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CONSTRUCTION OF SUBOPTIMAL CONTROL SEQUENCES*
R. J. LEAKE AND RUEY-WEN LIU

Summary. As an alternative to a direct solution of the Hamilton-Jacobi equation,
results are presented for the determination and improvement of suboptimal controls
and for obtaining bounds on the optimal value of the performance index. Treatment
is restricted to the class of problems included in the well-known work of Kalman [1].

1. Introduction. It is well established that direct attempts to solve the
Hamilton-Jacobi equation in order to obtain optimal feedback controls are
hopeless in all but a few special cases. Bellman foresaw these difficulties in
his early work on dynamic programming [2], and in addition to his main
constructive method of solution, laid strong emphasis on the use of succes-
sive approximations for the study of optimal processes. A similar idea for
obtaining suboptimal controls based on the relationship between Hamil-
tonian functions and performance index derivatives has been exploited by
Rekasius [3] and Hausslcr [4]. Their work has shown promise for the special
case of "stationary" problems, with a separable scalar control. The same
line of reasoning will be applied here to a broader class of problems.

Consider a dynamical system represented by

(1) 2 f(x, k, t), x(to) Xo,

where the n-vector x is the plant state, f is a continuously differentiable
n-vector function, and k(x, t) is an r-vector function defined on R X R.
The solution of (1) will be denoted as (t) & (t; x0, to).

Let G be a closed subset of R X R to which all motions of (1) are
restricted, and let the target set S be a closed subset of G. For our purposes,
the function lc will be called an admissible feedbaclc control law if:

(a) it is continuously differeutiable with values lc(x, t) belonging to
locally compact set U R for all t;

(b) it has the property that when substituted into (1), any motion
beginning in G S reaches S, or approaches S, in a uniform
asymptotic manner without leaving G.

The class of functions satisfying the above properties will be denoted
as 3.
The terminal time h h(x0, to) will be defined as the first instant fter

to when the motion (4)(t), t) becomes a member of S; or, in the asymptotic
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SUBOPTIMAL CONTROL SEQUENCES 55

The system performance is evaluated by the functional

J(xo, to k) )[k(tl ;Xo, to), tl]
() f- LICk(a; Xo, to), k((a; Xo to), a), a] da,

where L und are continuously differentiuble functions. We define

V(xo,t0) inf J(xo,to;k).
kK

Let H be defined s

(3) H(x, p, t, u) {f(x, u, t), p) + L(x, u, t),

where p is an n-vector, u is an r-vector nd (, denotes the inner product.
Assume that H has unique bsolute minimum for each x, p, and with
respect to the values u U, and let the ussocited location of the minimum
be denoted as c(x, p, t). Assuming that c is continuously differentiable
function of x, p and t, we define the Hamiltonian as

(4) H(x, p, t) H(x, p, t, c(x, p, t) min H(x, p, t, u)
uU

and the Hamilton-Jacobi equation as

(5) v + H(x, , t) O,

where V(x, t) is scalar function defined on R X R, Vt OV/Ot and
V grd V. Kalman [1] hs shown that if V(x, t) is twice continuously
differentiable in all arguments, if it satisfies (5) in G and the boundary
condition V(x, t) N(x, t) on S, and in ddition if the function k(x, t)

c(x, V(x, t), t) is admissible, then V(x, t) V(x, t).
The solution of (1) is easily seen to have the property that

(6) (.; (t; xo, t0), t) (.; xo, to) (.);

nd furthermore, if (Xo, to) G S, we have for the terminal time

(7) t((t; xo, to), t) t(x0, t0), to 5 5 t(xo, to).

It follows from (2), (6) and (7) that

J((t; xo, to), t; ]) x[(t ;xo, to), t]

(s) 1
for to =< =< tl. Consequently, the Eulerian derivative of J along motions
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56 R. $. LEAKE AND RUEY-WEN LIU

of (1) is given by

dJ(9) - (4)(t; x0, to), t;/c) --L[(t; x0, to),/(4)(t; x0, to), t), t]

or, denoting 4)(t; Xo, to) by x, we huve in more csul notation

(lO) d(, t; ) -L(x, , t).

Whenever there is no chance of confusion we will use the latter representa-
tion of the result, it being understood that (9) is implied.

2. Transformations of the successive approximation. Given any optimal
feedback control problem described above, define X) as the set of all con-
tinuously differentiable functions V" R" X R R such that V(x, t)

)(x, t) on S. Let 0 be the subset of 2 such that if /(x, t)
c(x, V(x, t), t) then/ 0, i.e., k is admissible. Note that by our as-

sumptions, if it exists, V 0.
Next we define the basic transformations used to generate suboptimal

control sequences.
(a) T "X)--- is defined for any V 2 by T(V) k, where/(x, t)

c(x, V,t).
(b) T 3 -- is defined by T(lc) V, where V(x, t) J (x, t; lc).

