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Abstract—In the present paper, a call admission control scheme
that can learn from the network environment and user behavior
is developed for code division multiple access (CDMA) cellular
networks that handle both voice and data services. The idea is
built upon a novel learning control architecture with only a single
module instead of two or three modules in adaptive critic designs
(ACDs). The use of adaptive critic approach for call admission
control in wireless cellular networks is new. The call admission
controller can perform learning in real-time as well as in offline en-
vironments and the controller improves its performance as it gains
more experience. Another important contribution in the present
work is the choice of utility function for the present self-learning
control approach which makes the present learning process
much more efficient than existing learning control methods. The
performance of our algorithm will be shown through computer
simulation and compared with existing algorithms.

Index Terms—Adaptive critic designs (ACDs), approximate dy-
namic programming, call admission control, code division multiple
access (CDMA), cellular networks, neural dynamic programming,
wireless networks.

1. INTRODUCTION

HE DESIGN of modern wireless networks is based on a

cellular architecture that allows efficient use of the lim-
ited available spectrum. Call admission control policy is one of
the most critical design considerations in wireless networks [6],
[18], [27]. On one hand, call admission control schemes provide
users with access to wireless networks for services. On the other
hand, they are the decision making part of the network carriers
with the objectives of providing services to users with guaran-
teed quality and at the same time, achieving as high as possible
resource utilization. To the network carriers, high resource uti-
lization usually means high revenue.

Adaptive critic designs (ACDs) were first introduced in
the 1970s [34], [35]. ACDs are defined as schemes that ap-
proximate dynamic programming in the general case, i.e.,
approximate optimal control over time in nonlinear envi-
ronments. There are many problems in practice that can be
formulated as cost maximization or minimization problems.
Examples include error minimization, energy minimization,
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profit maximization, and the like. Dynamic programming is a
very useful tool in solving these problems. However, it is often
computationally untenable to run dynamic programming due to
the backward numerical process required for its solutions, i.e.,
due to the “curse of dimensionality.” Over the years, progress
has been made to circumvent the “curse of dimensionality”
by approximating dynamic programming solutions where a
function approximation structure such as neural networks is
used to approximate the performance index. ACDs have found
many applications in learning control problems [2], [5], [11],
[13], [23], [31]. Other terms used in the literature for ACDs
include neurodynamic programming [4], approximate dynamic
programming [35], adaptive dynamic programming [22], and
reinforcement learning [28]. Recently, neurodynamic program-
ming and reinforcement learning have been applied to the
call admission control problem in (wireline) communication
networks [21], [29].

In the present paper, a self-learning call admission con-
trol algorithm is developed for signal-to-interference ratio
(SIR)-based power-controlled direct-sequence (DS)-code divi-
sion multiple access (CDMA) cellular networks that provide
both voice and data services. The present paper is organized
as follows. In Section II, the CDMA wireless system used in
the present paper is briefly described. In Section III, the ACD
scheme that is suitable for application to call admission control
problems is introduced. In Section IV, our self-learning call
admission control algorithm for SIR-based power-controlled
DS-CDMA networks is developed. The present work will
assume the use of artificial neural networks as a means for
function approximation in the implementation of ACDs. In
particular, multilayer feedforward neural networks are con-
sidered, even though other types of neural networks are also
applicable in this case. In Section V, the performance of the
present algorithm is studied through computer simulation and
compared with existing call admission control algorithms. The
simulation studies will show that the present self-learning call
admission control algorithm outperforms existing call admis-
sion control algorithms. Finally, in Section VI, the present
paper is concluded with a few pertinent remarks.

