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Applications of Dynamic Programming to the Control 
of Water Resource Systems* 

R. E. LARSON t and W. G. KECKLER+ + 

Several dynamic programming computational procedures may aid in operating water 
resource systems: daily as in a pumped-storage facility and a four-reservoir system, 
and annually with stochastic inflows and in long term planning of system additions. 

Summary--The complexity and expense of water system 
projects have made optimum operation and design by 
computer-based techniques of increasing interest in recent 
years. Dynamic programming offers a powerful approach 
to a wide variety of these problems. 

Most water system problems can be classed as one of 
the following three types: 

(1) Optimum operation during a short period, such as 
24 hours, when all quantities are known; 

(2) Monthly or yearly policy optimization when some 
system parameters, such as stream inflows, are not 
known exactly; 

(3) Long-range planning or resource allocation when 
demands may or may not be known exactly. 

Realistic water resource problems have many decision 
and state variable constraints. There are also nonlinearities 
or stochastic variations in both the state equations and the 
return function. This paper describes how dynamic pro- 
gramming can handle these difficulties. 

Several specialized dynamic programming techniques 
applicable to water system problems are also introduced. 
These include successive approximations, forward dynamic 
programming, dynamic programming for stochastic control, 
and iteration in policy space. 

Four examples are solved and discussed--short-term 
optimization of a two-reservoir system is solved with 
forward dynamic programming; short-term optimization 
of a four-reservoir system is treated by successive approxima- 
tions; optimum operation over a year, when stream-flows 
are stochastic variables, is found by iteration in policy 
spaces; and optimum long-term planning of system 
additions given projected demand is treated by forward 
dynamic programming. 

I0 INTRODUCTION 

AS WATER resource systems have grown larger and 
more complex, the importance of opt imum 
operation and planning of these systems has increas- 
ed. The investment costs and operating expenses 
of  projects are so large that even small improve- 
ments in system utilization can involve substantial 
amounts of  money. Also, the various control 
points--power  generators, irrigation outlets, pump- 
ing stations, etc.--interact in such a complicated 
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manner that it is difficult to obtain an opt imum 
design or operating policy using an intuitive 
approach. Thus, the potential benefits of  using 
optimization techniques in these problems are 
very great indeed. 

Dynamic programming provides an extremely 
powerful and general approach for solving these 
optimization problems. Nonlinearities in the 
system equations and performance criterion can 
easily be handled. Constraints on both decision and 
state variables introduce no difficulties. Stochastic 
effects can be explicitly taken into account. 

In section I I  the basic equations of  dynamic 
programming are briefly reviewed to introduce the 
terminology to be used as well as a number of  
computational procedures: the standard comput- 
ational algorithm, successive approximations, for- 
ward dynamic programming, the standard com- 
putational algorithm for stochastic control prob- 
lems, and iteration in policy space. 

In section I I I  some specific problems to which 
dynamic programming has been applied are dis- 
cussed. Most water problems fall into one of the 
following three categories: 

(1) Optimum operation during a short period, 
such as 24 hr, when all quantities are deter- 
ministic; 

(2) Monthly or yearly policy optimization when 
some system parameters, such as stream 
inflows, must be treated as stochastic 
variables. 

(3) Long-range planning or resource allocation 
where demands may or may not be treated 
as deterministic quantities. 

Four illustrative examples are discussed, includ- 
ing at least one f rom each of the above categories. 
The first problem is the opt imum short-term oper- 
ation of a combined pumped hydro and irrigation 
storage facility involving two reservoirs; forward 
dynamic programming was used for this example. 
The second problem is the opt imum short-term 
operation of a multipurpose four-reservoir system, 
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16 R.E.  LARSON and W. G. KECKLER 

where power generation, irrigation, flood control, 
and recreation are all considered; the technique of 
successive approximations was applied in this case. 
The third problem is the optimum management of a 
single reservoir over a 1-year period, where stoch- 
astic variations of input stream-flows are con- 
sidered; iteration in policy space was applied here. 
The fourth problem is the optimum planning of 
additions to a system over a 30-year period; 
forward dynamic programming was again used 
for this example. 

1I. BASIC CONCEPTS IN DYNAMIC 
PROGRAMMING 

Most of the problems for which dynamic pro- 
gramming has been used to obtain numerical 
solutions can be formulated as deterministic dis- 
crete-time variational control problems [1-3]. The 
general case of this problem is formulated as follows 

Given: 
(i) A system described by the nonlinear differ- 

ence equation 

x(k+ 1) = O[x(k), u(k), k],  (l) 

where 

x=s ta te  vector, n-dimensional 
u=control  vector, m-dimensional 
k = index for stage variable 

• = n-dimensional vector functional; 

(ii) A variational performance criterion 

K 

J =  • L[x(k), u(k), k],  (2) 
k = 0  

where 

J =  total cost 
L =  cost for a single stage; 

(iii) Constraints 

where 

xeX(k) (3) 

ueU(x, k) (4) 

X(k) = set of admissible states at stage k 
U(x, k)=  set of admissible controls at state x, 

stage k; 

(iv) An initial state 

x(0)=e. (5) 

Find: 
The control sequence u(0) . . . . .  u(K) such that 

J in equation (2) is minimized subject to the 
system equation (1), the constraint equations (3) 
and (4), and the initial condition (5). 

The dynamic programming solution to the above 
problem is obtained by using an iterative functional 

equation that determines the optimal control for 
any admissible state at any stage. The minimum- 
cost function is defined for all xsX and all k ,=0,  
1 . . . .  K, as 

l(x, k)= min L[x(j), u(j), j]  , (6) 
j = k ,  k +  1 . . . . .  K j =  

where 

x(k)=x. 

Abbreviating u(k) as u, the iterative functional 
equation becomes 

I(x, k)=min{L(x, u, k)+I[@(x, u, k), k+  1]}. (7) 
11 

This equation is a mathematical statement of 
Bellman's principle of optimality [1-3]. The 
optimal control at state x and stage K, denoted as 
fi (x, k), is directly obtained as the value of u for 
which the minimum in equation (7) is attained. 

