Liu

' Deron
University of Illinois

Q@
O
;
<
()]
| S
=
-—
(4]
()
L

An Introduction to Adaptive Critic Control: A Paradigm
Based on Approximate Dynamic Programming

Derong Liu

Department of Electrical and Computer Engineering
University of lllinois, Chicago, IL 60607, USA

Abstract. Adaptive critic control is an advanced control technology developed for nonlinear dynamical systems in recent
years. It is based on the idea of approximate dynamic programming. Dynamic programming was introduced by Bellman in
the 1950's for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity,
applications of dynamic programming have been limited to simple and small problems. The key step in finding approximate
solutions to dynamic programming is to estimate the cost function in dynamic programming. The optimal control signal
can then be determined by minimizing (or maximizing) the cost function. Due to their universal approximation capability,
artificial neural networks are often used to represent the cost function in dynamic programming. The implementation of
approximate dynamic programming usually requires the use of three modules-Critic, Model, and Action. These three mod-
ules perform the function of evaluation, prediction, and decision, respectively. This article introduces some basic algo-
rithms of adaptive critic control and some recent development of the area. It will also outline some future perspectives of

this new control technology.

1. Introduction

There are several spectrums about
dynamic programming. One can consid-
er discrete-time systems or continuous-
time systems, linear systems or nonlin-
ear systems, time-invariant systems or
time-varying systems, deterministic sys-
tems or stochastic systems, etc.

We first take a look at discrete-time
nonlinear (time-varying) dynamical
(deterministic) systems. Time-varying
nonlinear systems cover most of the
application areas and discrete-time is the
basic consideration for digital computa-
tion.

Suppose that one is given a discrete-
time nonlinear (time-varying) dynamical
system

x(t+1) = Flx(Du(D,f], t=0,1,2,... (1)
where x € R" represents the state vector
of the system and « € R™ denotes the
control action. Suppose that one associ-
ates with this system the performance
index (or cost)

Jpx(@). 1= :Z. PAULx(k), uk), k] (2)
where U is called the utility function and
¥ is the discount factor with 0<y<1 . Note
that the function J is dependent on the
initial time 7/ and the initial state x(i), and
it is referred to as the cost-to-go of state
x(i). The cost in this case accumulates
indefinitely; this kind of problems is
referred to as infinite horizon problems in
dynamic programming. On the other
hand, in finite horizon problems, the cost
accumulates over a finite number of
steps. This article will consider infinite
horizon problems. The objective of

6 IEEE Computational Intelligence Society

dynamic programming problem is to
choose a control sequence wik), k=i, i+1,
..., 50 that the function J (i.e., the cost) in
(2) is minimized. Dynamic programming
is based on Bellman's principle of opti-
mality [4], [9], [14]: An optimal (control)
policy has the property that no matter
what previous decisions have been, the
remaining decisions must constitute an
optimal policy with regard to the state
resulting from those previous decisions.

Suppose that one has computed the
optimal cost J*[x(¢+1),¢+1] from time 7+1
to the terminal time, for all possible
states x(r+1), and that one has also
found the optimal control sequences
from time ¢+1 to the terminal time. The
optimal cost results when the optimal
control sequence u*(r+1), u*(+2), ..., is
applied to the system with initial state
x(r+1). Note that the optimal control
sequence depends on x(++1). If one
applies an arbitrary control «(f) at time ¢
and then uses the known optimal control
sequence from 7+1 on, the resulting cost
will be

Ulx(t), w(t),0]+y J*x(t+1),t+1]

where x(7) is the state at time ¢ and x(t+1)
is determined by (1). According to
Bellman, the optimal cost from time ¢ on
is equal to

JHx(®), =
min(U]x(e), w(6),]+ % *x(t+ 1), ++1]).

The optimal control »*(r) at time ¢ is the
u(r) that achieves this minimum, i.e.,

u*() =
argmin(ULx().u(), 47/ *[x(t+1),1+1]). (3)
wif)

Equation (3) is the principle of opti-
mality for discrete-time systems. Its
importance lies in the fact that it allows
one to optimize over only one control
vector at a time by working backward in
time.