II. CDMA WIRELESS SYSTEM DESCRIPTION

In the DS-CDMA cellular network model used in this paper,
we assume that separate frequency bands are used for the reverse
link and the forward link, so that the mobiles only experience
interference from the base stations and the base stations only
experience interference from the mobiles. We consider cellular
networks that support both voice and data services. Assume that

1045-9227/$20.00 © 2005 IEEE



1220

there are K classes of services provided by the wireless net-
works under consideration, where K > 1 is an integer. We de-
fine a mapping 0: Z+ — {1,..., K} to indicate the fact that
the nth connection is from the service class o(n), where ZT
denotes the set of nonnegative integers. We assume that each
connection in our network may be from a different service class
that requires a different quality of service (QoS) target (e.g., in
terms of different bit error rate for each service class). This in-
cludes the case when we allow each call to specify its own QoS
requirements. We assume that traffic from the same service class
has the same data rate, the same activity factor, the same desired
SIR value, and the same maximum power limit that can be re-
ceived at the base station.

Consider a base station currently with /V active connections.
The power received at the base station from the user (mobile
station) of the nth connection is denoted by S,,,n = 1,..., N.
In an SIR-based power-controlled DS-CDMA network [1], [6],
[15], [27], the desired value of S,, is a function of the number
of active home connections and total other cell interference. If
we assume that the maximum received power at a base station is
limited to H}, for connections from service class k = o(n), then
Sy, is a random variable in the range of (0, Hy]. The maximum
power limits Hy, k = 1,..., K, are determined by the power
limit of mobile transmitters, the cell size, the path loss informa-
tion, and the user’s service class. They have been used in several
previous works on call admission control [8], [18], [27].

In CDMA networks, the instantaneous bit SIR (or the bit en-
ergy-to-interference ratio) for the nth connection at the base sta-
tion (in a cell) can be expressed in terms of the received powers
of the various connections as [8]

SpW
Ey/No)p = —— 1
(Bu/Nohn = 75— M

where .S, is the instantaneous power level of the nth connection
received at the base station, W is the total spread bandwidth (or
the chip rate), and R,,(n) is the data rate of service class o(n).
I,, in (1) indicates the instantaneous total interference to the nth
connection received at the base station and it is given by

N

L, =(1+f) Z Vo (iySi + Nn
i=1,i#n

where v, (;) is the traffic (e.g., voice) activity factor of the ith
connection which is from the service class o (%), 7,, is the back-
ground (or thermal) noise, N is the number of active connec-
tions in the cell, and f is called the intercell interference factor
[33] with a typical value of 0.55. As shown previously, the value
of f may not always be constant in a system. Its value can be
calculated using existing measurements and can be updated pe-
riodically to reflect changes in traffic conditions and traffic dis-
tributions.

Assume that after the admission of a new call or a handoff
call, the power control algorithm starts to evolve until conver-
gence. Assume that the power control algorithm converges and
it requires the power received at a base station from each con-
nection in the system given by S’,n = 0,1,..., N, where the

) )
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total number of connections in the system is N + 1 and connec-
tion 0 is the newly admitted caller. Obviously, if S, > H,,) or
Sk <0, for some n,0 < n < N, the admission should not be
granted since it leads to an outage. Only when 0 < S} < H,(,,)
for all n,n = 0,1,..., N, the admission decision can be con-
sidered as a correct decision. The goal of the present study
is to develop a self-learning control algorithm that learns to
achieve the correct admission decisions under various, possibly
changing, environment conditions and user behaviors and to op-
timize the grade of service (GoS) measure.

The GoS in cellular networks is mainly determined by the
new call blocking probability and the handoff blocking prob-
ability. The first determines the fraction of new calls that are
blocked, while the second is closely related to the fraction of
already admitted calls that cannot maintain their required QoS
(bit error rate) and are dropped. For example, many works have
chosen to use the following definition for the GoS [36]:

GoS = P(call blocking) + w x P(handoff failure)  (2)

where P(a) is the probability of event a and w is typically
chosen as, e.g., 10. In our simulation studies, we fix w = 10.
The GoS defined in (2) provides a tradeoff between the new call
blocking rate and the handoff call blocking rate. The param-
eter w is a weighting factor that decides how much emphasis is
placed on handoff calls. Keeping the GoS defined in (2) under a
desired target level would require to give much higher priority to
handoff calls than to new calls when w = 10. On the other hand,
QoS is usually defined according to the bit error rate in digital
transmission. For example, the QoS requirement for voice users
is usually expressed as a bit error rate less than 10~2 in order to
guarantee the quality of communication which can be satisfied
by the power control mechanism keeping Ej /Ny at a required
value of 7 dB or higher [8], [18], [27].