Since equation (7) determines l(x, k) and fi (x, 
k) in terms ofI (x ,  k + l ) ,  it must be solved back- 
ward in k. As a terminal boundary condition 

I(x, K)=  min[L(x, u, K)].  (8) 
ii 

The optimization over a sequence of controls is 
thus reduced to a sequence of optimizations over 
a single control vector. 

An iterative equation analogous to equation (7) 
can be derived for continuous-time problems and 
for problems containing stochastic variables [1-4]. 

The standard computational procedure for 
solving equation (7) is to quantize admissible values 
of x and u to a finite number of discrete values and 
then to perform the minimization at any quantized 
value of x by a direct search over quantized values 
of u. This procedure has a number of desirable 
properties: an absolute optimum is always deter- 
mined; a feedback control policy is obtained; and 
considerable flexibility in handling constraints, 
nonlinearities, and stochastic effects is provided 
[1-4]. However, the procedure does have the 
drawback that computational requirements can 
become excessive in high-dimensional problems 
[1-4]. 

A number of procedures are available that reduce 
these computational requirements while retaining 
the desirable properties of the standard algorithm. 
These include successive approximations [1-4, 13, 
14], forward dynamic programming [4], iteration 
in policy space [2-5], quasilinearization [6], iteration 
about a nominal using successively finer quan- 
tization increments [7], and state increment dynamic 
programming [4]. A comprehensive survey of 
these procedures appears in Ref. [8]. 
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IlL EXAMPLES 

A. Short-term optimization of  a pumped-storage 
two-reservoir system 

1. Problem statement. In Ref. [9] a pump-storage 
system is described. The basis for the problem 
is the San Luis Reservoir and its forebay, a joint 
facility of  the State of  California and Bureau of 
Reclamation in the State Water Project. The 
solution of this problem utilized forward dynamic 
programming. The network configuration of the 
problem to be solved is shown in Fig. 1. The water 
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/ ~ / ' ~  ~ D ~ c~....._~ PUMPING 
. ~O.~T~.. STATION 

# 

u I PUMPING RATE, STATION I 

u 2 PUMPING RATE, STATION 2 + 
x I STORAGE IN FOREBAY 

(o¢- f t )  ~ IRRIGATION / 
x 2 STORAGE IN ,RR~GATION ~RESERVOIRj 

RESERVOIR ( o c - f t )  ~ x 2  
D IRRIGAT,ON DEMAND 

(f,3/sec) 
FIO. 1. Network configuration for two-reservoir 

example. 

f rom the source river is pumped in the forebay 
x~, from which it is either pumped into the storage 
reservoir x 2 or used to meet an irrigation demand. 
The pumps of the large reservoir can also function 
as generators of  electrical power when water flows 
back to the forebay. The rate at which water can 
be removed from the source river has an upper 
limit, and the pumping plants have capacity 
limitations. Dollar values can be put on all costs 
and revenues. The problem is to operate within 
all constraints and to meet all demands on the 
system at minimum cost. 

The quantized state variables are xt  and x 2. 
The control variables u~ and u2 are allowed to 
vary continuously within certain upper and lower 
limits. Control u~ varies from zero to an upper 
limit and control u2 varies from some negative 
lower limit to some positive upper limit. A negative 
u 2 indicates that Pumping Station 2 is being used to 
generate electrical power. The irrigation demand 
D is limited to positive values and has the same 
units as the controls, a flow rate. Because of the 
dimensional differences in the u's and x's, a conver- 
sion factor is needed: 

C = 12.3 acre'ft  
ft3/sec 

The operating procedure is to be computed one 
day in advance and is reconsidered every hour; 
therefore, time is quantized into increments of  I hr. 

The water balance equations* or the state equa- 
tions are the following: 

x 1 [(k + OAt] = x~(kAt) + C[u x(kAt)At 

- u2(kAt)At- D(kAt)At] 

x 2 [(k + 1)At] = x2(kAt ) + C[u2(kAt)At] (9) 

where in this problem 

A t = l  hr.  

Thus, the equations become 

x,(k + 1) = x~(k)+ C[u~(k)- u 2 ( k ) - D ( k ) ]  

xz(k + 1) = x2(k) + Cu2(k). (10) 

However, operating the pumping stations for an 
hour incurs certain costs. The only pumping station 
operating cost considered in this problem is the 
cost of  electrical power. This cost (K) is expressed 
as the cost of pumping at the rate of  1 fta/sec for 
1 hr. The efficiencies of  both pumping plants are 
the same, so the per-unit operating cost of  each 
one is K if u 2 is positive. The efficiency of  Station 2 
changes when it is used as a generator; thus, there 
must be a different cost (benefit) K '  when u2 is 
negative. It  is assumed that the electrical power 
that Station 2 generates can be sold at the same 
price that power can be purchased and that the 
power cost varies during a day. Thus, the cost 
of  producing additional power is greater than the 
cost of  producing the base level of  power. In- 
tuitively, it appears that in order to meet the irrig- 
ation demand, and minimize cost, there are times 
during the day when it is most profitable to release 
water. The solution to the problem verifies this 
supposition and determines when each policy 
should be followed. 

The cost accrued during the kth time increment 
is 

L(k) = Ku l(k) + Kzu 2(k) 

K fK ,  uz>_O 
2=lK' ,u2  <O. (11) 

* The time increment of 1 hr is long enough so that 
transient effects such as channel dynamics do not need to 
be included in this formulation. Therefore, although the 
resulting water balance equations may seem oversimplified 
they are actually very realistic models from which practical 
operating information can be obtained and optimum 
controls derived. 



18 R .E .  LARSON and W. G. KECKLER 

The total cost from the initial time to time k 
is thus 

I(x, k) = I(x, k -  1) + L(k) 

I(x, 0 ) = L ( 0 ) = 0  for all x.  (12) 

The quantity I(x, N) is the cost of operating the 
system from initial to final time (t=t~=NAt or 
k=N) and terminating in state x. The problem 
becomes one of choosing the controls u(k) of 
equation (10) for all values of k such that all 
constraints are satisfied and I(x, N) is minimized 
for all x. 