Clearly J(x, t; lc) k(x, t) on S, and since ), L, and k are con-
tinuously differentiable, so is V.

(c) T" X)--+ X) is the composite mapping defined for V X) by T(V)
T(T(V)) J(x, t; k) with k(x, t) c(x, V, t).

3. Development of the basic inequalities.
LEMMA 1. Suppose V o and W 5. Then, if

(11) H(x,V,,t) .+ Vt <- H(x,W,t) + Wt, (z,t) G- S,

it follows that

(2) w(x, t) <= v(, t), (, t) G.

Proof. Since V 0 the control ](x, t) c(x, V, t) causes the motion
of (1) to enter S from any initiul phase in G. Tking derivatives long
this motion we hve

?- W (f(x, k, t), V.} (f(x, , t), W} + V, Wt
[H(x, V, t) - Vt U(x, W, t) Wt]

+ [H(x, W, t) H(x, W,, t,
=< 0,

since the term in the first bracket is nonpositive by ssumption, wheres

D
ow

nl
oa

de
d 

02
/1

9/
14

 to
 1

29
.1

07
.1

83
.2

15
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SUBOPTIMAL CONTROL SEQUENCES 57

the term in the second bracket is nonpositive by the definition of H in
(4). It follows that along the motion of the indicated system I?(x, t)
=< W(x, t). Noting that both Eulerian derivatives are taken along the same
motion and therefore with a common termination point on S, a simple
integratioI yields (12).

THEOREM 1. Let V o and W 2. Then for (x, t) G,

H(x, Vx, t) Vt <= 0 implies V(x, t) <= V(x, t),
(13)

H(x, W, t) + Wt >= 0 implies W(x, t) <= V(x, t).

Proof. The conclusion follows from Lemma 1 together with the fact
that V 0 and H(x, Vx, t) - Vt 0. Note that all of the above results
also hold for strict inequalities. Theorem 1 provides a basic means of
determining upper and lower bounds on V(x, t).
The next result gives an alternate method of evaluating the performance

index for a given admissible control law.
LEMMA 2. Let W and k o. Then

(14) W T(/c) if and only if .H(x, W, t, tc) - Wt 0 in G S.

Proof. Assume first that H(x, W, t, to) + Wt 0. Taking the deriva-
tive of W(x, k) along motions of (1) with the control/c we have

W H(x, W, t, t) - Wt L(x, 1, t) --L(x, lc, t);

but from (10), --L(x, to, t). Noting that the restrictions on f, k and
L imply J is continuously differentiable in G and integrating along the
motion of (1) yield W(x, t) J(x, t; t), i.e., W T(/). Conversely,
W T(/c) implies I?V -L which leads to H(x, W, t, to) Wt O.
Let us now turn to the composite mapping T T:T.
THEOaE 2. Let V o and W . Then

W T(V) if and only if H(x, W, t, c(x, V, t) + W 0
(15)

inG S.

The proof follows directly from Lemma 2 and the smoothness assump-
tion on c(x, V(x, t), t) lc(x, t) T(V) (x, t).
Notice that Lemma 2 and Theorem 2 both give methods of determining
W such that H(x, Wx, t, k) + W 0 and thus H(x, W, t)- W _<_ 0.

If it turns out that W 0, the function takes on a usefulness which is
now indicated.
THEOREI 3. Let W o and W* T(W). Then

(16) H(x, W,t) + Wt <= 0 inG S
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58 R. J. LEAKE AND RUEY-WEN

implies that

(17) V(x, t) <= W*(x, t) <= W(x, t).

Proof. Tking derivatives of W and W* along the same motion of (1)
with k(x, t) c(x, W, t) we have

HW (f(x,k,t) W) + Wt-- (X, W,t) - Wt- L(x,k,t) <= --L(x, lc, t),

whereas from (10), ?V* 3(x, t;/c) -L(x, t, t). The desired result
follows by integration.

It is esy to see thnt V is u fixed point of the mapping T, but the con-
verse is not obvious.
TEonnM 4. If V exists, then V is a fixed point of T, i.e., V T( V).