For a given set of parameters including traffic statistics and
mobility characteristics, fixed call admission control schemes
can sometimes yield optimal solutions [24] in terms of GoS.
All such schemes [12], [24], [25], [27], however, by reserving
a fixed part of capacity, cannot adapt to changes in the net-
work conditions due to their static nature. Therefore, we de-
velop in the present work a self-learning call admission con-
trol algorithm for CDMA wireless networks. The present call
admission control algorithm based on ACDs has the capability
to learn from the environment and the user behavior so that the
performance of the algorithm will be improved through further
learning.

III. ACDs FOR PROBLEMS WITH FINITE ACTION SPACE

We provide a brief introduction to ACDs in this section [19].
Suppose that one is given a discrete-time nonlinear dynamical
system

o(t+1) = Fla(t), u(t), ]

where x € R"™ represents the state vector of the system and
u € R™ denotes the control action. In the present paper, the
function F' denotes a stochastic transition from the state z(t) to
the next state 2:(¢+1) under the given control action u(t) at time
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t. Suppose that one associates with this system the performance
index

J[(i), 1] = Z VT UL(k), u(k), k] ©)

where U is called the utility function and -y is the discount factor
with 0 < v < 1. Note that .J is dependent on the initial time
and the initial state x(¢), and it is referred to as the cost-to-go
of state (7). The objective is to choose the control sequence

w(k), k = 4,9+ 1,..., so that the performance index .J in (3)
is minimized.

The class of ACDs considered in the present paper is called
action-dependent heuristic dynamic programming (ADHDP),
which is shown in Fig. 1 [17]. The critic network in this case
will be trained by minimizing the following error measure over

time:
£l = ZEq(t)
= Z Q(t—1)—U(t)

where Q(t) is the critic network output at time t. When E,(t) =

0 for all ¢, (4) implies that

Qit—1)=U(t)++Q()
=U®t)+~[U(t+1) +7Q(t + 1)]

— Q1)) 4)

=> AU k). )

k=t

Comparing (5) to (3), we can see that when minimizing the error
function in (4), we have a neural network trained so that its
output becomes an estimate of the performance index defined
in dynamic programming for « = ¢ + 1, i.e., the value of the
performance index in the immediate future.

The input—output relationship of the critic network in Fig. 1
is given by

Qt)=@Q [:L’(t),u(t)j7 W((;P)}

where W((;p ) represents the weights of the critic network after
the pth weight update. There are two methods to train the
critic network according to the error function (4) in the present
case which are described in [17]. We will use the so-called
forward-in-time method.

We can train the critic network at time ¢ — 1, with the output
target given by U (t) +~vQ(¢). The training of the critic network
is to realize the mapping given by

{0 w0t ©

In this case, the output from the network to be trained is Q (t— 1)
and the input to the network to be trained is composed of (¢ —
1) and u(t — 1). The target output value for the critic network
training is calculated using its output at time ¢ as indicated in
(6). The goal of learning the function given by (6) is to have the
critic network output satisfy

Qt—1)~U(t)+~vQ(t) forallt
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Fig. 1. Typical scheme of an ADHDP [17].

which is required by (5) for approximating dynamic program-
ming solutions.

The critic network training procedure is described in the fol-
lowing steps using the strategy of [16]:

Step 1)  initialize two critic networks: cnetl = cnet2;

Step 2)  use cnet2 to get Q(t), and then train cnetl for 50
epochs using the Levenberg—Marquardt algorithm
[10];

Step 3)  copy cnetl to cnet2, i.e., let cnet2 = cnetl;

Step 4) repeat Steps 2) and 3), e.g., four times;

Step 5) repeat Steps 1)-4), e.g., ten times (start from dif-
ferent initial weights);

Step 6)  pick the best cnetl obtained as the trained critic

network.