In continuous-time nonlinear case, the
system can be expressed as

ax(r) / dt = F(x(f),u(0),0), t21, (4)
where F(x,u,) is an arbitrary continuous
function. The cost in this case is defined
as

Je(toh) = [ey (o), (5)
More generally, when stochastic features
are considered, the system will be
described by

dx = Fxu,0)dt +G(x,u,t)dw, 121, (6)
where w is a stochastic process, usually
Wiener process or Gaussian process.
For a given initial state x(z,) = x, and feed-

back control u(x,r), the cost for the sys-
tem (6) is defined as

(7

with nonnegative wtility function Ux,u.7).
For continuous-time systems,
Bellman's principle of optimality of
Bellman can be applied, too. The optimal
cost J*¥(xp)= mind(x,u(r)) will satisfy the
Hamilton-Jacobi-Bellman Equation

JGxo 1)~ E{[:U(x, u,f)dt | X(t) = %o}

= &% 8= man (U(xu0) + @) *192) Flxu.0)) (8)

Meanwhile, the optimal control u*(f) will
be the one that minimize the value of
cost function,

August 2005

u*(f) = argm(})n(J(x. uw)). (9)

Dynamic programming is a very useful
tool in solving optimization and optimal
control problems. In particular, it can eas-
ily be applied to nonlinear systems with
or without constraints on the control and
state variables. Equations (3) and (9) are
called the functional equation of dynamic
programming and are the basis for com-
puter implementation of dynamic pro-
gramming. In the above, if the function F
in (1), (4) or (6) and the cost function Jin
(2), (5) or (7) are known, the solution for
u*(t) becomes a simple optimization
problem. However, it is often computa-
tionally untenable to run true dynamic
programming due to the backward
numerical process required for its solu-
tions, i.e., as a result of the well-known
"curse of dimensionality” [4], [9]. The cost
function ./, which is the theoretical solu-
tion of the Hamilton-Jacobi-Bellman
Equation, is very difficult to obtain,
except for systems satisfying some very
good conditions. Over the years,
progress has been made to circumvent
the "curse of dimensionality" by building
a system, called "critic," to approximate
the cost function in dynamic program-
ming (cf. [2], [18], [21], [24], [29], [36],
[38], [39]. [40]). The idea is to approxi-
mate dynamic programming solutions by
using a function approximation structure
such as neural networks to approximate
the cost function.

2. Adaptive Critic Control Based
on Approximate Dynamic
Programming

In 1977, Werbos [35] introduced an
approach for approximate dynamic pro-
gramming that was later called adaptive
critic designs (ACDs). ACDs have
received increasing attention recently (cf.
[2]. [5]-[8], [11]-[13], [15]{24], [28]. [29],
[33], [36]-[42]). In the literature, there are

several synonyms used for "Adaptive
Critic Designs" [2], [7], [11], [12], [16],

[20], [21], [33], " [42] ° including
"Approximate Dynamic Programming"”
[28], [39], '"Asymptotic Dynamic

Programming" [22], "Adaptive Dynamic
Programming" [18], [19], "Heuristic
Dynamic Programming" [13], [37],
"Neuro-Dynamic Programming" [5],
"Neural Dynamic Programming" [28],
[41], and "Reinforcement Learning” [31].

Figure 1 illustrates the concept of
"Reinforcement Learning." The environ-
ment and the "Reinforcement Learning
System" (RLS) are both assumed to
have "memory" of the previous proce-
dures. The goal of the reinforcement
learning is to optimize the cost over
future time, where the cost is the sum-
mation of U(#).

The basic consideration of RLS for
ACD was studied early to 1960's. In clas-
sical dynamic programming, the user
supplies the utility function to be maxi-
mized and a stochastic model of the
environment used to compute the expec-
tation values. The mathematician then
finds the function J, coming from a form
of the Bellman equation. The key is to
choose u(r) that solves the simple, static
maximization problem within that equa-
tion over infinite time. In [40], Werbos
indicated that it must be helpful to use a
universal function approximator-like a
neural network-to approximate the func-
tion J or something very similar to it, in
order to overcome the curse of dimen-
sionality which keeps the classical
dynamic programming from being useful
on large problems.

In the linear case, everything seems to
be good. Many methods could yield uni-
versal stable adaptive controller in the
linear case. But in general, there is an
obvious, overriding question we have to
face: Can we develop nonlinear, stochas-
tic learning controllers which meet all of
those requirements, especially the stabil-

External Exssirorument or
“Plant”

U(f) : “utility’ or “reward”

x(&)
Sensor inputs

- RLS

ul(t)

actions

Figure 1. Learn from the environment

August 2005

ity of the control, when they are applied
to linear plants?