Conversely, if V is a fixed point, then V( x, t) V( x, t) on G.
Proof. If V exists, then V X). Let V* T(V). From Theorem 3 we

hve V(x, t) <= V*(x, t) <__ V(x, t), so V* V. Conversely, assume
V T(V); then by Theorem 2, H(x, V, t, k) - Vt 0, where k(x, t)

c(x,V,t), i.e., H(x, Vx,t)+Vt 0 or V is solution of the
Hamilton-Jcobi equation. With the assumption that V is member of 0,
the domain of T, we hve V V.
Note that if V exists, it is unique.
COnOLLhnY 1. If V exists, there is one and only one fixed point of 7’ in 5.
4. Iterations and convergence conditions. The question now arises as to

whether the process outlined in Theorem 3 cn be continued. Given ny
V 0 we estublish the successive pproximation procedure through T,
i.e., V"+1 T(V), by mking the following assumption.
ASSUMPTION. T( Vn) )o for n 1, 2, 3,
THEOREM 5. If Y o and Vn+ T(V), n 1, 2, 3, ..., then

V(x, t) Y+(x, t) Vn(x, t) = V(x, t), (x, t) G.

Proof. Let/+(x, t) c(x, V, t) T(V"), and note that we have
defined Vn(x, t) J(x, t; ) T(k’). By Theorem 2 we have for each n

H(x, V, t, ) + V, 0;

thus H(x, V, t) + Vt <= O, nd the conclusion follows inductively from
Theorem 3.
Theorem 5 indicates that the estimate of V(x, t) can only be improved

by the successive approximations. We may state stronger results if further
restrictions re imposed.
THEOREM 6. If the iteration procedure terminates in a finite number of

steps, that is, if T(V) V for some finite n, then V exists and V(x, t)
Vn(x, t) On G.
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SUBOPTIMA_L CONTROL SEQUENCES 59

Proof. Since V is a fixed point in X), the result follows directly from
Theorem 4.

If the iteration does not end in a finite number of steps, Lemma 3 fol-
lows from Theorem 5.
LEMMA 3. For every sequence Vn}, there exists a function V* such that

V(x, t) V*(x, t) pointwise on G. If G is bounded, the convergence is

uniform.
In order that V* V, it is required that V* 0. If in addition T is

continuous at V*, the condition V* V is assured. In order to make the
statement more precise, let us assume G is bounded and define a distance
function on as

d(V1, V2) sup {IV(x,t) V(x, t) I} forV1, V .
(x,t)o

THEOREM 7. Let T be continuous in o c . If V} is such that T( V)
V+1 and V (x, t) V*(x, t) as in the above mentioned construction, and

if V* ,then V* V.
Proof. With the defined metric, Lemma 3 implies that V -- V* and

T( V) --+ V*. Since T is continuous, T(V*) V*, so that by Theorem 4,
V* V.
Above, we give conditions under which the iteration will converge to the

optimal V(x, t). Perhaps more important from a practical standpoint is
that the successive approximations are monotone decreasing under more
general conditions and a gauge can be obtained by finding lower bounds
on V(x, t) by the use of Theorem 1.

5. Quasilinearization and the canonical equations. It is interesting to
note that, by Theorem 2, evaluating the successive approximation V+1

T( V) amounts to solving a sequence of linear partial differential equa-
tions of the first order, since

n-iH x, -z ’+, t, c( x, V t) d- V 0

implies

/v + + L(x, c(x, Vn, t) t)(18) \- ,f(x, c(x, V t), t)) d- -t

It is well known [1], [5] that the Hamilton-Jacobi equation H(x, V, t)
d- V 0 specifies a two point boundary value problem in the canonical
equations a H, i5 -H. Because of their general nonlinearity,
numerical integration of the canonical equations presents a formidable
problem. Bellman and Kalaba [6] have employed quasilinearization to
reduce problems of this type to problems of solving sequences of linear two-
point boundary value problems.
As one might expect, the characteristic equations associated with (18)
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60 R. J. LEAKE AND RUEY-WEN LIU

provide a similar formal mechanism of solution. They may be written
with (t) eke(t) as

Cn+l(t) H(n+l, pn+l, t, c(4)n, pn, t)),
(19)

--/}n+l(t) Hx("+l, p+l, t, c(", p, t)),

or, more explicitly,

+(t) f(+, c(4), p, t), t),

_ih+(t) fx(bn+l, c(dpn, pn, t), t)p’+ + L(’+, c(, pn, t), t)
(20)

-+- Cx(4,’, p’, t)[L()+I, c(, p, t), t)

+ fu(+, c(, p, t), t)p],

where fx, c, f are Jacobian matrices and L, L are gradient vectors.
It is seen that the second equation is linear in p+. The equations may be
integrated iteratively by choosing an appropriate admissible control u(t)
in place of c((t), p(t), t). This amounts to an "approximation in policy
space" [2]. Boundary conditions are obtained from the general transversality
condition

(21) [dk q- U dt q- (p, dx}] t‘ O
where the differentials are consistent with the side constraints. We do not
wish to go further into these matters, but mention them to show connec-
tions with other work in the field.