2. A typicalproblem. A FORTRAN program using 
forward dynamic programming has been imple- 
mented for the two-reservoir, two-pump station 
facility. The control is not quantized, but allowed 
to vary continuously between certain limits. The 
computed trajectories can therefore be forced to 
go from one quantized state to a quantized state 
at the next stage of the process. Thus, no inter- 
polation is required and one has continuous, 
piecewise-linear trajectories in the state space. 

Figure 2 shows the demand curve of irrigation 
water and the incremental power cost curve. 
The incremental power cost is the cost of the last 
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o f  time. 

megawatt-hour produced during each hour. Since 
the whole system analyzed here operates as an add- 
itional load or source to the electric power grid, it 
will either have to buy power at the incremental 
power cost or replace power which costs this much. 
This curve was derived from information given in 
Ref. [10]. The irrigation demand curve was 
assumed to be shown, but dynamic programming 
could include many other formulations of this 
demand. The initial value of the reservoir levels 
are the k = 0  values shown in Fig. 3. 

The optimum cost for each terminal state varies 
considerably, and the one which is the overall 
optimum depends on the penalty assessed for 
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arriving at each of these final states. If there is no 
penalty assessed for arriving at different terminal 
states, but a terminal constraint is imposed that the 
total amount of water in the two reservoirs must be 
10 units, then the optimum terminal state is x 1 = 9, 
x2 = 1. The minimum cost for this state is l(x, N) 
$611.93. The optimal policy corresponding to 
this state is shown in Figs. 3-5; the reservoir levels 
as function of time are shown in Fig. 3, the optimum 
controls are shown in Fig. 4, and the cumulative 
operating cost is shown in Fig. 5. 

In this case, the best policy is to fill Reservoir 2 
early in the day when power is least costly and to 
drain all that is possible during the period, the 
tenth hour, when the return is greatest. Reservoir 
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1 is first operated to ensure that it is at its lowest 
allowable level in the tenth hour and is thus able 
to receive the water released from Reservoir 2. 
In the tenth hour the reservoir rises to the ninth 
quantization level and remains there. No change in 
the level of the reservoir is possible because the 
irrigation demand requires less than one quan- 
tization level of water and the additional demand is 
met by ul. The cumulative operating cost (Fig. 4) 
reflects the pumping policy shown in Fig. 5. It 
shows high cost as the pumps fill Reservoir 2 early 
in the day, but the return for this policy is high 
during the tenth hour. 

3. Extensions. Dynamic programming is able 
to handle a wide variety of constraints that result 
from physical situations. Some of  these which can 
be expressed in the context of this example are 
cited below. One constraint is a limitation on 
the amount of water that can be pumped from 
the source river during a 24-hr period. This is a 
very real problem in California; the Sacremento 
River Delta could be contaminated by salt water 
if the flow of the river were disturbed too much. 
As a result, the irrigation requirement often is also 
expressed as the amount to be delivered during 
a 24-hr period. 

Many pump-generator stations have already 
been built and integrated into a power system. 
These stations provide a "spinning reserve" during 
certain hours of the day. This responsibility re- 
quires that u2 be constrained to be less than some 
negative value during these hours. Other contract- 
ual requirements would be imposed on a realistic 
system. These include penalties for not exceeding 
minimum levels of irrigation or electric power 
demand. If  too much water or electric power is 
produced, the return for the excess may be less 
than for the basic deliveries. Since the short-term 
control situation is embedded in a longer-term 
operation, the final values of the two reservoir 
levels are confined to certain regions of the state 
space. A penalty cost is assessed for not reaching 

the desired final state and bonus given if this value 
is exceeded. 

B. Short-term optimization of a multipurpose four- 
reservoir system 

In this section, the optimum operation over 24 
hr of a multipurpose four-reservoir system is 
determined. The reservoir network, which contains 
both series and parallel connections, is shown in 
Fig. 6. In this optimization, use of water for power 
generation, irrigation, flood control and recreation 
is considered. Interaction of the short-term optimi- 
zation with longer-term operating policies is also 
taken into account. 

IN 

' ESERVOIR 2 

x2;' _1 POWERHOUSE 

x3; ESERVOIR 3 ~ ? POWERHOUSE ~L.--. POWERHOUSE 

INI 

  RESERVO,R 
~ ? POWERHOUSE 

x4 ; u/4 ESERVOIR 4 

? POWERHOUSE 

OUT 

FIG. 6. Network configuration of four-reservoir 
problem. 

The amount of water in the ith reservoir is 
denoted as xi, i=  1, 2, 3, 4, where each x i is express- 
ed in normalized units. 

On the basis of  potential use of the reservoir for 
recreation purposes, a minimum water level for 
each reservoir is specified: the amount of water 
needed to achieve this level is arbitrarily set as 
x i = 0, and a constraint is imposed that the amount 
of  water in each reservoir cannot drop below this 
value. 

On the basis of flood control considerations, 
a maximum water level for each reservoir is est- 
ablished. The amount of  water needed to raise 
the level from the minimum to the maximum value 
is then expressed in terms of the normalized units, 
and a constraint is imposed that each xi cannot 
exceed this level. 

