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Abstract—A new approach for engine calibration and control
is proposed. In this paper, we present our research results on the
implementation of adaptive critic designs for self-learning control
of automotive engines. A class of adaptive critic designs that can
be classified as (model-free) action-dependent heuristic dynamic
programming is used in this research project. The goals of the
present learning control design for automotive engines include
improved performance, reduced emissions, and maintained opti-
mum performance under various operating conditions. Using the
data from a test vehicle with a V8 engine, we developed a neural
network model of the engine and neural network controllers based
on the idea of approximate dynamic programming to achieve
optimal control. We have developed and simulated self-learning
neural network controllers for both engine torque (TRQ) and
exhaust air-fuel ratio (AFR) control. The goal of TRQ control
and AFR control is to track the commanded values. For both
control problems, excellent neural network controller transient
performance has been achieved.

Index Terms—Adaptive critic designs (ACDs), adaptive dy-
namic programming, air—fuel ratio (AFR) control, approximate
dynamic programming, automotive engine control, torque control.

I. INTRODUCTION

N AN effort to design more advanced engine control al-

gorithms with the objectives of reduced emissions and
improved performance, we develop and evaluate a learning
control technique that originated from dynamic programming.
Dynamic programming is a theory developed back in the
1950s [2] for optimal control of nonlinear systems with the
objective of minimizing a performance index that is defined
as a summation of a utility function from the present time to
the future. In general, using dynamic programming, such an
optimal control design for nonlinear systems is only theoret-
ically possible. Moreover, in practice, it has been known for
years that, due to the so-called “curse of dimensionality” [13],
dynamic programming can only be applied to simple small-
scale control problems.

Manuscript received August 14, 2007. This work was supported in part
by the National Science Foundation under Grant ECS-0355364 and in part
by General Motors Corporation. This paper was recommended by Guest
Editor F. Lewis.

D. Liu and T. Huang are with the Department of Electrical and Computer
Engineering, University of Illinois at Chicago, Chicago, IL 60607 USA (e-mail:
dliu@ece.uic.edu; thuang @cil.ece.uic.edu).

H. Javaherian is with the Powertrain Systems Research Laboratory, General
Motors Research and Development Center, Warren, MI 48090 USA (e-mail:
hossein.javaherian@gm.com).

0. Kovalenko is with McMaster-Carr, Elmhurst, IL. 60126 USA (e-mail:
olesia@cil.ece.uic.edu).

Digital Object Identifier 10.1109/TSMCB.2008.922019

Automotive engines are known to be complex nonlinear
dynamical systems. The control problem of automotive engines
has been investigated for many years by many researchers (see,
e.g., [6], [7], [20], [22], [26], [31], [36], and the references
cited therein). Almost every branch of the modern and classical
control theory has been researched for the control of automotive
engines. This paper adds another dimension to the existing rich
literature on automotive engine control.

The uniqueness of this paper comes from the following idea:
Consider a currently existing control algorithm implemented
in a production vehicle. The algorithm is designed according
to certain criteria and calibrated for vehicle operation over the
entire operating regime. In a sense, the algorithm has been
optimized for the engine in terms of its performance, fuel
economy, and tailpipe emissions through a significant effort
in the research and development, and calibration process. To
further improve the engine performance through controller de-
sign, one can go through the traditional calibration and control
procedures in place today. An alternative to this traditional
approach is to use the neural-network-based learning control
design approach initiated in this paper.

The final result of our neural network learning process is a
controller that has learned to provide optimal control signals
under various operating conditions. We emphasize that such
a neural network controller will be obtained after a specially
designed learning process that performs approximate dynamic
programming. Once a controller is learned and obtained (offline
or online), it will be applied to perform the task of engine
control. The performance of the controller can be further refined
and improved through continuous learning in real-time vehicle
operations. We note that continuous learning and adaptation to
improve controller’s performance is one of the key promising
attributes of the present approach. Continuous learning and
adaptation for optimal individual engine performance over the
entire operating regime and vehicle conditions would be desir-
able for future engine controller designs. For practical reasons,
during the initial stage of the controller neural network learning,
it is preferable to use offline engine data for initial simulation
studies. We will therefore first develop a model of the engine
for the purpose of initial neural network controller learning,
but such a model is not necessary for the real-time engine
operation.