In [40], Werbos proposed the basic
strategy in universal adaptive control
design. One has to keep in mind that any
adaptive control design will have the
probability of extensions to a universal
adaptive control. He suggested that there
are at least six areas we have to do more
about.

(1) Even in the "simple" textbook prob-
lem of supervised learning (learning a
static mapping from an input vector X to
a vector of targets or dependent vari-
ables ¥), we need improved learning
speed and generalization ability, exploit-
ing concepts such as "syncretism" and
"simultaneous recurrence."

(2) In adapting Model networks, we
need to explore architectures which can
represent probability distributions, not
just deterministic input-output relations.
We need to substantially improve
"robustness over time." We need to
explore Error Critics as an alternative to
backpropagation through time (BTT), in
order to combine real-time learning with
the robust kind of memory now available
only with BTT. The improvements need-
ed in supervised learning should be
extended to Model training as well.

(3) Substantial improvements in basic
ADP technology are also needed. The
work proposed in his paper addresses a
portion of those needs.

(4) At a higher level, we need to devel-
op, understand, test and apply designs
for systems which perform "temporal
chunking" in an adaptive way.

(5) Better systems are needed for
"brain-like stochastic" search, in order to
help decision-making system escape
from local minima, without the artificial
limitations of methods like genetic algo-
rithms which are not truly brain-like. For
example, suppose that we face a class of
static function maximization problems, in
which each specific problem is character-
ized by a set of parameters x; we are
asked to find actions or decisions
which maximize Ulx,u). (As an example,
x might represent the locations of cities in
a traveling salesman problem.) We can
train a network so that it inputs x and out-
puts possible «, in a stochastic way, and
tries to ensure that it outputs » according
to a Gibbs distribution, cexp(-kU/T),
where T is a temperature parameter also
input to the network.

(6) Principles like spatial symmetry
and objective symmetry need to be
implemented in new classes of neural
networks, in order to make it possible for
these networks to cope with the huge

IEEE Computational Intelligence Society

('JU02) 921Uy Sinjes

i
e
®
&

S

Q@

9

j 2

<
(D)
s
b

e
©
()

LL

volumes of input which biological organ-
isms can handle. In effect, we need to
work on neural adaptive designs which
learn to do what some Al systems
already do in a crude, brute-force man-
ner: build up spatial "world models;" ana-
lyze objects one at a time, in a multiplex-
ing kind of mode; perform spatial chunk-
ing; input and output networks of rela-
tions rather than fixed-length vectors.

Werbos [40] also discussed some
existing control methods such as
Heuristic Dynamic Programming (HDP),
Dual Heuristic Programming (DHP) and
Globalized DHP (GDHP) and introduce
some alternative new variants of HDP,
DHP and GDHP, which lead to some bet-
ter controllers for universal ACD prob-
lem.

According to Werbos, to make the
RLS model work well, we need three
pieces of information to determine inside
an RLS: (1) How to adapt the Critic net-
work; (2) How to adapt the Model net-
work; and (3) How to adapt the Action
network.

Critic Network

Action Network

x@®

Figure 2. The three modules of an adap-
tive critic design

A typical design of ACDs consists of
three modules-Critic, Model, and Action
[21], [38], [39], [40] as shown in Figure 1.
The critic network will give an estimation
of the cost function J, which is guaran-
teed to be a Lyapunov function, at least
for deterministic systems. Lyapunov sta-
bility theory in general has influenced
huge sections of control theory, physics,
and many other disciplines. More nar-
rowly, within the disciplines of control
theory and robotics, many researchers
have tried to stabilize complex systems
by first deriving Lyapunov functions for
those systems. In some cases, the
Lyapunov functions have been derived

8 IEEE Computational Intelligence Society

analytically by solving the multi-period
optimization problem in an analytic fash-
ion.

After one has derived such an appli-
cation-specific Lyapunov function, one
can then use a design exactly like
Figures 1 and 2, except that the
Lyapunov function replaces the square
tracking error or J. Theoretically, by
replacing the square tracking error with
some other prespecified error measure,
one arrives at a whole new class of sta-
bility properties, and a whole new set of
restrictions on the plant.