The particular constraints considered in this 
example are expressed as: 

0_<xl_<10 

0 _ X 2 ~  10 

0 _ ~ X 3 ~ 1 0  

0_<x4~15. (13) 
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The flow of water between reservoirs is also 
expressed in the same normalized units; the control 
variables u~(k), i=  1, 2 . . . .  4, specify the amount 
of water released from the ith reservoir over the 
kth time interval. In this example each time 
interval is 2 hr. For each reservoir a maximum 
flow is determined by the capacity of the power 
generators, and a minimum flow is determined by 
considering the use of the downstream river beds 
for navigation, conservation, and municipal and 
industrial water supplies. For this example the 
constraints were 

O ~ l l  1 <3 

0 _ < / / 2 - - < 4  

0_<Ua_<4 

0<u4<_7.  (14) 

The system equations express how the water 
flows between the reservoirs. They are: 

xl(k + 1)= xl(k)-Ul(k)-I-IN1 

x:.(k + 1) = x2(k) - Uz(k) + IN2 

x3(k -t- 1 ) = x3(k) - u3(k) 4- uz(k ) 

x4(k q- 1) = x4(k) - / t4 (k  ) -t- u3(k ) -F u l(k) 

k = 0 ,  1 . . . .  11. (15) 

The inflows IN1 and IN  2 are assumed constant 
over the day as 

IN x =2  

IN z = 3. (16) 

The performance criterion considers the use of 
water for both power generation and irrigation. 
It is assumed that there is a power generation 
station at each reservoir outflow. The benefit from 
the flow over a given 2-hr period is assumed to be 
a linear function of the flow, i.e. the benefit from 
a flow out of reservoir at time k is q(k)ui(k). 
The function q(k) is based on the power curve 
in Part A of this section. The values of  q(k) are 
shifted in k with respect to each other to account 
for the transport delay of water between reservoirs. 
This delay is 4 hr from Reservoir 1 to Reservoir 4, 
4 hr from Reservoir 2 to Reservoir 3, and 2 hr from 
Reservoir 3 to Reservoir 4. The values of c~(k), 
i=  1, 2, 3, 4 are shown in Table 1. 

Irrigation benefits are considered only for the 
outflow from Reservoir 4. The benefit is again 
linear with flow--i.e, the benefit from flow u,~(k) is 
c 5(k)u4(k). The function c 5(k) is shown in Table 1. 

TABLE | .  CONSTANTS IN PERFORMANCE 
CRITERION 

k cl(k) c2(k) c3(k) c4¢,k) c5(k) 

0 1.1 1.4 I '0 1"0 1'6 
1 1"0 1-1 1"0 1'2 1.7 
2 1"0 1.0 1"2 1"8 1-8 
3 1-2 1.0 1"8 2'5 1"9 
4 1-8 I-2 2'5 2.2 2"0 
5 2"5 1"8 2"2 2"0 2.0 
6 2.2 2.5 2-0 1"8 2-0 
7 2"0 2'2 1-8 2.2 1"9 
8 1"8 2.0 2"2 1"8 1'8 
9 2"2 1-8 1-8 1"4 1'7 

10 1"8 2-2 1"4 1"1 1"6 
11 1"4 I-8 1.1 1"0 1"5 

The benefit function also includes a terminal 
cost for failing to reach a specified level for each 
reservoir at the end of the day. This function 
accounts for the long-term policy of filling or 
emptying the reservoir during a particular season. 
This ffmction assesses a heavy penalty for having 
less than the specified amount  of  water at the end 
of the day, but gives no credit for having more than 
this amount. The particular function used was 

- 40[x,( l  2) - ,I,,] 2, x,(l 2) <_ nh'~ 
0i[xi(12), ml] = [0, otherwise J 

(17) 

where mi = desired level of reservoir i at the end of 
the day (k = 12). 

This problem has been solved by successive 
approximations. The initial state was taken to be 

Xl(0)=5 

x 2 ( 0 )  = 5 

x3(0) = 5 

x4(0) = 5. (18) 

The desired final state was 

m 1 = 5  

m2=5  

IH 3 = 5 

m4 = 7. (19) 

The system dynamic equations are as in equations 
(15) and (16). The constraints are expressed in 
equations (13) and (14). The performance criterion 
is 

I I  4 I I  

J= ~ ~.. ci(k)ui(k)+ Z cs(k)u¢(k) 
k = 0  i = 1  k=O 

4- 

+ ~ O,[xi(12), m,] (20) 
i = 1  
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where q(k), i=  1, 2 . . . .  5 is specified in Table 1, 
~i[xi(12), mi] is as shown in equation (17) and mi, 
i=  1, 2, 3, 4, are given in equ~ttion (19). 

The initial policy chosen is shown in Table 2. 
Basically, this policy consists of setting outflow 
equal to inflow at every time period, so that the 
water level in each reservoir remains constant. 
The only exception to this policy occurs at the end 
of the day, when the terminal cost function is 
taken into account. 

TABLE 2. INITIAL POLICY 

k Xl(k) xz(k) x3(k) x4(k) ul(k) u2(k) u3(k) ua(k) 

0 5 5 5 5 2 3 3 5 
1 5 5 5 5 2 3 3 5 
2 5 5 5 5 2 3 3 5 
3 5 5 5 5 2 3 3 5 
4 5 5 5 5 2 3 3 5 
5 5 5 5 5 2 3 3 5 
6 5 5 5 5 2 3 3 5 
7 5 5 5 5 2 3 3 5 
8 5 5 5 5 2 3 3 5 
9 5 5 5 5 2 3 3 5 

10 5 5 5 5 2 3 3 5 
11 5 5 5 5 2 3 3 3 
12 5 5 5 7 

Total benefit =362.5 

The optimum policy is shown in Table 3. The 
improvement in benefit was from 362.5 units to 
401.3 units. The amount of computer time required 
for convergence to the optimum policy was about 
30 sec in the B5500. 

TABLE. 3. OPTIMUM POLICY 

]~" Xl(k) x2(k) x3(k) x4(k) u1(k) u2(k) u3(k) tt4(k) 

0 5 5 5 5 1 4 0 0 
1 6 4 8 7 0 1 0 2 
2 8 5 10 5 0 2 4 7 
3 10 7 8 I 2 0 4 7 
4 10 10 4 0 3 3 4 7 
5 9 I0 3 0 3 4 4 7 
6 8 9 3 0 3 4 4 7 
7 7 8 3 0 3 4 4 7 
8 6 7 3 0 3 4 4 7 
9 5 6 3 0 3 4 4 7 

10 4 5 3 0 3 4 4 0 
11 3 4 3 7 0 2 0 0 
12 5 5 5 7 

Total benefit =401.3 

The extension of  this approach to larger systems 
is clearly feasible. Time-varying constraints and 
more general types of performance criteria can 
easily be handled. Furthermore, the problem form- 
ulation can be modified to perform optimization 
over time periods other than 24 hr. Convergence 
to the true optimum can be proved in many cases 

[14]. At this time it appears that optimization of 
20-reservoir systems is well within the capability 
of  present-day computers. 