This paper is organized as follows: In Section II, the neural
network model of the test engine is described. In Section III,
adaptive critic designs will be briefly introduced. In Section IV,
engine torque (TRQ) and exhaust air—fuel ratio (AFR) tracking
control using adaptive critic designs will be presented with

1083-4419/$25.00 © 2008 IEEE



LIU et al.: ADAPTIVE CRITIC LEARNING TECHNIQUES

simulation results. In Section V, this paper will be concluded
with a few remarks.

II. NEURAL NETWORK MODELING OF THE TEST ENGINE

A test vehicle with a V8 engine and four-speed automatic
transmission is instrumented with engine and transmission
torque sensors, wide-range AFR sensors in the exhaust pipe
located before and after the catalyst on each bank, and ex-
haust gas pressure and temperature sensors. The vehicle is
also equipped with a dSPACE rapid prototyping controller
for data collection and controller implementation. Data are
collected at each engine event under various driving condi-
tions, such as federal test procedure (FTP cycles), as well as
more aggressive driving patterns, for a length of about 95 000
samples during each test. The engine is run under closed-
loop fuel control using switching-type oxygen sensors. The
dSPACE is interfaced with the powertrain control module in by-
pass mode.

We build a neural network model for the test engine with
a structure compatible with the mathematical engine model
developed by Dobner [11], [12] and others. Due to the
complexity of modern automotive engines, in this paper, we
use the time-lagged recurrent neural networks (TLRNs) for
engine modeling. In practice, TLRNs have been used often for
function approximation, and it is believed that they are more
powerful than the networks with only feedforward structures
(cf. [27] and [34]).

For the neural network engine model, we choose AFR and
TRQ as the two outputs. We choose throttle position (TPS),
electrical fuel pulsewidth (FPW), and spark advance (SPA) as
the three control inputs. These are input signals to be generated
using our new adaptive critic learning control algorithm. We
choose intake manifold pressure (MAP), mass air flow rate
(MAF), and engine speed (RPM) as reference inputs. The
TLRN used for the engine combustion module has six input
neurons, a single hidden layer with eight neurons, and two
output neurons.

Validation results for the outputs TRQ and AFR of the neural
network engine model indicate a very good match between the
real vehicle data and the neural network model outputs during
the validation phase [14].

III. ADHDP

Adaptive critic designs (ACDs) [1], [4], [5], [8], [9], [15]-
[17], [19], [21], [23]-[25], [28]-[30], [32], [33], [35] are de-
fined as designs that approximate dynamic programming in
the general case, i.e., approximate optimal control over time
in noisy nonlinear environments. There are many problems in
practice that can be formulated as cost maximization or mini-
mization problems. Examples include error minimization, en-
ergy minimization, profit maximization, and the like. Dynamic
programming is a very useful tool in solving these problems.
However, it is often computationally untenable to run dynamic
programming due to the backward numerical process required
for its solutions, i.e., due to the “curse of dimensionality” [2],
[13]. Over the years, progress has been made to circumvent the
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“curse of dimensionality” by building a system, called “critic,”
to approximate the cost function in dynamic programming
(ctf. [1], [23], [25], [30], [33], and [35]).

A. Dynamic Programming

Suppose that one is given a discrete-time nonlinear dynami-
cal system

w(t+1) = Flz(t), u(t), ] (1)

where € R™ represents the state vector of the system, and
u € R™ denotes the control action. Suppose that one associates
with this system the performance index (or cost)

T [a(i),i] = > AU [w(k), u(k), K] 2
k=i

where U is called the utility function or local cost function, and
~ is the discount factor, with 0 < v < 1. Note that J is depen-
dent on initial time 7 and initial state x (%), and it is referred to as
the cost-to-go of state 2:(i). The objective is to choose control
sequence u(k), k = 4,7+ 1,.. ., so that the function J (i.e., the
cost) in (2) is minimized.

