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Applications of Dynamic Programming to the Control
of Water Resource Systems’

R. E. LARSONY and W. G. KECKLER}

Several dynamic programming computational procedures may aid in operating water
resource systems. daily as in a pumped-storage facility and a four-reservoir system,
and annually with stochastic inflows and in long term planning of system additions.

Summary—The complexity and expense of water system
projects have made optimum operation and design by
computer-based techniques of increasing interest in recent
years. Dynamic programming offers a powerful approach
to a wide variety of these problems.

Most water system problems can be classed as one of
the following three types:

(1) Optimum operation during a short period, such as
24 hours, when all quantities are known;

(2) Monthly or yearly policy optimization when some
system parameters, such as stream inflows, are not
known exactly;

(3) Long-range planning or resource allocation when
demands may or may not be known exactly.

Realistic water resource problems have many decision
and state variable constraints. There are also nonlinearities
or stochastic variations in both the state equations and the
return function. This paper describes how dynamic pro-
gramming can handle these difficulties.

Several specialized dynamic programming techniques
applicable to water system problems are also introduced.
These include successive approximations, forward dynamic
programming, dynamic programming for stochastic control,

and iteration in policy space.

Four examples are solved and discussed—short-term
optimization of a two-reservoir system is solved with
forward dynamic programming; short-term optimization
of a four-reservoir system is treated by successive approxima-
tions; optimum operation over a year, when stream-flows
are stochastic variables, is found by iteration in policy
spaces; and optimum long-term planning of system
additions given projected demand is treated by forward
dynamic programming.

I. INTRODUCTION

AS WATER resource systems have grown larger and
more complex, the importance of optimum
operation and planning of these systems has increas-
ed. The investment costs and operating expenses
of projects are so large that even small improve-
ments in system utilization can involve substantial
amounts of money. Also, the various control
points—power generators, irrigation outlets, pump-
ing stations, etc.—interact in such a complicated
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manner that it is difficult to obtain an optimum
design or operating policy using an intuitive
approach. Thus, the potential benefits of using
optimization techniques in these problems are
very great indeed.

Dynamic programming provides an extremely
powerful and general approach for solving these
optimization problems. Nonlinearities in the
system equations and performance criterion can
easily be handled. Constraints on both decision and
state variables introduce no difficulties. Stochastic
effects can be explicitly taken into account.

In section II the basic equations of dynamic
programming are briefly reviewed to introduce the
terminology to be used as well as a number of
computational procedures: the standard comput-
ational algorithm, successive approximations, for-
ward dynamic programming, the standard com-
putational algorithm for stochastic control prob-
lems, and iteration in policy space.

In section III some specific problems to which
dynamic programming has been applied are dis-
cussed. Most water problems fall into one of the
following three categories:

(1) Optimum operation during a short period,
such as 24 hr, when all quantities are deter-
ministic;

(2) Monthly or yearly policy optimization when
some system parameters, such as stream
inflows, must be treated as stochastic
variables.

(3) Long-range planning or resource allocation
where demands may or may not be treated
as deterministic quantities.

Four illustrative examples are discussed, includ-
ing at least one from each of the above categories.
The first problem is the optimum short-term oper-
ation of a combined pumped hydro and irrigation
storage facility involving two reservoirs; forward
dynamic programming was used for this example.
The second problem is the optimum short-term
operation of a multipurpose four-reservoir system,
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where power generation, irrigation, flood control,
and recreation are all considered; the technique of
successive approximations was applied in this case.
The third problem is the optimum management of a
single reservoir over a l-year period, where stoch-
astic variations of input stream-flows are con-
sidered; iteration in policy space was applied here.
The fourth problem is the optimum planning of
additions to a system over a 30-year period;
forward dynamic programming was again used
for this example.