After the critic network’s training is finished, the action net-
work’s training starts with the objective of minimizing the critic
network output (Q(¢). In this case, we can choose the target of
the action network training as zero, i.e., we will update the ac-
tion network’s weights so that the output of the critic network
becomes as small as possible. In general, a good critic network
should not output negative values if U(t) is nonnegative. This is
particularly true when U () is chosen as the square error func-
tion in tracking control problems [32]. The desired mapping
which will be used for the training of the action network in the
Fig. 1 is given by

A{z()} — {0(8)} )
where 0(t) indicates the target values of zero. We note that
during the training of action network, it will be connected to
the critic network as shown in Fig. 1. The target in (7) is for the
output of the whole network, i.e., the output of the critic network
after it is connected to the action network as shown in Fig. 1.

There are many problems in practice that have a control action
space that is finite. Typical examples include bang-bang control
applications where the control signal only takes a few (finite)
extreme values or vectors. When the application has only a fi-
nite action space, the decisions that can be made are constrained
to a limited number of choices, e.g., a binary choice in the case
of call admission control problem. When a new call or a handoff
call arrives at a base station requesting for admission, the deci-
sions that a base station can make are constrained to two choices,
i.e., to accept the call or to reject the call. Let us denote the two
options by using u(t) = +1 for “accept” and u(t) = —1 for “re-
ject.” It is important to realize that in the present case the control
actions are limited to a binary choice, or to only two possible
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No

Call request?

Critic network Critic network

| Choose u(t) = -1
and reject the
call

Choose u(t) = +1
and accept the
call

Fig. 2. Block diagram of the present adaptive critic approach.

options. Because of this, the ACDs introduced in Fig. 1 can be
further simplified so that only the critic network is needed. Our
self-learning call admission control scheme for wireless cellular
networks using ACDs is illustrated in Fig. 2. When a new call or
a handoff call arrives at a base station requesting for admission,
we can first ask the critic network to see whether u(t) = +1
(accept) or u(t) = —1 (reject) will give a smaller output value.
We will then choose the control action from u(t) = +1 and
u(t) = —1 that gives a smaller critic network output. As in the
case of Fig. 1, the critic network would also take the states of
the system as inputs. We note that Fig. 2 is only a schematic dia-
gram that shows how the computation takes place while making
a call admission control decision. The two blocks for the critic
network in Fig. 2 represent the same network or computer code
in software. The block diagram in Fig. 2 indicates that the critic
network will be used twice in calculations (with different values
of u(t)) to make a decision about whether or not to accept a call.

The previous description assumes that the critic network has
been trained successfully. Once the critic network training is
done, it can be applied as in Fig. 2. To guarantee that the overall
system will achieve optimal performance now and in future en-
vironments which may be significantly different from what they
are now, we will allow the critic network to perform further
learning when needed in the future. In the next section, we de-
scribe how the critic network learning is performed. In partic-
ular, we describe how the training data is collected at each time
step and how the utility function U (#) is defined. We note that
once the training data is collected, the training of the critic net-
work can use, e.g., forward-in-time method, described in this
section. We also note that the description here for the critic net-
work training applies to both the initial training of the critic net-
work and further training of the critic network when needed in
the future.

IV. SELF-LEARNING CALL ADMISSION CONTROL FOR CDMA
CELLULAR NETWORKS

We use a utility function as reward or penalty to the action
made by the call admission control scheme. When the call ad-
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mission control scheme makes a decision about accepting a call,
it will lead to two distinct results. The first is that the decision
of accepting a call is indeed the right decision due to the guar-
antee of QoS during the entire call duration. In this case, we
should give a reward to the decision of accepting a call. Other-
wise, a penalty is assigned to this decision. On the other hand,
if rejecting a call would have been the right decision due to call
dropping or system outage after the call acceptance, we will also
give a reward to the decision of rejecting a call. Otherwise, a
penalty is assigned to this decision.

It is generally accepted in practice that handoff calls will be
given higher priority than new calls [12], [24], [25], [27]. This
is accomplished in our call admission control scheme by using
different thresholds for new calls and handoff calls. A handoff
call can be admitted if 0 < S}, < H,(y,) foralln = 0,1,..., N.
A new call can only be admitted if 0 < S§ < T,y and 0 <
Sy < Hy(ny forn = 1,2,..., N, where T,y < Hg(g) is the
threshold for new calls (where connection 0 is the new caller).