6. Applications.
Example 1. A norm inariant system may be given by

2. A(x)x + k, where A +Ar 0.

LetS= {(x,t) lllxil--o},G-- {(x,t) lllxII e},u-- {l I[ 1},
0, and L 1, where 0 is any (small) positive number. Since without

control all solutions are on the constant norm surface x x0 I[, it is
reasonable to assume that V(x, t) g(ll x II), where dg(a)/da > O.
It is easy to show that c(x, p, t) -P/}I P II; consequently, k(x, t)

c(x, V,, t) -x/ x II. It is then straightforward to show that Va(x, t)
Y(x,t) Ilxll -0- Therefore, by Theorem 6, V(x, t) [Ixl[ O,

and the optimal control law is lc(x, t) -x/I x II.
Example 2. In the first-order linear system

with L x q-/c=, G U R, S (x, t) x 0} the well-known solu-
tion is V(x, t) x, k(x, t) -x. If we assume V"(x, t) Kx, then
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SUBOPTIMAL CONTROL SEQUENCES 61

(18) becomes

-KxV+ -t- x --t- Kx 0;

so V’+(x, t) (1 q- K)x/(2K), and it is seen that the related sequence
converges to V(x, t).
Example 3. A simple, but explicitly insolvable minimum time problem is

defined by letting L 1, G {(x, t) III x --> 0}, S {(x, t) Ill x 0},
and U {/ell I/c =< 1} for the system

2i -xl+ki,

2 -2xq- k.

The small parameter 0 should be held to positive wlue in order for the
theory to apply, but it seems worthwhile to proceed formally with 0 0
in the interest of simpler expressions. Application of Theorem i shows that

log (1 -t- 21 x ]])1/ __< VO(x, t) <__ log (1

Beginning the iteration of Theorem 5 with V(x, t) log (1 + x II) we
obtain/c(x, t) -x/l[ x I. Evaluation of V T(V) by means of (18)
shows that

V2(x,t) log (1 + 2]]x]] + xl2)1/2,

--(x1(1 -- xl?(x, t)
[{I + {{ + x,]’"

From the ltter control lw, V(z, t) may be ewluted numerioMly s the
time it tkes to reaoh the origin.
ettin w(x, t) ( + ll) ", we hve

w(, t) V(z, t) v(z, t) (z, t) v’(x, t).

The i isoohrones for these quantities re shown in Fig. i. As mentioned
bove, the set of points where V(, t) i ws determined by numericl
integration. ctully, the set of points stisfying g(z, t) i in the first
quadrant cn be speoified prmetriellybyz (i/) log [e + i + e],
z [el + e 1 + z]/(2), where is prmeter rng-
ing over the rel line. comparison shows that the pproximtion
V;(x, t) i is ceurte to within few tenths of percent.
Ezample 4. Here we consider class of first-order problems desoribed
by (> + l,withL(, k, t) () + , G {(, t) 0],
U R, (, t) {z 0}. We ssume that a(z) is positive definite.
In this instance it is possible to crry out the complete pproximtion

process in the polioy spce 0 by using the transformation T* TT
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62 R. J. LEAKE AND RUEY-WEN LIU

X2

2 3
X1

FG. 1. Isochrones corresponding to for the successive approximations of Example 3

rather than I’ 7’.7.’1 as has been discussed in the text. We have c(x, Vx, t)
1/2 Vx, and (18) becomes

V n+l(’) -vn) + (v ) + o.
Furgher, if V" 0, we have by Theorem 1

(3) vg (v) + o, z o.
Substit,uting lc"+ Vz into (22) yields

,+, ,*(c,,) (#) + ,
2 lc+g

or

#++.q=5 ("+g) +(,+})
Now if lcn is admissible,/c + g < 0 for x > 0 and lcn+l is continuously dif-
ferentiable for x > 0. Furthermore, the origin is asymptotically stable for

g(x) -- /cn+l, since from (23)

" gV.-+ lc+iVx gV, 1/2(V) <= -a --}(V),
and thus V is a Liapunov function for the system. Therefore, lc"+ is
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SUBOPTIMAL CONTROL SEQUENCES 63

admissible. It is easy to show that

/1 + - v/ + , or n - __
/; + Z 0.
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