C. Optimization in the presence of stochastic 
inflows 

1. Problem statement. The following example [11] 
shows how dynamic programming can be applied 
to an annual scheduling problem with stochastic 
inputs. The problem posed can be solved by means 
of iteration in policy space to yield a series of op- 
timum policies for the management of one reservoir. 

The problem is expressed in terms of  a transaction 
between two businessmen--one the manager of a 
reservoir and one the owner of a hydro-electric 
plant fed by this reservoir. A similar problem could 
be posed even if both facilities were operated by 
the same group. The manager of a water storage 
reservoir wishes to maximize the average return 
from his reservoir over many years. The reservoir 
has three sources of income. 

(1) An annual payment from agricultural users 
of water which is released during the growing 
season--April through September. 

(2) An annual return from recreational use which 
is a function of the reservoir level on 30 
September--the end of the water year. 

(3) A return for each acre-foot of water re- 
leased during the winter months between 1 
October and 31 March. This revenue comes 
from the owner of a hydro-electric power 
generator downstream. 

During the winter, when much of the precipitat- 
ion falls as snow and thus is not immediately avail- 
able, this power facility is faced with a severe water 
shortage. Thus, the owner is willing to pay well 
for each acre-foot of water guaranteed to be 
delivered, less for each acre-foot delivered in excess 
of this guarantee, and invokes a penalty for each 
promised acre-foot that is not delivered. 

Each October the manager is faced with the 
problem of deciding how much water should be 
promised to the hydroelectric company. He knows 
the distribution of annual inflows into the reservoir 
and that 65 per cent of this inflow will occur during 
the duration of the contract. He must meet the 
terms of the contract unless there is no water in the 
reservoir. He will deliver no more water than is 
specified in the contract unless the reservoir will 
otherwise overflow. 

The operating policy during the summer months 
is already specified. The reservoir is operated 
during these months to yield the best immediate 
return. The only trade-off is between use of the 
reservoir for recreational purposes and sale of water 
for irrigation. There is no return for release of 
irrigation water above a certain specified amount. 
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In the spring the inflow for the rest of the water 
year is much better defined. The manager knows 
how much snow fell in the watershed of his reservoir 
and thus is able to specify the remaining inflow 
more closely, but not with certainty. 

Under the assumptions outlined here the whole 
operating policy for a year is specified once the 
contract with the hydroelectric company is signed. 
The manager's problem thus becomes to decide 
how much water he should promise to deliver 
and how this amount should vary with the level of 
the reservoir in October. This example answers 
this question for the reservoir whose characteristics 
are described in the next section. 

2. The source o f  data. The problem described in 
Part 1 is typical of many faced by water planners, 
and the procedure used below can be combined 
with successive approximations or other decompo- 
sition techniques [15] to analyse large systems. 
The Tables and graphs described below were ob- 
tained from the records of several government 
agencies concerned with water resources. A re- 
presentative reservoir is assigned a storage capacity 
of 50,000 acre-ft, which is discretized into eleven 
values ranging from 0 to 50,000 acre-ft in 5000- 
acre-ft increments. 

Figure 7 relates the annual benefit to the annual 
delivery of irrigation water. Negative value is 
given to small deliveries of water because the agri- 
cultural investment of the users is not utilized. 
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FIG. 7. Annual irrigation benefit. 

The graph approximates a smooth curve by a series 
of linear functions to simplify digital computer 
use of this data. Figure 8 relates the annual 
recreational benefit to the end of the water year 
(30 September) storage in the reservoir. A negative 
value is given to zero storage because the investment 
in recreation facilities is not utilized. The values 
of this benefit at the quantized values of reservoir 
storage are used in computations. An analysis of 
the history of water year inflows yielded the discrete 
probability distribution function which is shown 
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FIG.  8. R e c r e a t i o n  b e n e f i t .  

in Table 4. Figures 7 and 8 and Table 4 describe 
the state of knowledge of the manager of the reser- 
voir in the autumn when the contract with the 
electric power company is negotiated. 

TABLE 4. PROBABILITY DISTRIBUTION OF INFLOW 

Probability of occurrence Volume (acre-ft) 

0"02 1715 
0"08 3920 
0.10 6550 
0'10 9300 
0"10 12,200 
0.10 15,290 
0'10 18,800 
0-10 23,500 
0.10 29,400 
0"10 39,100 
0-08 55,800 
0.02 92,000 

By comparing records of the predicted and actual 
inflows into a number of reservoirs during the 
summer months, it is possible to obtain a probab- 
ility distribution function of the expected flow 
during the summer given the amount that flowed 
during the winter. Table 5 shows this result. To 
ease computations it is assumed that 65 per cent of 
the annual inflow (Table 4) occurs during the winter 
months. However, once this period is past the 
rest of the inflow is described by a "more packed" 
probability distribution function than the one 
available at the beginning of the water year. The 
decrease in uncertainty results from knowledge 
of the amount of water stored in the mountains in 
the form of snow and from the shorter prediction 
interval necessary to predict to the end of the water 
year. 
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TABLE 5. SUMMER PROBABILITY DI6TRIBUTION 
OF INFLOW 

Probability 
Annual predicted rainfall which 

occurs in the summer 
(%) 

0.10 20 
0"20 30 
0.40 35 
0.20 40 
0.10 50 

price. The relative values show the long-term value 
of  being in a given state x (i) at the present time 
compared to the value of being in a state x (I) at the 
present time. Notice that the percentage loss in 
value of a full reservoir is even greater than the 
percentage decline in contract price. 