1I. BASIC CONCEPTS IN DYNAMIC
PROGRAMMING

Most of the problems for which dynamic pro-
gramming has been used to obtain numerical
solutions can be formulated as deterministic dis-
crete-time variational control problems [1-3]. The
general case of this problem is formulated as follows

Given:
(i) A system described by the nonlinear differ-
ence equation
x(k+1)=®[x(k), u(k), k], (n
where

x =state vector, n-dimensional
u=control vector, m-dimensional
k=index for stage variable

® =n-dimensional vector functional;

(ii) A variational performance criterion

K
J= kzo L[x(k), u(k), k], 93]

where

J=total cost
L=cost for a single stage;

(iii) Constraints
xeX (k) 3)
ueU(x, k) “4)
where

X(k)=set of admissible states at stage k
U(x, k)=set of admissible controls at state x,
stage k;

(iv) An initial state
x(0)=c. ®)

Find:

The control sequence u(0), ..., u(K) such that
J in equation (2) is minimized subject to the
system equation (1), the constraint equations (3)
and (4), and the initial condition (5).

The dynamic programming solution to the above
problem is obtained by using an iterative functional

equation that determines the optimal control for
any admissible state at any stage. The minimum-
cost function is defined for all xeX and all k,=0,
l,...K,as

M b= min K{;L[x(j), u(j),j]}, ©
where
x(k)=x.

Abbreviating u(k) as u, the iterative functional
equation becomes

I(x, k)=min{L(x, u, k) +I[®(x, v, k), k+1]}. (7)

This equation is a mathematical statement of
Beliman’s principle of optimality [1-3]. The
optimal control at state x and stage K, denoted as
il (x, k), is directly obtained as the value of u for
which the minimum in equation (7) is attained.
Since equation (7) determines I(x, k) and i (x,
k) in terms of I(x, k+1), it must be solved back-
ward in k. As a terminal boundary condition

I(x, K)=min[L(x, u, K)}. ®

The optimization over a sequence of controls is
thus reduced to a sequence of optimizations over
a single control vector.

An iterative equation analogous to equation (7)
can be derived for continuous-time problems and
for problems containing stochastic variables [1-4].

The standard computational procedure for
solving equation (7) is to quantize admissible values
of x and u to a finite number of discrete values and
then to perform the minimization at any quantized
value of x by a direct search over quantized values
of u. This procedure has a number of desirable
properties: an absolute optimum is always deter-
mined; a feedback control policy is obtained; and
considerable flexibility in handling constraints,
nonlinearities, and stochastic effects is provided
[1-4]. However, the procedure does have the
drawback that computational requirements can
become excessive in high-dimensional problems
[1-4].

A number of procedures are available that reduce
these computational requirements while retaining
the desirable properties of the standard algorithm.
These include successive approximations [1-4, 13,
14), forward dynamic programming [4], iteration
in policy space [2-5], quasilinearization [6], iteration
about a nominal using successively finer quan-
tization increments [7], and state increment dynamic
programming [4]. A comprehensive survey of
these procedures appears in Ref. [8].
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III. EXAMPLES

A. Short-term optimization of a pumped-storage
two-reservoir system

1. Problem statement. In Ref.[9] a pump-storage
system is described. The basis for the problem
is the San Luis Reservoir and its forebay, a joint
facility of the State of California and Bureau of
Reclamation in the State Water Project. The
solution of this problem utilized forward dynamic
programming. The network configuration of the
problem to be solved is shown in Fig. 1. The water
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Fic. 1. Network configuration for two-reservoir

example.

from the source river is pumped in the forebay
x,, from which it is either pumped into the storage
reservoir x, or used to meet an irrigation demand.
The pumps of the large reservoir can also function
as generators of electrical power when water flows
back to the forebay. The rate at which water can
be removed from the source river has an upper
limit, and the pumping plants have capacity
limitations. Dollar values can be put on all costs
and revenues. The problem is to operate within
all constraints and to meet all demands on the
system at minimum cost.