For handoff calls, when 0 < S; < Hy,) for n =
0,1,..., N, accepting a handoff call will be given a reward and
rejecting a handoff call will be given a penalty. On the other
hand, when S} > H,,) for some n, 0 < n < N, accepting
a handoff call (i.e., the Oth caller) will be given a penalty and
rejecting a handoff call will be given a reward. Obviously, when
Sk < 0 forsome n, 0 < n < N, the call should be rejected.
We note that if the power control algorithm leads to either
S, > Hy(yy or S, < 0 for some n, the network will enter an
outage, i.e., some calls will have to be terminated prematurely
since they cannot maintain required QoS (bit error rate). In this
case, the action of rejection is given a reward and the action of
acceptance is given a penalty. Note that S, n = 0,1,..., N,
are power levels for all connections after the call admission
decision and the power control algorithm convergence.

We first define the cost function for handoff calls as follows
Sy >0forn=20,1,...,N):

E, = {max {u(t) {HS" - 1} ,0} (8)

o(n)
where £ > 0 is a coefficient and u(¢) = 1 represents accepting
a call and u(t) = —1 represents rejecting a call. We emphasize

that the conditions, 0 < S < H(,(n) forn =0,1,..., N, must
hold for the entire duration of all calls in order for the system to
give reward to the action of accepting a handoff call.

For new calls, when 0 < S5 < Ty and 0 < S}, < Hy(p)
forn =1,2,..., N, we give areward to the action of accepting
a new call, and we give a penalty to the action of rejecting a
new call. When S§ > Ty, or S;; > H,(,) for some n,
n=12...,N,orS; <0forsomen,n=20,1,...,N, we
give penalty for accepting a new call and we give a reward for
rejecting a new call. The cost function for new calls is defined
as (S >0forn=0,1,...,N)

§max{[Ti'*’n) - 1} 0} when u(t) = 1

S, - _
fmax { |:1 — m} ,0} 5 when u(t) = 1

E, = &)
where T,y < Hyn),n = 0,1,..., N. We note again that
the conditions, 0 < S} < H,(,) forn = 0,1,..., N, must
hold for the entire duration of all calls in order for the system to
give reward to the action of accepting a new call, even though
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Fig. 3. Utility function for handoff calls.

the admission decision is according to the condition 0 < S <
T (o) for the new call.

The functions defined previously satisfy the condition that
E, > 0forall n,n = 0,1,..., N. From (8) and (9), we can
see that when the action is “accept,” if the value of the utility
function of any connection is larger than 0, this action should
be penalized. Also, when the action is “reject,” if the value of
the utility function of any connection is zero, this action should
be rewarded. Therefore, from the system’s point of view, the
cost function should be chosen as

E = { maxOSnSN(En)7 if u(t) =1
ming<,<n(Er), ifu(t)=-1.
The cost function defined in (10) indicates that the goal of our
call admission control algorithm is to minimize the value of
function F, i.e., to reach its minimum value of zero and to avoid
its positive values. The utility function U [used in (3)] in our
present work is chosen as

(10)

E
Ulu) = ——=. 11
(W) =15 (an
Figs. 3 and 4 show plots of this utility function for handoff calls
and new calls, respectively, when ¢ = 10. The parameter &

is used to obtain a desired shape of the utility function. Since
our algorithm will search for the optimal performance that cor-
responds to small values of the utility function, the shape of
the utility function will have some effects on the optimization
process. When & = 10, we can see that the utility function be-
comes more selective than ¢ = 1 for any condition indicated
by signal power. From Figs. 3 and 4, we see that the choice
of the present utility functions in (11) clearly shows minimum
points (the flat areas) that our call admission control scheme
tries to reach and the points with high penalty that our scheme
should avoid. In addition, the conversion from £ to U guaran-
tees the convergence of the performance index of dynamic pro-
gramming, which is defined as in (3). With the present utility

function given by (10) and (11), we have
1

0< J(t) < ——

< J(t) < T

1223

£=10,T=07H

— accept
— — reject

08 \

e
[
T

L

Utility function for new calls
(=]
~
T

107" 107"° 107" 107" 107"

Signal power S;‘
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since U in (11) satisfies 0 < U < 1. Without the conversions in
(11), there is no guarantee that the infinite summation in (3) will
be bounded. We note that the present critic network produces an
output that approximates the performance index .J(t) in (3), and
the admission action chosen each time will minimize the critic
network output, to achieve approximate optimal control.