Suppose that one has computed optimal cost J*[x (¢ + 1),¢ +
1] from time ¢ 4+ 1 onward for all possible states z(t 4+ 1) and
that one has also found the optimal control sequences from time
t 4+ 1 onward. The optimal cost results when optimal control
sequence u*(t+ 1), u*(t+2),..., is applied to the system
with initial state z(¢ + 1). Optimal control »*(¢) at time ¢ is
determined by [2], [3], [13], [18]

w(t) = argmin (Ufe(t), u(t), ] + 47" [2(t + 1), +1]).
3)

The corresponding optimal cost from time ¢ onward is equal to

J* [x(t),t] = m(ltl)l (U [x(t),u(t), t] + yJ [zt + 1),t +1]).
Equation (3) is the principle of optimality for discrete-time
systems.

In the computations in (3), whenever one knows the function
J in (2) and the model F' in (1), it is a simple problem in
function minimization to pick the action u*(¢) that achieves the
minimum in (3). However, this procedure requires a backward
numerical process, and it is too computationally expensive to
determine the solutions due to the so-called “curse of dimen-
sionality” [2], [13].

B. Approximate Dynamic Programming

A typical design of ACDs consists of three modules: 1) critic
(for evaluation); 2) model (for prediction); and 3) action (for
decision) [23], [25], [32], [33], [35]. When in ACDs, the critic
network (i.e., the evaluation module) takes the action/control
signal as part of its inputs, the designs are referred to as action-
dependent ACDs. We use in this paper an action-dependent
version of ACDs that does not require the explicit use of the
model network in the design. The critic network in this case
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will be trained by minimizing the following error measure
over time:

1Bl =" Ey(t) =Y [Q(t—1) = U®) —1QE)* @

t

where Q(t) = Q[z(t), u(t),t, W¢]. When E,(t) = 0 for all ¢,
(4) implies that

Qt—1)=U(t) +7Q(t)
=U(t) +7[U(t+1) +Q(t + 1)]

(o)
=> AUK). 5)
k=t
Comparing to (2), we can see that, when minimizing the error
function in (4), we have a neural network trained, so that its
output at time ¢ becomes an estimate of the cost function
defined in dynamic programming for ¢ =t + 1, i.e., the value
of the cost function in the immediate future [21].
The input-output relationship of the critic network is
given by

Qt) = Qz(t), u(t), t, We]

where W represents the weight vector of the critic network.

We can train the critic network at time ¢ — 1 with the desired
output target given by U (t) + yQ(¢). The training of the critic
network is to realize the mapping given by

Cy {x(z B

1
AR B GORSTTC) MG
We consider Q(t — 1) in (4) as the output from the network to
be trained, and the target output value for the critic network is
calculated using its output at time ¢.

After the critic network’s training is finished, the action
network’s training starts with the objective of minimizing Q(t).
The goal of the action network training is to minimize critic
network output Q(¢). In this case, we can choose the target of
the action network training as zero, i.e., we will train the action
network, so that the output of the critic network becomes as
small as possible. The desired mapping that will be used for the
training of the action network in the present action-dependent
heuristic dynamic programming (ADHDP) is given by

A {z()} —{0(1)} 0

where 0(t) indicates the target values of zero. We note that,
during the training of the action network, it will be connected
to the critic network to form a larger neural network. The target
in (7) is for the output of the whole network, i.e., the output of
the critic network after it is connected to the action network.
After the action network’s training cycle is completed, one
may check the system’s performance and then stop or continue
the training procedure by going back to the critic network’s
training cycle again if the performance is not acceptable yet.

C. Tracking Control Problems

Assume that the control objective is to have z(¢) in (1) track
another signal given by z*(¢). We can define, in this case, local
cost function U (t) as

U(t) = 5" (0elt) = 5 lolt) — " ()7 [olt) — (1)

Using the ADHDP introduced earlier in this section, we can
design a controller to minimize

IO =3 AU

where 0 < v < 1. We note that, in this case, our control ob-
jective is to minimize an infinite summation of U (¢) from the
current time to the infinity future, whereas, in conventional
tracking control designs, the objective is often to minimize U (¢)
itself.