The quantized state variables are x, and x,.
The control variables #; and u, are allowed to
vary continuously within certain upper and lower
limits. Control u; varies from zero to an upper
limit and control u, varies from some negative
lower limit to some positive upper limit. A negative
u, indicates that Pumping Station 2 is being used to
generate electrical power. The irrigation demand
D is limited to positive values and has the same
units as the controls, a flow rate. Because of the
dimensional differences in the «’s and x’s, a conver-
sion factor is needed:

acre-ft

C=12-3
ft3/sec

v2
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The operating procedure is to be computed one
day in advance and is reconsidered every hour;
therefore, time is quantized into increments of 1 hr.

The water balance equations* or the state equa-
tions are the following:

x;[(k+ 1)At]=x,(kAt)+ C[u,(kAt)At
— uy(kA)At — D(kAf)Af]

5[ (k+ DAL =x,(kAD + Clu,(kADAL] — (9)

where in this problem
At=1 hr.
Thus, the equations become

Xy(k+1)=x,(k)+ Clu (k) — ua(k)— D(k)]

Xa(k+1)=x,(k) + Cuy(k). (10)

However, operating the pumping stations for an
hour incurs certain costs. The only pumping station
operating cost considered in this problem is the
cost of electrical power. This cost (K) is expressed
as the cost of pumping at the rate of 1 ft3/sec for
1 hr. The efficiencies of both pumping plants are
the same, so the per-unit operating cost of each
one is K if u, is positive. The efficiency of Station 2
changes when it is used as a generator; thus, there
must be a different cost (benefit) K* when u, is
negative. It is assumed that the electrical power
that Station 2 generates can be sold at the same
price that power can be purchased and that the
power cost varies during a day. Thus, the cost
of producing additional power is greater than the
cost of producing the base level of power. In-
tuitively, it appears that in order to meet the irrig-
ation demand, and minimize cost, there are times
during the day when it is most profitable to release
water. The solution to the problem verifies this
supposition and determines when each policy
should be followed.

The cost accrued during the kth time increment
is

L(k) = Ku, (k) + K u (k)

K2={K, uZZO

K',u,<0. (1)

* The time increment of 1 hr is long enough so that
transient effects such as channel dynamics do not need to
be included in this formulation. Therefore, although the
resulting water balance equations may seem oversimplified
they are actually very realistic models from which practical
operating information can be obtained and optimum
controls derived.
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The total cost from the initial time to time k
is thus

I(x, k)=I(x, k—1)+ L(k)
I(x, 0)=L(0)=0 for all x. (12)

The quantity I(x, N) is the cost of operating the
system from initial to final time (¢=t,=NAt¢ or
k=N) and terminating in state x. The problem
becomes one of choosing the controls wu(k) of
equation (10) for all values of k such that all
constraints are satisfied and I(x, N) is minimized
for all x.

2. A typical problem. A FORTRAN program using
forward dynamic programming has been imple-
mented for the two-reservoir, two-pump station
facility. The control is not quantized, but allowed
to vary continuously between certain limits. The
computed trajectories can therefore be forced to
go from one quantized state to a quantized state
at the next stage of the process. Thus, no inter-
polation is required and one has continuous,
piecewise-linear trajectories in the state space.

Figure 2 shows the demand curve of irrigation
water and the incremental power cost curve.
The incremental power cost is the cost of the last
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Fic. 2. Input quantities for the numerical example:
irrigation demand and incremental cost as a function
of time.

megawatt-hour produced during each hour. Since
the whole system analyzed here operates as an add-
itional load or source to the electric power grid, it
will either have to buy power at the incremental
power cost or replace power which costs this much.
This curve was derived from information given in
Ref. [10]. The irrigation demand curve was
assumed to be shown, but dynamic programming
could include many other formulations of this
demand. The initial value of the reservoir levels
are the k=0 values shown in Fig. 3.