From a practical point of view, it
becomes more and more difficult to
derive such Lyapunov functions analyti-
cally, as one tries to control more and
more complex nonlinear systems, such
as elastic, light-weight and flexible robot
arms. The difficulties here are analogous
to the difficulty of trying to solve simple
algebraic equations analytically. As one
progresses from quadratic equations, to
cubic equations, to quartic equations, to
sixth order equations, and so on, one
eventually reaches a point where closed-
form analytic methods simply cannot
give you any solutions. At some point,
one has to use computer-based numer-
ical methods instead of analytical meth-
ods.

The present article considers the case
where each module is a neural network.
In the ACD scheme shown in Figures 1
and 2, the critic network outputs the func-
tion J, which is an estimate of the func-
tion J in equation (2). This is done by
minimizing the following square tracking
error measure over time

Il &, H=ZE1(5}“‘;'Z['?(!)"U<‘)"F}(f"']n, (10)

where J(£) = J{x(6)u(t).t,W2] and W, repre-
sents the parameters of the critic net-
work. The function U is the same utility
function as the one in (2) which indicates
the performance of the overall system.
The function U given in a problem is usu-
ally a function of x(#), u(), and ¢, i.e., U(1)
= Ulx(H,u(r),f]. When E, () = 0 for all ¢,
(10) implies that

Jo=U@+pe+1
=UE+ U+ D+ I (¢ +2)]

= }; YU (11)

which is exactly the same as the cost
function in (2). It is therefore clear that
minimizing the error function in (10), we
will have a neural network trained so that
its output J becomes an estimate of the
cost function J defined in (2).

The model network in Figure 2 learns
the nonlinear function F given in equa-
tion (1); it is trained previously off-line
[21], [39], or trained in parallel with the
critic and action networks [22].

After the model network is trained, the
critic network will be modified. The critic
network give an estimate of the cost. The
training of the critic network in this case
is achieved in minimizing the error func-
tion defined in (10), for which many stan-
dard neural network training algorithms
can be utilized [10]. Note that in Figure 2,
the output of the critic network J(r+1) =
J (x(t+1)x(t+1).t+1) is an approximation to
the cost function J at time /+1 and
{x(r+1)} is not a real trajectory but a pre-
diction of the states by running the model
network before running of the real plant.

After the critic network's training is fin-
ished, the action network's training starts
with the objective of minimizing J(f+1),
through the use of the action signal u(s) =
ulx(f).t,W,]. Once an action network is
trained this way, i.e., trained by minimiz-
ing the output of critic network, we will
have a neural network trained so that it
will generate as its output an optimal, or
at least, a suboptimal control action sig-
nal depending on how well the perform-
ance of the critic network is. Recall that
the goal of dynamic programming is to
obtain an optimal control sequence as in
(3), which will minimize the function .J in
(2). The key here is to interactively build
a link between present actions and future
consequences via an estimate of the
cost function.

After the action network's training
cycle is completed, one may check the
system performance, then stop or contin-
ue the training procedure by going back
to the critic network's training cycle
again, if the performance is not accept-
able yet. This process will be repeated
until an acceptable system performance
is reached. The three networks will be
connected as shown in Figure 2. As a
whole thing of all of them, they will be
justified by the plant or the external envi-
ronment. The action u(¢) will be applied to
the external environment and imply a
new state x(r+1). Meanwhile, the model
network gives an approximation of the
next state %(¢+1). By minimizing [|x(r+1)-
x(++1)||, the model network can be
trained.

The training of the action network is
done through its parameter updates to
minimize the values of J(++1) while
keeping the parameters of the critic and
the model networks fixed. The gradient
information is propagated backward
through the critic network to the model
network and then to the action network,

August 2005

as if the three networks formed one large
feedforward network (cf. Figure 2). This
implies that the model network in Figure
2 is required for the implementation of
adaptive critic designs in the present
case. Even in the case of known function
F, one still needs to build a model net-
work so that the action network can be
trained. In the next section, we will sur-
vey some new developments that
include the simplification of the structure
in Figure 2 by eliminating the model net-
work.