IV. SIMULATION STUDIES OF ADAPTIVE CRITIC
LEARNING CONTROL OF A V8 ENGINE

The objective of the present engine controller design is to
provide control signals, so that the torque generated by the
engine will track the torque measurement as in the data and
the AFR will track the required values also as in the data.
The measured torque values in the data are generated by the
engine using the existing controller. Our learning controller will
assume no knowledge about the control signals provided by the
existing controller. It will generate a set of control signals that
are independent of the control signals in the measured data.
Based on the data collected, we use our learning controller to
generate control signals TPS, FPW, and SPA, with the goal of
producing exactly the same torque and AFR as in the data set.
That is to say, we keep our system in the same requirements as
the data collected and build a controller that provides control
signals that achieve the torque control and AFR control perfor-
mance of the engine.

As described in the previous section, the development of
an adaptive critic learning controller involves two stages:
1) the training of a critic network and 2) the development of
a controller/action network. We describe in the rest of this
section the learning control design for tracking the TRQ and
AFR measurements in the data set. This is effectively a torque-
based controller, i.e., a controller that can generate control
signals given the torque demand. The block diagram of the
present adaptive critic engine control (including AFR control) is
shown in Fig. 1. The diagram shows how adaptive critic designs
can be applied to engine control through approximate dynamic
programming.

A. Critic Network

The critic network is chosen as a 8—15—1 structure with eight
input neurons and 15 hidden layer neurons.

e The eight inputs to the critic network are TRQ, TRQ,

MAP, MAF, RPM, TPS, FPW, and SPA, where TRQ" is
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Commanded values AFR*(t+1) Target signal from the data set
450 T T T T

TRQ*(t+1) — target signal
— - learning control output

(E e(t+1)

~ +

u) Intake | Combustion AFR(t+1)
Congroller Engine model TRQ(t+1)

¢]
o
\— £
Critic Ut =e2(t)
minimize Q(t)
Fig. 1. Structure of the adaptive critic learning engine controller.

read from the data set, indicating the desired torque values
for the present learning control algorithm to track.

i s ) ) o . ‘ ‘ ‘ . . ‘
* The hidden layer of the critic network uses sigmoidal 0 500 1000 1500 2000 2500 3000 3500 4000
.. . . Event
function, i.e., the tansig function in Matlab [10], and the vens
output layer uses the linear function purelin. Fig. 2. Torque output generated by the neural network controller.
¢ The critic network outputs function (), which is an approx- Target signal from the data set
imation to the function J(¢) defined as in (2). T ‘ ' ' ' ‘
. . . . . — — learning control output]
e The local cost function U defined in (2) in this case is
chosen as

U(t)= % [TRQ(t) —TRQ* (t)]2+% [AFR(t)— AFR* (1))
where TRQ(¢) and AFR(¢) are the TRQ and AFR gener-
ated using the proposed controller, respectively, and TRQ*
and AFR* are the demanded TRQ value and the desired 095
AFR value, respectively. Both TRQ" and AFR* are taken
from the actual measured data in the present case. The

A/F

utility function chosen in this way will lead to a control o9r
objective of TRQ, following TRQ* and AFR following
AFR™.
¢ Utilizing the Matlab Neural Network Toolbox, we have ap- 085, 500 1000 1500 2000 2500 8000 3500 4000

plied traingdx (gradient descent algorithm) for the train- Events

ing of the critic network. We note that other algorithms Fig.3. AFR output generated by the neural network controller.
implemented in Matlab, such as traingd, traingda,
traingdm, and trainlm, are also applicable. We employ

batch training for the critic network, i.e., the training is In the present simulation studies, we first train a critic net-
performed after each trial of a certain number of steps  work for many cycles with 500 training epochs in each cycle. At
(e.g., 10000 steps). We choose v = 0.9 in the present the end of each training cycle, we check the performance of the
experiments. critic network. Once the performance is found to be satisfactory,
we stop critic network training. This process usually takes
about 67 h.