The optimum cost for each terminal state varies
considerably, and the one which is the overall
optimum depends on the penalty assessed for
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Fi1G. 3. State variables as a function of time.

arriving at each of these final states. If there is no
penalty assessed for arriving at different terminal
states, but a terminal constraint is imposed that the
total amount of water in the two reservoirs must be
10 units, then the optimum terminal state is x, =9,
x,=1. The minimum cost for this state is I(x, N)
$611.93. The optimal policy corresponding to
this state is shown in Figs. 3-5; the reservoir levels
as function of time are shown in Fig. 3, the optimum
controls are shown in Fig. 4, and the cumulative
operating cost is shown in Fig. 5.

In this case, the best policy is to fill Reservoir 2
early in the day when power is least costly and to
drain all that is possible during the period, the
tenth hour, when the return is greatest. Reservoir
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FiG. 5. Cumulative operating cost.

1 is first operated to ensure that it is at its lowest
allowable level in the tenth hour and is thus able
to receive the water released from Reservoir 2.
In the tenth hour the reservoir rises to the ninth
quantization level and remains there. No change in
the level of the reservoir is possible because the
irrigation demand requires less than one quan-
tization level of water and the additional demand is
met by u,. The cumulative operating cost (Fig. 4)
reflects the pumping policy shown in Fig, 5. It
shows high cost as the pumps fill Reservoir 2 early
in the day, but the return for this policy is high
during the tenth hour.

3. Extensions. Dynamic programming is able
to handle a wide variety of constraints that result
from physical situations. Some of these which can
be expressed in the context of this example are
cited below. One constraint is a limitation on
the amount of water that can be pumped from
the source river during a 24-hr period. This is a
very real problem in California; the Sacremento
River Delta could be contaminated by salt water
if the flow of the river were disturbed too much.
As a result, the irrigation requirement often is also
expressed as the amount to be delivered during
a 24-hr period.

Many pump-generator stations have already
been built and integrated into a power system.
These stations provide a ““spinning reserve” during
certain hours of the day. This responsibility re-
quires that u, be constrained to be less than some
negative value during these hours. Other contract-
ual requirements would be imposed on a realistic
system. These include penalties for not exceeding
minimum levels of irrigation or electric power
demand. If too much water or electric power is
produced, the return for the excess may be less
than for the basic deliveries. Since the short-term
control situation is embedded in a longer-term
operation, the final values of the two reservoir
levels are confined to certain regions of the state
space. A penalty cost is assessed for not reaching

the desired final state and bonus given if this value
is exceeded.

B. Short-term optimization of a multipurpose four-
reservoir system

In this section, the optimum operation over 24
hr of a multipurpose four-reservoir system is
determined. The reservoir network, which contains
both series and parallel connections, is shown in
Fig. 6. In this optimization, use of water for power
generation, irrigation, flood control and recreation
is considered. Interaction of the short-term optimi-
zation with longer-term operating policies is also
taken into account.
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FiG. 6. Network configuration of four-reservoir
problem.

The amount of water in the ith reservoir is
denoted as x;, i=1, 2, 3, 4, where each x; is express-
ed in normalized units.

On the basis of potential use of the reservoir for
recreation purposes, a minimum water level for
each reservoir is specified: the amount of water
needed to achieve this level is arbitrarily set as
x;=0, and a constraint is imposed that the amount
of water in each reservoir cannot drop below this
value.

On the basis of flood control considerations,
a maximum water level for each reservoir is est-
ablished. The amount of water needed to raise
the level from the minimum to the maximum value
is then expressed in terms of the normalized units,
and a constraint is imposed that each x; cannot
exceed this level.