TABLE 6. EXAMPLE FOR ITERATION 
IN POLICY SPACE 

Alternative policies (acre-ft) 

3. Problem formulation and indicated solution. 
Application of the technique of iteration in policy 
space [5] requires that quantized state variables, 
transition probabilities, and rewards be defined. 
The level of the reservoir at the beginning of each 
water year is a continuous variable which can be 
quantized into a relatively small number of discrete 
values. Neither the transition probabilities nor 
the rewards for these transitions which are required 
for iteration in policy space are specified directly 
in Part C-2 of this section, but both can be com- 
puted from this data and the conditions specified in 
Part C-1. The remainder of the problem becomes a 
straight-forward application of iteration in policy 
space. The optimal schedule of release levels that 
the manager should promise as a function of reser- 
voir level corresponds to the optimal policy obtained 
from the iterative procedure. 

4. Results. The technique described in section 
III-C-3 above has been implemented in a FORTRAN 
computer program. This program has been mach- 
ine translated to ALGOL and run on the Burroughs 
B5500 at Stanford Research Institute. It requires 
about 1 min to complete the computation of  one 
ease and usually converges to a solution in three or 
four policy iterations. 

A number of cases have been run [11] using the 
data outlined in part C-2 of this section. The only 
quantities that were allowed to vary were the out- 
flows that could be promised the hydroelectric 
company and the charges associated with this 
contract (S1, $2, and $3). These charges are chosen 
so that the return per acre-foot is comparable to 
that obtained from the scale of irrigation water. 
The charge under contract (S1) is chosen in the 
range of the slopes shown in Fig. 7 so there is a 
conflict between various policies. Two cases and 
the results are shown in Table 6. 

In these two cases, the decision options and the 
contractual penalties remain the same, but the 
contract payment (S1) changes. When the contract 
price drops from $10 to $6 per acre-foot, the expect- 
ed annual income declines from $110,284 to 
$72,839. The policy changes indicate that the 
reservoir management should not risk losing irri- 
gation and recreation revenue at the lower contract 

0 15,000 
2000 20,000 
5000 27,000 
8000 35,000 

11,000 45,000 

Results 

Case 1 Case 2 

State 

S1 =10$1acre-ft SI= 6$]acre-ft 
$2= 3$/acre-ft $2= 3$/acre-ft 
$3 = 15 $/acre-ft $3 = 15 $/acre-ft 

Optimal Relative Optimal Relative 
policy value policy value 

(acre-f t) ($) (acre-f t) ($) 

1 8000 0 5000 0 
2 15,000 51,108 11,000 29,287 
3 2 0 , 0 0 0  101,108 15,000 60,000 
4 2 7 , 0 0 0  148,312 20,000 90,000 
5 2 7 , 0 0 0  202,875 27,000 118,443 
6 35,000 251,108 27,000 148,787 
7 35,000 297,460 35,000 180,000 
8 4 5 , 0 0 0  351,108 35,000 206,744 
9 4 5 , 0 0 0  297,460 45,000 240,000 

10 4 5 , 0 0 0  428,952 45,000 266,744 
I 1 4 5 , 0 0 0  461,914 45,000 290,872 

Gain $110,284 $72,839 

Sl--payment for each acre-ft delivered under contract 
S2--payment for each acre-ft delivered in excess of the 

contract 
S3--penalty for each acre-ft contracted for but not 

delivered 

D. Optimum planning of  system additions 
The benefit of a large natural resource project 

is dependent on the timing of its construction. If  
it is completed too early, years may pass before 
its benefits can be fully utilized. However, it if is 
completed too late, there will be a long period 
when system users are denied its benefits or forced 
to pay higher costs than necessary. Thus, the 
decision of when to commit capital to a large 
project becomes critical. Unused investment is 
waste, and so is underdevelopment. 

Dynamic programming is one way to optimally 
schedule when additional investment should be 
made when a long range solution is desired. KOR- 
SAK of SRI [13] has worked out the example given 
below of planning expansion of a power facility 
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30 years into the future. The problem may be 
stated as follows. 

A power system has a current hydro capacity of 
200 MW and a current demand of 500 MW. The 
hydro-generated energy remains constant and no 
cost is associated with this type of generation. The 
power demand is assumed to grow at a rate of 7 per 
cent per year. To simplify the model, it is assumed 
that the power demand makes discrete jumps of 
7 per cent at the beginning of a given year and re- 
mains constant until the beginning of the next year. 

The difference between the power demand and 
the hydro capacity can be made up each year 
in one of two ways. One may use plants that were 
purchased in preceding years and buy the remaining 
power at the rate of 12 mills per kWh or one may 
buy and install either a 250 MW or a 500 MW 
nuclear plant (but not one of each) at the beginning 
of the year. The operating cost of  a nuclear plant 
is 3 mills per kWh. A 250-MW plant costs $3.45 x 
l 0  7 dollars and a 500-MW plant costs $5.60 x 1 0  7 

dollars. Since buying a plant might not meet the 
power requirement in a given year, one might still 
need to buy some power. 

An interest rate of 12 per cent per annum on 
initial capital is used in determining the costs of 
any power plants. 

The cost incurred during the kth year can thus be 
expressed as follows: 

C(k) = l/(k) -~ 1"2"/x ]O_x(k ) 7  
1.12 ~-1 1.12 k 

+ 5.08 x 107[1.07 k- tx(k) -x(k) ]  (21) 

where 

C(k) = cost incurred during the kth year adjusted 
to beginning of first year with interest of 
12 per cent. 

V(k) = cost of purchasing a plant in the kth year 

h(k) = hydro capacity in the kth year 

x (k)=to ta l  number of  500-MW units installed 
at time k (a 250-MW unit is considered 
half a 500-MW unit). 

I f  no power is purchased, 

C(k)= V(k). +1.27 x 107x(k) ' 
1.12 ~-1 1.12 k 

(22) 

The optimization is to minimize 

2 9  

y C(k) 
i = O  

subject to specified terminal constraints. The state 
variable x(k) satisfies the equation 

x(k)=x(k-1)+u(k) 

where u(k) is the control variable representing 
the decision to add 0, 250 MW, or 500 MW. 