After the critic network training is finished, we start the

The structure of the action network is chosen as 6-12-3 with  action network training. We train the controller network for 200
six input neurons, 12 hidden layer neurons, and three output epochs after each trial. We check to see the performance of the

C. Simulation Results

B. Controller/Action Network

neurons. neural network controller at the end of each trial.

e The six inputs to the action network are TRQ, TRQ, We choose to use 4000 data points from the data
MAP, MAF, THR, and RPM, where THR indicates the (16 000-20 000 in the data set) for the present critic and action
driver’s throttle command. network training.

* Both the hidden layer and the output layer use the sig- We first show the TRQ and AFR outputs due to the initial
moidal function tansig. training of our neural network controller when TRQ* and

¢ The outputs of the action network are TPS, FPW, and SPA, AFR™* are chosen as random signals during training. Figs. 2
which are the three control input signals used in the engine  and 3 show the controller performance when it is applied, with
model. TRQ" and AFR* chosen as the measured values in the data

* The training algorithm we choose to use is traingdx. We set. The neural network controller in this case is trained for
employ batch training for the action network as well. 15 cycles using randomly generated target signals TRQ* and
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Target signal from the data set

— target signal
— - learning control output|
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Fig. 4. Torque output generated by the refined neural network controller.

Target signal from the data set
T T T

— target signal
— - learning control output]
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1 : ‘ ‘ . . ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000
Events
Fig. 5. AFR output generated by the refined neural network controller.

AFR”. Figs. 2 and 3 show that very good tracking control of
the commanded torque signal (TRQ) and the exhaust AFR are
achieved. We note that, at the present stage of the research, we
have not attempted to regulate the AFR at the stoichiometric
value but to track a given command. In these experiments,
we simply try to track the measured engine-out AFR values,
so that the control signal obtained can be directly validated
against the measured control signals in the vehicle. In Fig. 3,
it appears that better tracking of AFR was achieved on the rich
side of the stoichiometric value possibly due to more-frequent
rich excursions encountered during model training. This could
also have been caused by intentional fuel enrichments (i.e.,
wall-wetting compensation) during vehicle accelerations.

Figs. 4 and 5 show the TRQ and AFR outputs after refined
training when TRQ* and AFR* are chosen as the measured
values in the data. The neural network controller in this case
is trained for 15 cycles using target signal TRQ" and AFR* as
in the data. Figs. 4 and 5 show that excellent tracking control
results for the commanded TRQ and AFR are achieved.

The figures shown in this section indicate that the present
learning controller design based on approximate dynamic pro-

gramming (adaptive critic designs) is effective in training a
neural network controller to track the desired TRQ and AFR
sequences through proper control actions.

In the next phase of our work, we will refine the controller
performance through network structure optimization and using
longer training process.

V. CONCLUSION

Our research results have demonstrated that adaptive critic
techniques provide a powerful alternative approach for engine
calibration and control. The design is based on neural network
learning using approximate dynamic programming. After the
network is fully trained, the present controller may have the
potential to outperform existing controllers with regard to
the following three aspects: 1) The proposed technique will
automatically learn the inherent dynamics and nonlinearities of
the engine from real vehicle data and therefore do not require
a mathematical model of the system to be developed. 2) The
methods developed will further advance the development of a
virtual powertrain for performance evaluation of various control
strategies through the development of neural network models of
engine and transmission in a prototype vehicle. 3) The proposed
controllers can learn to improve their performance during the
actual vehicle operations, and will adapt to uncertain changes
in the environment and vehicle conditions. This is an inherent
feature of the proposed neural network learning controller. As
such, these techniques may offer promise for use as real-time
engine calibration tools.

Simulation results show that the proposed self-learning con-
trol approach is effective in achieving tracking control of TRQ
and AFR control through neural network learning.
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