The particular constraints considered in this
example are expressed as:

0<x, <10
0<x,<10
0<x,<10
0<x,<15. (13)
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The flow of water between reservoirs is also
expressed in the same normalized units; the control
variables u;(k), i=1, 2, .. .4, specify the amount
of water released from the ith reservoir over the
kth time interval. In this example each time
interval is 2 hr. For each reservoir a maximum
flow is determined by the capacity of the power
generators, and a minimum flow is determined by
considering the use of the downstream river beds
for navigation, conservation, and municipal and
industrial water supplies. For this example the
constraints were

0<u, <3
0<u,<4
0<uy;<4

0<u,<7. (14)

The system equations express how the water
flows between the reservoirs. They are:

X (k+D=x,(k)~u(k)+IN,

X,(k+1)=x,(k)~uy(k)+IN,

X3k +1)=x3(k) —us(k)+u,(k)

x40k + 1) =x,4(k) — uy(k)+us(k) +u(k)
k=0,1,...11. (15)

The inflows IN; and IN, are assumed constant
over the day as

IN,=2
IN,=3. (16)

The performance criterion considers the use of
water for both power generation and irrigation.
It is assumed that there is a power generation
station at each reservoir outflow. The benefit from
the flow over a given 2-hr period is assumed to be
a linear function of the flow, i.e. the benefit from
a flow out of reservoir at time k is ¢ (k)u;(k).
The function ¢;(k) is based on the power curve
in Part A of this section. The values of ¢;(k) are
shifted in k with respect to each other to account
for the transport delay of water between reservoirs.
This delay is 4 hr from Reservoir 1 to Reservoir 4,
4 hr from Reservoir 2 to Reservoir 3, and 2 hr from
Reservoir 3 to Reservoir 4. The values of ¢;(k),
i=1, 2,3, 4 are shown in Table 1.

Irrigation benefits are considered only for the
outflow from Reservoir 4. The benefit is again
linear with flow—i.e. the benefit from flow u,(k) is
¢ s(k)uq(k). The function ¢ s(k) is shown in Table 1.

TABLE 1. CONSTANTS IN PERFORMANCE
CRITERION

ko ck) cxk) cxk) catk) csth)

0 11 1-4 -0 10 16
i 10 1 10 12 17
2 1.0 100 12 18 1-8
3 12 -0 18 25 i9
4 18 -2 25 22 20
5 25 -8 22 20 20
6 22 25 20 18 20
7 20 22 18 22 19
§ -8 20 22 1-8 1-8
9 22 18 I8 14 17
10 18 22 144 11 16
I 14 18 -1 1-0 I-5

The benefit function also includes a terminal
cost for failing to reach a specified level for each
reservoir at the end of the day. This function
accounts for the long-term policy of filling or
emptying the reservoir during a particular season.
This function assesses a heavy penalty for having
less than the specified amount of water at the end
of the day, but gives no credit for having more than
this amount. The particular function used was

—40[x12)— m;]%, x(12)<my)
0, otherwise J
(17)
where m; = desired level of reservoir 7 at the end of
the day (k=12).
This problem has been solved by successive
approximations. The initial state was taken to be

Wilx(12), m;] :{

x,(0)=5
x,(0)=5
x5(0)=5
x4(0)=5. (18)

The desired final state was

m;=5
Mm,=3
my=35
my=7. (19)

The system dynamic equations are as in equations
(15) and (16). The constraints are expressed in
equations (13) and (14). The performance criterion
is

11

4 11
J= ¥ % ekl + 3 esusk)

k=0

+ _i Yi{x,(12), m{] (20)
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where ¢;(k), i=1, 2, ...5 is specified in Table I,
W;[x:(12), m;] is as shown in equation (17) and m;,
i=1,2, 3, 4, are given in equation (19).

The initial policy chosen is shown in Table 2.
Basically, this policy consists of setting outflow
equal to inflow at every time period, so that the
water level in each reservoir remains constant.
The only exception to this policy occurs at the end
of the day, when the terminal cost function is
taken into account.

TABLE 2. INITIAL POLICY

ko xi(k) xak) x3tk) xa(k) witk) wu(k) wx(k) ualk)

0 3 5 5 5 2 3 3 5
1 5 5 5 5 2 3 3 5
2 5 5 5 5 2 3 3 5
3 5 5 5 5 2 3 3 5
4 5 5 5 5 2 3 3 5
5 5 5 5 5 2 3 3 5
6 5 5 5 5 2 3 3 5
7 5 5 5 5 2 3 3 5
8 5 5 5 5 2 3 3 5
9 5 5 5 5 2 3 3 5
10 5 5 5 5 2 3 3 5
11 5 5 5 5 2 3 3 3
12 5 5 5 7

Total benefit=362-5

The optimum policy is shown in Table 3. The
improvement in benefit was from 362-5 units to
401-3 units. The amount of computer time required
for convergence to the optimum policy was about
30 sec in the B5500.