For continuous-time system, the cost
function Jis also the key for dynamic pro-
gramming. By minimizing J one gets the
optimal cost function J* which is the
Lyapunov function of the system. As a
consequence of the Bellman's optimality
principle, J* satisfies the Hamilton-
Jacobi-Bellman Equation (9). But usual-
ly, one cannot get the analytic solution of
Hamilton-Jacobi-Bellman Equation.
Even to find an accurate numerical solu-
tion is very difficult (the so-called "curse
of dimensionality"). In 1994, Saridis and
Wang [24] studied the non-linear sto-
chastic systems described by

dx = F(x,0)dt + B(x,Oudt + Gz O)dw, t, <t T
(12)
with the performance cost

J(x,4) = E{L:’[U{x,muu e
+(xD.D|x) =%} (13)
where U and ¢ are nonnegative func-
tions. Instead of solving Hamilton-
Jacobi- Bellman Equation, they intro-
duced the following equation
Vo+ L+ Uz o)+ fjulP=vF (14)
An upper bound F* and a lower bound
V of the optimal cost J are found by
solving equation (14). Then a control law
u(x) can be obtained by applying V'* (or
*¥) as Lyapunov function for the system.
This leads to the so-called "suboptimal
control" of the system. It was proved that
such controls are stable for the infinite-
time approximate optimal control prob-
lems. The benefit of the suboptimal con-
trol is that the bound ¥ of the optimal cost
J* can be approximated by an iterative
process. Beginning from certain chosen
functions u, and ¥, let
uﬁ'%ﬁ"’u- i=12, (15)
Then repeatedly applying (14) and (15),
one will get a sequence of functions V..
This sequence {¥;} will converges to the
bound 7 (or *V) of the cost function J*.
Consequently, ; will approximate the
suboptimal control when i tends to infini-

August 2005

ty. Although suboptimal control is not the
optimal control law, it does work. The
important things are the sequences {V}
and {u} are obtainable by computation
and they approximate the optimal cost
and the optimal control law, respectively.

In [5], Bertsekas and Tsitsiklis give an
overview of the neuro-dynamic program-
ming.' They provide the background, give
a detailed introduction to dynamic pro-
gramming, discuss the neural network
architectures and methods for training
them, and develop general convergence
theorems for stochastic approximation
methods as the foundation for the analy-
sis of various neuro-dynamic program-
ming algorithms. They provide the core
neuro-dynamic programming methodolo-
gy, including many mathematical results
and methodological insights. They sug-
gested many useful methodologies to
apply in neuro-dynamic programming,
like Monte Carlo simulation, on-line and
off-line temporal difference methods, Q-
learning algorithm, optimistic policy itera-
tion methods, Bellman error methods,
approximate linear programming,
approximate dynamic programming with
cost-to-go function, etc.

A particularly impressive success that
greatly motivated subsequent research,
was the development of a backgammon
playing program by Tesauro [32]. Here a
neural network was trained to approxi-
mate the optimal cost-to-go function of
the game of backgammon by using sim-
ulation, that is, by letting the program
play against itself. Unlike chess pro-
grams, this program did not use looka-
head of many steps, so its success can
be attributed primarily to the use of a
properly trained approximation of the
optimal cost-to-go function.

3. Recent Developments and
Future Perspectives

The main research results in reinforce-
ment learning can be found in a recent
book by Sutton and Barto [31] and the
references cited in the book. Even

though both reinforcement learning and
adaptive critic designs provide approxi-
mate solutions to dynamic programming,
research in these two directions has
been somewhat independent [3] in the
past. The most famous algorithms in
reinforcement learning are the temporal
difference algorithm [30] and the Q-
learning algorithm [34]. Compared to
adaptive critic designs, the area of rein-
forcement learning is more mature and
has a vast amount of literature. The main
constraint in most of the reinforcement
learning literature is the use of look-up
tables for representation of the cost func-
tion in dynamic programming which
implies discrete state variables with finite
number of values.

The most important recent advances
of adaptive critic control start with the
lieterature [21] and [29]. Reference [21]
provides a detailed summary of the
major developments in adaptive critic
designs up to 1997. Before that, major
references are papers by Werbos such
as [35], [38], [39]. Werbos has pointed
out many times that "adaptive critic
designs/approximate dynamic program-
ming may be the only approach that can
achieve truly brain-like intelligence" [23],
[36]. Reference [29] makes significant
contributions to model-free adaptive crit-
ic designs. Using the approach of [29],
the model network in Figure 2 is not
needed anymore. Several practical
examples are included in [29] for demon-
stration which include single inverted
pendulum [1] and ftriple inverted pendu-
lum. Reference [16] is also about model-
free adaptive critic designs. Two
approaches for the training of critic net-
work are provided in [16]: A forward-in-
time approach and a backward-in-time
approach. Figure 3 shows the diagram of
forward-in-time approach. In this
approach, we view f(7) in (10) as the out-
put of the critic network to be trained and
choose U(f)+yJ(t+1) as the training target.
Note that J(s) and J(r+1) are obtained
using state variables at different time
instances. Figure 4 shows the diagram

("Ju02) {oIUY ainjea

T U

o)

Copied

x{t)

Figure 3. Forward-in-time approach.

