaptive dynamic programming,
and game theory.

E-mail: hongliang.li@ia.ac.cn

Ding Wang received the B. Sc. degree
in mathematics from Zhengzhou University
of Light Industry, China, the M. Sc. de-
gree in operational research and cybernetics
from Northeastern University, China, and
the Ph. D. degree in control theory and con-
trol engineering from Institute of Automa-
tion, Chinese Academy of Sciences, China,
/ in 2007, 2009 and 2012, respectively. He
is currently an associate professor with State Key Laboratory
of Management and Control for Complex Systems, Institute of
Automation, Chinese Academy of Sciences, China.

His research interests include adaptive dynamic programming,
neural networks and learning systems, and complex systems and
intelligent control.

E-mail: ding.wang@Qia.ac.cn