This problem was solved by forward dynamic 
programming. The opt imum policy for reaching 
any feasible final state is determined. I f  the final 
state is selected as the one for which least cost is 
incurred, the optimal policy is as shown in Fig. 9. 
In this case the system capacity at the end is less 
than the demand; however, it can also be seen 
that in early years the capacity exceeds demand. 
These results reflect the assumption that no con- 
sideration is made of system operation after the 
final year. I f  the final state is constrained so that 
system capacity at the end exceeds demand, the 
optimal policy is exactly the same as in Fig. 9, 
except that during the last year before termination 
a 500-MW unit is purchased. 
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IV. CONCLUSIONS 

In this  paper  it  has been shown tha t  dynamic  
p r o g r a m m i n g  provides  a powerful  app roach  to 
m a n y  of  the op t imiza t ion  p rob lems  tha t  occur  
in water  resource systems. Extremely general  
system equat ions  and  per formance  cri teria can be 
handled,  mul t ip le  const ra in ts  of  a wide variety 
present  no difficulties, an absolu te  op t imum solu- 
t ion is obta ined ,  the results are in a feedback  cont ro l  
form,  and  s tochast ic  var ia t ions  can be explicit ly 
taken  into account .  The ma jo r  difficulty in apply ing  
it to prac t ica l  p rob lems  has been the computa t iona l  
requi rements  associa ted with the s t andard  comp-  

u ta t iona l  a lgor i thm.  Sophis t ica ted  computa t iona l  
procedures  are avai lable  that  re ta in  these desirable 
proper t ies  while substant ia l ly  reducing computa -  
t ional  requirements  f rom those of  the s tandard  
a lgor i thm.  The successive approx imat ions  technique 
appl ied  in section I I I -B provides  a par t icu la r ly  
promis ing  a p p r o a c h  to h igh-dimensional  problems.  

The four  p rob lems  discussed at length in section 
I I I  show the b read th  o f  the water  resource p rob lems  
tha t  can be solved. These range f rom hour ly  
cont ro l  o f  a system involving hydroelect r ic  power,  
water  storage,  and  i r r iga t ion  to long-range o p t i m u m  
investment  planning.  The stochast ic  character  of  
na ture  is considered in the example  o f  section I I I -C.  
None  o f  these examples  are  the most  difficult o f  
their  type tha t  can now be solved, but  they do 
demons t ra te  the principles and  power  o f  dynamic  
p rogramming .  Much  more  compl ica ted  problems  
are being solved now, and  fur ther  research in 
compute r  technology and  dynamic  p rog ramming  
techniques will a l low an even greater  range of  
appl icat ions.  
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Rrsumr----La complexit6 et le cofit des projets de systrmes 
hydrauliques ont apport6 un interrt accru, durant ces 
dernirres annres, ~t l'optimalisation du fonctionnement et 
de l'6tude ~t l'aride de techniques basres sur les calculateurs. 
La programmation dynamique constitue un moyen puissant 
d'approcher une grande variet6 de ces problrmes, 

La plupart des problrmes de systrmes hydrauliques peut 
~tre classre dans une des catrgories suivantes; 

(1) Fonctionnement optimal pendant une courte prriode, 
teUe que 24 heures, lorsque toutes les quantitrs sont connues; 

(2) Optimalisation de la politique mensuelle ou annuelle, 
lorsque certains paramrtres du systrme, tels que les drbits 
affluents, ne sont pas connus avec prrcision, 

(3) Planification ou allocation des ressources a long terme 
lorsque les demandes peuvent 6tre connues avec prrcision 
ou non. 

Les probl~mes rralistes de ressources hydrauliques 
possrdent de nombreuses contraintes de drcisions et de 
variables d'rtat. I1 existe 6galement des non-linraritrs ou 
des variations alratoires ~t la fors dans les 6quations d'rtat 
et dans la fonction de reaction l'article explique comment 
la programmation dynamique peut traiter ces difficultrs. 

Plusiers techniques sp~ialisres de programmation dynam- 
ique applicables aux problrmes hydrauliques sont 6galement 
introduites. Celles-ci comprennent les approximations 
successives, la programmation dynamique directe, la 
programmation dynamique pour commande alratoire et 
l'itrration dans l'espace des politiques. 

Quatre exemples sont rrsolus et discutrs--l'optimalisation 
h court terme d'un syst~me ~t 2 rrservoirs est rrsolue ~t l'aide 
de la programmation dynarniques directe; l'optimalisation 
h court terme d'un syst~me h 4 rrservoirs est traitre par 
approximations successives; le fonctionnement optimal sur 
une annre, lorsque les drbits affluents sont des variables 
alratoires, est trouvre par iteration dans les espaces de 
politiques; et la planification optimale it long terme des 
additions au syst~me, 6tant donnre une demande planifrre, 
est traitre par la programmation dynamique directe. 

Zusammenfassung--Wegen der Kompliziertheit und der 
Kosten yon Bew~isserungsprojekten brachte man in den 
letzten Jahren der optimalen Operation und dem Entwurf 
durch den Einsatz der Rechentechnik steigendes Interesse 
entgegen. 

Die meisten Wasserversorgungsprobleme krnnen in eine 
der drei folgenden Klassen eingeordnet werden: 

(1) Optimale Operation wahrend einer kurzen Periode, 
etwa von 24 Stunden, wenn alle GroBen bekarmt sind. 

(2) Monatliche oder j~_rliche praktische Optimierung, 
wean einige Systemparameter, wie der ZufluB, nicht genau 
bekannt shad. 