IEEE Computational Intelligence Society

o ol Critic Network

x(t+1)

S
i
O

4

Q

O

=

<C
()
-
-
et
(C
(b
LL

x(t+1)

x(1)

Figure 4. Backward-in-time approach.

of backward-in-time approach. In this
approach, we view J (++1) in (4) as the
output of the critic network to be trained
and choose [j(n)-U(n]/y as the training
target. The training approach of [29] can
be considered as a backward-in-time
approach. In Figures 3 and 4, x(t+1) is
the output from the model network.

Some theoretical results for adaptive
critic control have been obtained recent-
ly [18], [19], [22]. These references
investigated the stability and optimality
for some special cases of adaptive critic
control. In [18], Murray et al. studied the
(deterministic) continuous-time systems

dx(t)/ de = F(x)+B(twu, x(t,)) =x, (16)
with the cost function
J= LOU(x,u)dt (17)

where U(x,u) = g(x)+u’r(x)u is a nonnega-
tive function and r(x) > 0. Similar to [24],
an iterative process is proposed to find
the control law. But this time the optimal
cost and optimal control law are approxi-
mated. For the plant (16) and perform-
ance cost (17), the Hamilton-Jacobi-
Belliman Equation can be simplified to

we) =-3r @Bl

ZOF (1)

d.
Applying (17) and (18) repeatedly, one
will get sequences of estimations of the
optimal cost function J* and the optimal
control u*. By taking advantage of the
intrinsic adaptivity of the algorithm, one
could potentially use a linear adaptive
controller on a nonlinear system, letting it
adapt to a different linearization of the
plant at each point in the state space.
Since the control law is based on d¥/dx

, hot F{x), any approximation of the cost
functional should consider the gradient

error as well as the direct approximation
error.

Most of the applications of adaptive
critic control are in the area of aircraft

10 IEEE Computational Intelligence Society

flight control [2], [6], [7], [20]. Some other
applications have also been reported
recently such as in power systems [33],
in communication networks [17], [42],
and in engine control [11], [12].
Interested readers should also read ref-
erence [13], especially the proposed
training strategies for the critic network
and the action network. In addition, the
authors of [29] provide the MATLAB pro-
grams of their algorithms free of charge.
New comers to the field of adaptive critic
control should take a look at the chal-
lenging control problems listed in [1].
There have also been two invited ses-
sions on Adaptive Critic Control co-
organized by the author of this article at
the IEEE International Symposium on
Intelligent Control (Houston, 2003 and
Taiwan, 2004). Finally, references [25]-
[27] present an approach for finite hori-
zon dynamic programming called
"Neural Dynamic Optimization."

Future research in the field of adaptive
critic control/approximate dynamic pro-
gramming calls for major breakthroughs
in both theory and applications. In the
theoretical aspect, a complete set of the-
ories is needed for this area which
includes stability, convergence, optimali-
ty, and qualitative analysis. On the other
hand, applications with significant impact
and economic benefits are wanting.
There are currently on-going investiga-
tions in both of these two areas in the
United States.

References

[11 C. W. Anderson and W. T. Miller llI,
"Challinging control problems,” In Neural
Networks for Control (W. T. Miller Ill, R. S.
Sutton, and P. J. Werbos, Eds.). Appendix A.
Cambridge, MA: The MIT Press, 1990,

[21 S. N. Balakrishnan and V. Biega,
"Adaptive-critic-based neural networks for air-
craft optimal control," Journal of Guidance,
Control, and Dynamics, vol. 19, pp. 893-898,
July-Aug. 1996.

[3] A. G. Barto, "Reinforcement learning

and adaptive critic methods," in Handbook of
Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches (Chapter 12), Edited by
D. A. White and D. A. Sofge, New York, NY:
Van Nostrand Reinhold, 1992.