In stationary environment, where user traffic statistics (pat-
terns) remain unchanged, a simple static call admission con-
trol algorithm [20] will be able to achieve the admission ob-
jective described previously. However, traffic patterns including
user arrival rate, call holding times, user mobility patterns, etc.,
may show significant changes from time to time. To deal with
changing environments, static call admission control algorithm
would not be appropriate. The present call admission control al-
gorithm based on ACDs will be able to deal with environment
changes through further learning in the future. Another benefit
of the present self-learning call admission control algorithm is
its ability to improve performance through further learning as
the controller gains more and more experience.

The development of the present self-learning call admission
control scheme involves the following four steps.

Step 1)  Collecting data: During this phase, when a call
comes, we can accept or reject the call with any
scheme and calculate the utility function for the
system as presented previously. In the present
paper, we simply accept and reject calls randomly
with the same probability of 0.5. At the same time,
we collect the states corresponding to each action.
The states (environment) collected for each action
include total interference, call type (new call or
handoff call), call class (voice or data), etc.
Training critic network: Using the data collected
to train the critic network as mentioned in the pre-
vious section. Examples of input variables chosen
for the critic network will be given in our simula-
tion examples.

Step 2)
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Step 3)  Applying critic network: The trained critic net-
work is then applied as shown in Fig. 2.
Step 4)  Further updating critic network: The critic network

will be updated as needed while it is used in appli-
cation to accommodate environment changes, for
example, user pattern and behavior changes or new
requirements for the system. Data collection has to
be performed again and the training of critic net-
work as well. In this case, the previous three steps
will be repeated.

The critic network will be updated when there are changes
in call admission requirements or if the already trained ACD
scheme does not satisfy new requirements. In fact, ACD is going
to learn the rules imposed by the utility function of the system.
Therefore, rule changes can be accommodated by modifying
the utility function to accommodate new requirements. For ex-
ample, to satisfy certain requirements, we can modify the cost
function in (9) to become

gmax{[Hsf - 1} 0} when u(t) = 1
and n, < N,
o
E, = fmax{[Tn(’lﬂ) - 1} ,0} ., whenu(t)=1 (12
and n, > Nj,

& max { [1 - Hf()} ,0} when u(t) = —1
where n, is the number of active handoff calls in the cell and
Ny, is a fixed parameter indicating the threshold for low traffic
load.

When a call arrives at the base station, the admission decision
would be either “accept” or “reject.” If the decision is to accept
a call, there will be two kinds of data collected. One is that the
decision is incorrect due to call dropping and the other one is that
the decision is correct since 0 < S;, < Hy(p),n = 0,1,..., N,
is maintained for the entire duration of all calls. In the former
case, a penalty is recorded and in the latter case, a reward is
recorded. If the decision is to reject a call, there will be also be
two kinds of data collected that correspond to a reward and a
penalty. Note that in the case of a “reject” decision, the value
of the utility function is determined as in (8)—(11) where the
values of S;:,n = 0,1,..., N, are calculated according to [3],
[20], and [30].

V. SIMULATION RESULTS

We first conduct simulation studies for a network with single
class of service (e.g., voice). The network parameters used in the
present simulation are taken similarly as the parameters used in
[15] and [27] (see Table I).