(3) Langfristige Planung oder Hilfsmittelzuteilung, wenn 
die Forderungen bekannt oder unbekannt seha ktinnen. 
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Realistische Bew~serungspro jek te  besitzen viele Bes- 
ch r ankungen  in den  Entscheidungs-  und  Zustandsvar iablen .  
Vorhanden  sind tiberdies Nichtlinearit~iten oder s tochast ische 
Ver/ inderungen und zwar sowohl  in den Zus tandsgle ichungen  
als auch in der Rt ickkehrfunkt ion.  Die  Arbei t  beschreibt,  
wie diese Schwierigkeiten durch die dynamische  Programmie-  
rung  behoben werden kSnnen.  

Mehrere  spezielle Verfahren der A n w e n d u n g  der dyna-  
mischen  P rog rammie rung  au f  Bew/isserungsprobleme werden 
vorgestellt.  Sie schlieBen sukzessive Approx ima t ionen  ein, 
dynamische  Vorw~irtsprogrammierung,  dynamische  Pro-  
g r ammie rung  ftir s tochast isehe Kontro l le  und  I terat ion im 
R a u m  der Strategie. 

Vier Beispiele werden gelSst und  d iskut ie r t . - -Eine  
kurzfristige Opt imierung eines Zwei-Speicher-Systems wurde 
gel6st, eine kurzfristige Opt imierung  eines Vier-Speicher-Sy- 
s tems mit  sukzessiver Approx ima t ion  behandelt .  Opt imale  
Opera t ion  tiber ein Jahr,  wobei die Stromlinienfltisse 
s tochast ische Variable sind, wird durch  I terat ion in Strategie- 
R/ iumen gefunden.  Opt imale  langfristige P l anung  yon 
Systemerwei terungen gegebenen projektierten Bedarfs wird 
durch dynamische  Vorw/ i r t sprogrammierung behandelt .  

Pe3IOMe---C.qo~HOCTb n 3aTpaTbI HpOeKTOB BO~RHbIX CnCTeM 
npHrtecnn yaeaa~aaaIomni~ca I~nrepec, B Te~IenlfIt riocJ1e~- 
HHX neT, K OHTHMH3aI~rlH dpyHrI~HOHHpOaaHH~l H paccqeTa c 
HOMOLLI,hlO TeXHHK OCHOBaHHblX Ha BbltICYlHTe.rlbHbIX MalHH- 
Hax. ~aHaMrPtecgoe n p o r p a M n p o a a n n e  npe~cTaB~_.qer 
co6o~ M o m n b ~  CnOC06 n o a x o ~ a  r 6onbmoi~ pa38oo6pa3-  
HOCTH TarHx npo6neM. 

]~O£1blLIHHCTBO npo6J~eM BO~JlHblX CHCTeM MO~eT ~blTB 
OTHeCeHO K O~HOi~ 143 cne~y~o~nx KaTeropH~: 

(1) OnTnManbaoe qbyn~llnonnpoBanae B xetlennn OpOTr- 

o ro  nepao~aa, Ka~c HanprIMep 24 qaca, r o r n a  Bce ronrlqecTBa 
H3BeCTHBI; 

(2) OHTHMH3a~Hfl exeMecaqHO~ HnH ex~eroanoii noaaT-  
aKH, Kor~Ia HeKOTOpbte napaMeTpbi CHCTeMbl, KaK Hanp~Mep 
npvlTOgR, TOqHO He H3BeCTHbI; 

(3) ~ o n r o c p o ~ n o e  nnaHnpoBanae HnH na3Haqeaae pec- 
cypcoa,  rorlaa Tpe6OBaHnn MOryT 6bITb TOqnO H3aecTnbt 
riCH HeT. 

PeanrlcTnuecKne npo6neMbi BO~flHblX peccypcoB HMeIOT 
Maoroaacnermble o r p a a n q e n a a  petuearfft rl nepeMenubix 
coc roamta .  CymecTayroT T a r x e  neanHei~nocTrt n a n  
cayqaitnr~e n3MeaeHna r a g  a ypaBneHnax COCTOaHHn 
Tag H B qbyar, t tnn o6paTao~ caa3n.  CTaTba O6~acaaex r ag  
~naaMn,~ecroe nporpaMMnpo~aHae MoxeT o6pamaT~ca c 
aTHMH 3aTpy~qenHaMa. 

Bne~elto TaK~e HeCKOnbro cnelInann3RpoBaHnbix xexnrlK 
~aHaMaaecgoro nporpaMMnpoaarma npHMenaeM~aX r SOn- 
anbIM npo6aeMaM. ~TH Texnnrn  agn~qaroT nocae~oBa- 
Tenbnble npn6arDreHrm, npaMoe ~InHaMnqecgoe nporpaM- 
MrtpoBanae, ~nnaMH~ecroe nporpaMMnpoBanae  ~ CTO- 
xacTHsecgoro ynpaBneHna n nOBTopenne B npocTpaacTae 
FIO.IIHTHK. 

PemeHbl n 06cy~aerIbi qeT/:.ipe npmvlepa- rpaTKocpoqnaa 
onTtlMtl3al.~rl CHCTeMbI C ~,ByMa pe3epByapaMn petneaa  c 
HOMOLI~blO np~Moro ~nHaMH~lecroro nporpaMMnpoBann~;  
rpaTgocpoqnaa  OnTltlVln3atlnll CnCTeMbI C 'teTblpbM~l pe3- 
epyapaMa paccMoTpena c nOMOU2~,~O nocne~oBaTeabHb~X 
npn6arta~enm~i; ro~a~noe  onTnManbnoe qbynrttapoBaaae, 
r o r ~ a  nprtTorn npe~cTaBaamT co6o~t c n y q a ~ n u e  nepeMen- 
n ~ e ,  na~taeno c nOMOamro noBTopenaa B n p o c r p a n c r a a x  
nOnHTn~; ~i ~oa rocpo~aoe  onTaMan~noe n a a a n p o a a a n e  
npn6aaaean i I  ~ CHCTeMe, C 3apanee 3annannpoBannuMn  
Tpe6oBanaaMa, pacCMOTpeno C noMot t~m np~Moro 
~nnaMaqeci~or onporpaMMapoBanna.  