[4] R. E. Bellman, Dynamic Programming,
Princeton, NJ: Princeton University Press,
1957.

[5] D. P. Bertsekas and J. N. Tsitsiklis,
Neuro-Dynamic Programming, Belmont, MA:
Athena Scientific, 1996.

[6] C. Cox, S. Stepniewski, C. Jorgensen,
R. Saeks, and C. Lewis, "On the design of a
neural network autolander," International
Journal of Robust and Nonlinear Control, vol.
9, pp. 1071-1096, Dec. 1999.

[7] J. Dalton and S. N. Balakrishnan, "A
neighboring optimal adaptive critic for missile
guidance," Mathematical and Computer
Modeling, vol. 23, pp. 175-188, Jan. 1996.

[8] P. G. DeLima and G. G. Yen, "Multiple
model fault tolerant control using globalized
dual heuristic programming," Proceedings of
the 18th IEEE International Symposium on
Intelligent Control, Houston, TX, Sept. 2003,
pp. 523-528. (Invited paper)

[9] S. E. Dreyfus and A. M. Law, The Art
and Theory of Dynamic Programming, New
York, NY: Academic Press, 1977.

[10] 8. Haykin, Neural Networks: A
Comprehensive Foundation, Upper Saddle
River, NJ: Prentice Hall, 1999.

[11] H. Javaherian, D. Liu, Y. Zhang, and
0. Kovalenko, "Adaptive critic learning tech-
niques for automotive engine control,"
Proceedings of the American Control
Conference, Boston, MA, June 2004, pp.
4066-4071.

[12] N. V. Kulkarni and K. KrishnaKumar,
"Intelligent engine control using an adaptive
critic," IEEE Transactions on Control Systems
Technology, vol. 11, pp. 164-173, Mar. 2003,

[13] G. G. Lendaris and C. Paintz, "Training
strategies for critic and action neural networks
in dual heuristic programming method,"
Proceedings of the 1997 IEEE International
Conference on Neural Networks, Houston,
TX, June 1997, pp. 712-717.

[14] F. L. Lewis and V. L. Syrmos, Optimal
Control, New York, NY: John Wiley, 1995.

[15] D. Liu and H. D. Patifio, "A self-learn-
ing ship steering controller based on adaptive
critic designs," Proceedings of the IFAC
Triennial World Congress, Beijing, China, July
1999, vol. J, pp. 367-372.

[16] D. Liu, X. Xiong, and Y. Zhang,
"Action-dependent adaptive critic designs,”
Proceedings of the INNS-IEEE International
Joint Conference on Neural Networks,
Washington, DC, July 2001, pp. 890-995.

[17] D. Liu, Y. Zhang, and H. Zhang, "A
self-learning call admission control scheme
for CDMA cellular networks," |EEE
Transactions on Neural Networks, val. 16, no.
5, Sept. 2005. (to appear)

[18] J. J. Murray, C. J. Cox, G. G. Lendaris,
and R. Saeks, "Adaptive dynamic program-
ming,” IEEE Transactions on Systems, Man,
and Cybernetics-Part C: Applications and

August 2005

Reviews, vol. 32, pp. 140-153, May 2002.

(19] J. J. Mumray, C. J. Cox, and R. E.
Saeks, "The adaptive dynamic programming
theorem,” in Stability and Control of
Dynamical Systems with Applications, D. Liu
and P. J. Antsaklis, Editors, Boston, MA:
Birkhduser, 2003, pp. 379-394.

[20] D. V. Prokhorov, R. A. Santiago, and
D. C. Wunsch, "Adaptive critic designs: A case
study for neurocontrol,” Neural Networks, vol.
8, pp. 1367-1372, 1995,

[21] D. V. Prokhorov and D. C. Wunsch,
"Adaptive critic designs,” IEEE Transactions
on Neural Networks, vol. 8, pp. 997-1007,
Sept. 1997.

[22] R. E. Saeks, C. J. Cox, K. Mathia, and
A. J. Maren, "Asymptotic dynamic program-
ming: Preliminary concepts and results,"
Proceedings of the 1997 IEEE International
Conference on Neural Networks, Houston,
TX, June 1997, pp. 2273-2278.

[23] R. A. Santiago and P. J. Werbos, "New
progress towards ftruly brain-like intelligent
control," Proceedings of the World Congress
on Neural Networks, San Diego, CA, June
1994, vol. 1, pp. 27-33.