The arrival rate consists of the new call attempt rate A. and
the handoff call attempt rate \;. The new call attempt rate \.
depends on the expected number of subscribers per cell. The
handoff call attempt rate A;, depends on such network param-
eters as traffic load, user velocity, and cell coverage areas [9],
[12]. In our simulation, we assume that A\, : A\, = 5 : 1 [12].
A channel is released by call completion or handoff to a neigh-
boring cell. The channel occupancy time is assumed to be ex-
ponentially distributed [9], [12] with the same mean value of
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TABLE 1
NETWORK PARAMETERS
Parameters Values Parameters Values
w 1.2288 Mcps R 9.6 kbps
n 1x 107 17w H 1x 10~ 17w
Ey/No 7 dB v 3/8

Call arrival rate in neighboring cells: 18 calls/minute

T T T T T T
-6~ self-learning
a T=H o
-0 T=0.8H
+ T=0.5H
10° | 9
10" 1
(%]
o
(O]
107 E
/
10°F / 1
4
10’A L 1 L 1 1 1
10 15 20 25 30 35

Call arrival rate in the center cell (calls/minute)

Fig. 5. Comparison study using utility function defined in (9).

1/ = 3 min. For each neural network training in our simula-
tion studies, we generated 35000 data points according to the
data collection procedure in the previous section.

In the following, we conduct comparison studies between the
present self-learning call admission control algorithm and the
algorithm developed in [20] with fixed thresholds for new calls
givenby T = H,T = 0.8H, and T' = 0.5H, respectively.
The arrival rate in all neighboring cells is fixed at 18 calls/min.
The training data is collected as mentioned in the previous sec-
tion. We choose T,(n,) = 0.5H,(,) and § = 10 in (9). The
critic network has three inputs. The first is the total interfer-
ence received at the base station, the second is the action (1
for accepting, —1 for rejecting), and the third is the call type
(1 for new calls, —1 for handoff calls). The critic network is
a multilayer feedforward neural network with 3-6-1 structure,
i.e., three neurons at the input layer, six neurons at the hidden
layer, and one neuron at the output layer. Both the hidden and
output layers use the hyperbolic tangent function as the activa-
tion function. Fig. 5 shows the simulation results. We see from
the figure that the performance of the self-learning algorithm is
similar to the case of static algorithm with T = 0.5 H, because
we choose T,y = 0.5H,(y) in (9) for our learning control
algorithm. When the call arrival rate is low, the self-learning al-
gorithm is not so good because it reserves too much for handoff
calls and as a result it rejects too many new calls. That is why
the GoS is worse than the other two cases of static algorithms
(T'=10H and T = 0.8H). In this case, the self-learning al-
gorithm is trained to learn a call admission control scheme that
gives higher priority to handoff calls.
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Fig. 6. Comparison study using utility function defined in (12).

In order to improve the GoS when the call arrival rate is low,
we use the modified cost function for new calls as in (12), where
we choose N;, = 15 in our simulation. Using this new utility
function we collect the training data using one of the static algo-
rithms with fixed threshold or the previous critic network. Then
we train a new critic network with the newly collected data. This
time the critic network has four inputs. Three of them are the
same as in the previous critic network. The new input is equal
to 1 when n, < N}, and otherwise it is equal to —1. The critic
network in this case has a structure given by 4-8-1. Fig. 6 shows
the result of applying the new critic network to the same traffic
pattern as in Fig. 5. From Fig. 6, we see that the self-learning al-
gorithm using the new critic network has the best GoS. We can
see that by simply changing the cost function from (11) to (12),
the self-learning algorithm can significantly improve its perfor-
mance to outperform static admission control algorithms. One
of the benefits of self-learning call admission control algorithm
is that we can easily and efficiently design call admission con-
trol algorithms by modifying the cost function (equivalently, the
utility function) to satisfy the requirements or to accommodate
new environment changes.

The traffic load in telephony systems is typically time
varying. Fig. 7 shows a pattern concerning call arrivals during
a typical 24 hour business day, beginning at midnight [7]. It
can be seen that the peak hours occur around 11:00 am and
4:00 pm. Next, we use our newly trained critic network above
to this traffic pattern. Fig. 8 gives the simulation results under
the assumption that the traffic load was spatially uniformly
distributed among cells, but followed the time-varying pattern
given in Fig. 7. Fig. 8 compares the four call admission control
algorithms and shows that the self-learning algorithm has the
best GoS among all the algorithms tested. We note that the
self-learning call admission control algorithm was not retrained
from the previous case, i.e., we used the same critic network in
the simulation results of Fig. 8§ as in Fig. 6.