[24] G. N. Saridis and F.-Y. Wang,
"Suboptimal control of nonlinear stochastic
systems," Control-Theory and Advanced
Technology, vol.10, no. 4, pp. 847-871, 1994.

[25] C.-Y. Seong and B. Widrow, "Neural
dynamic optimization for control systems-Part
I: Background," IEEE Transactions on
Systems, Man, and Cybernetics-Part B:
Cybermetics, vol. 31, pp. 482-489, Aug. 2001,

[26] C.-Y. Seong and B. Widrow, "Neural
dynamic optimization for control systems-Part
Il: Theory," IEEE Transactions on Systems,

August 2005

Man, and Cybernetics-Part B: Cybernetics,
vol. 31, pp. 490-501, Aug. 2001.

[27] C.-Y. Seong and B. Widrow, "Neural
dynamic optimization for control systems-Part
Ill: Applications,” IEEE Transactions on
Systems, Man, and Cybernetics-Part B:
Cybernetics, vol. 31, pp. 502-513, Aug. 2001.

[28] J. Si, A. G. Barto, W. B. Powell, and
D. Wunsch, Editors, Handbook of Learning
and Approximate Dynamic Programming,
New York: Wiley-IEEE Press, 2004,

[29] J. Siand Y.-T. Wang, "On-line learning
control by association and reinforcement,”
IEEE Transactions on Neural Networks, vol.
12, pp. 264-276, Mar. 2001.

[30] R. S. Sutton, "Learning to predict by
the methods of temporal differences,”
Machine Learning, vol. 3, pp. 9-44, 1988.

[31] R. 8. Sutton and A. G. Barto,
Reinforcement Learning: An Introduction,
Cambridge, MA: The MIT Press, 1998.

[32] G J. Tesauro, "Practical issues in tem-
poral difference leaming," Machine Learning,
Vol. 8, pp. 257-277, 1992.

[33] G K. Venayagamoorthy, R. G. Harley,
and D. G. Wunsch, "Comparison of heuristic
dynamic programming and dual heuristic pro-
gramming adaptive critics for neurocontrol of
a turbogenerator,” |EEE Transactions on
Neural Networks, vol. 13, pp. 764-773, May
2002.

[34] C. J. C. H. Watkins and P. Dayan, "Q-
learning," Machine Learning, vol. 8, pp. 279-
292, 1992,

[35] P. J. Werbos, "Advanced forecasting
methods for global crisis warning and models
of intelligence," General Systems Yearbook,
vol. 22, pp. 25-38, 1977.

[36] P. J. Werbos, "Building and under-
standing adaptive systems: A
statistical/numerical approach to factory
automation and brain research," |EEE
Transactions on Systems, Man, and
Cybemnetics, vol. SMC-17, pp. 7-20, Jan./Feb.
1987.

[37] P. J. Werbos, "Consistency of HDP
applied to a simple reinforcement learning
problem,” Neural Networks, vol. 3, pp. 179-
189, 1990.

[38] P. J. Werbos, "A menu of designs for
reinforcement learning over time," in Neural
Networks for Control (Chapter 3), Edited by
W. T. Miller, R. S. Sutton, and P. J. Werbos,
Cambridge, MA: The MIT Press, 1990.

[39] P. J. Werbos, "Approximate dynamic
programming for real-time control and neural
modeling," in Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches
(Chapter 13), Edited by D. A. White and D. A.
Sofge, New York, NY: Van Nostrand Reinhold,
1992.

[40] P. J. Werbos, "Stable adaptive control
using new critic designs,"
http://xxx.lanl.gov/abs/adap-org/9810001,
March 1998. [Online].

[41] L. Yang, R. Enns, Y.-T. Wang, and J.
Si, "Direct neural dynamic programming,” in
Stability and Control of Dynamical Systems
with Applications (Chapter 10), Edited by D.
Liu and P. J. Antsaklis, Boston, MA:
Birkhauser, 2003.

[42] Y. Zhang and D. Liu, "Call admission
control for CDMA cellular networks using
adaptive critic designs," Proceedings of the
18th IEEE International Symposium on
Intelligent Control, Houston, TX, Sept. 2003,
pp. 511-516. (Invited paper)

IEEE Computational Intelligence Society

("JU09) oIy a4njes4