In the following, we conduct comparison studies between the
present self-learning call admission control algorithm and that
of [27]. Using the algorithm in [27], the base station controller
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Fig. 8.  Comparison study for varying traffic.

reads the current interference from the power strength mea-
surer. It then estimates the current interference margin (CIM)
and handoff interference margin (HIM), where CIM < HIM.
A total interference margin (TIM) is set according to the QoS
target. If CIM > TIM, reject the call admission request. If
HIM < TIM, accept the call request. If CIM < TIM < HIM,
then only handoff calls will be accepted. Fig. 9 compares the
present self-learning call admission control algorithm with the
algorithm in [27] that reserves 1, 2, 3 channels for handoff calls,
respectively. The arrival rate in all neighboring cells is fixed at
18 calls/min. We assume the use of hexagonal cell structure.
From Fig. 9, we see that the present algorithm has the best GoS.
That is because the algorithm in [27] is a kind of guard channel
algorithm used in CDMA systems. Therefore, when the load
is low, GC = 1 performs the best, and when the load is high,
GC = 3 performs the best. However, our algorithm can adapt
to varying traffic load conditions. It has the best overall per-
formance under various traffic loads. Again, we used the same
critic network in the simulation results of Fig. 9 as in Fig. 6.
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Fig. 9. Comparison studies with the algorithm in [27].

TABLE 1I
NETWORK PARAMETERS

Voice users Data users
Parameters Values Parameters Values
W, 4.9152 Mcps Wa 4.9152 Mcps
R, 9.6 kbps Ry 38.4 kbps
o, 1x 107w Hg Ix107% W
(Fs/No)w 7 dB (Fs/No)a 9 dB
Vy 3/8 V4 1

Finally, we conduct simulation studies for cellular networks
with two classes of services. One class is voice service and the
other is data service. Network parameters in our simulations
are chosen in reference to the parameters used in [14] and [26]
(see Table II). In our simulation, the data traffic is similar to
that in [14], i.e., low-resolution video or interactive data. In this
case, the data traffic can be specified by a constant transmission
rate. The background noise in this case is chosen the same as in
Table I. The utility function is defined for voice and data calls
as in (9) and (11). In (12), we choose T () = 0.6H,(,,) and
& = 10 for both voice calls and data calls. [N, is chosen as
20 and 4 for voice calls and data calls, respectively. The critic
network now has five inputs. The newly added input is the call
class which is 1 for voice calls and —1 for data calls. The critic
network structure is chosen as 5-10-1. Figs. 10 and 11 compare
between our self-learning call admission control algorithm and
the static algorithm [20] with fixed thresholds given by T' = H
and 7' = 0.8 H, respectively. The arrival rates of voice users and
data users in all neighboring cells are fixed at 20 calls/min and
3 calls/min, respectively. From Figs. 10 and 11, we see that the
present self-learning algorithm has the best GoS for almost all
call arrival rates tested. We can conclude that the present self-
learning algorithm performs better than the fixed algorithms due
to the fact that the self-learning algorithm can adapt to varying
traffic conditions and environment changes.
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VI. CONCLUSION

In this paper, we developed a self-learning call admission
control algorithm based on ACDs for multiclass traffic in SIR-
based power-controlled DS-CDMA cellular networks. The most
important benefit of our self-learning call admission control al-
gorithm is that we can easily and efficiently design call admis-
sion control algorithms to satisfy the system requirement or to
accommodate new environments. We note that changes in traffic
conditions are inevitable in reality. Thus, fixed call admission
control policies are less preferable in applications. Our simu-
lation results showed that when traffic condition changes, self-
learning call admission control algorithm can adapt to changes
in the environment, while fixed admission policy will suffer
either from higher new call blocking rate, higher handoff call
blocking rate, or higher interference than the tolerance.
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