TABLE 3. OPTIMUM POLICY

ko xlk) xak) x3(k) xa(k) wi(k) wa(k) ws(k) wusa(k)

———
N—= OOV 0N hAWN=O
ML AU J0ODD N
—
NBULAND OO h W
G W W W W W 00D 00
NNOOOOODOO—~ LW
O3 L W W R OO -
RNAPRPLERPRRLUON=R
=Y O O N N T N N N N
CONNINI NI QNNO

Total benefit=401-3

The extension of this approach to larger systems
is clearly feasible. Time-varying constraints and
more general types of performance criteria can
easily be handled. Furthermore, the problem form-
ulation can be modified to perform optimization
over time periods other than 24 hr. Convergence
to the true optimum can be proved in many cases

[14]. At this time it appears that optimization of
20-reservoir systems is well within the capability
of present-day computers.

C. Optimization in the presence of stochastic
inflows

1. Problem statement. The following example [11]
shows how dynamic programming can be applied
to an annual scheduling problem with stochastic
inputs. The problem posed can be solved by means
of iteration in policy space to yield a series of op-
timum policies for the management of one reservoir.

The problem is expressed in terms of a transaction
between two businessmen—one the manager of a
reservoir and one the owner of a hydro-electric
plant fed by this reservoir. A similar problem could
be posed even if both facilities were operated by
the same group. The manager of a water storage
reservoir wishes to maximize the average return
from his reservoir over many years. The reservoir
has three sources of income.

(1) An annual payment from agricultural users
of water which is released during the growing
season—April through September.

(2) Anannual return from recreational use which
is a function of the reservoir level on 30
September—the end of the water year.

(3) A return for each acre-foot of water re-
leased during the winter months between |
October and 31 March. This revenue comes
from the owner of a hydro-electric power
generator downstream.

During the winter, when much of the precipitat-
ion falls as snow and thus is not immediately avail-
able, this power facility is faced with a severe water
shortage. Thus, the owner is willing to pay well
for each acre-foot of water guaranteed to be
delivered, less for each acre-foot delivered in excess
of this guarantee, and invokes a penalty for each
promised acre-foot that is not delivered.

Each October the manager is faced with the
problem of deciding how much water should be
promised to the hydroelectric company. He knows
the distribution of annual inflows into the reservoir
and that 65 per cent of this inflow will occur during
the duration of the contract. He must meet the
terms of the contract unless there is no water in the
reservoir. He will deliver no more water than is
specified in the contract unless the reservoir will
otherwise overflow.

The operating policy during the summer months
is already specified. The reservoir is operated
during these months to yield the best immediate
return. The only trade-off is between use of the
reservoir for recreational purposes and sale of water
for irrigation. There is no return for release of
irrigation water above a certain specified amount.
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In the spring the inflow for the rest of the water
year is much better defined. The manager knows
how much snow fell in the watershed of his reservoir
and thus is able to specify the remaining inflow
more closely, but not with certainty.

Under the assumptions outlined here the whole
operating policy for a year is specified once the
contract with the hydroelectric company is signed.
The manager’s problem thus becomes to decide
how much water he should promise to deliver
and how this amount should vary with the level of
the reservoir in October. This example answers
this question for the reservoir whose characteristics
are described in the next section.

2. The source of data. The problem described in
Part 1 is typical of many faced by water planners,
and the procedure used below can be combined
with successive approximations or other decompo-
sition techniques [15] to analyse large systems.
The Tables and graphs described below were ob-
tained from the records of several government
agencies concerned with water resources. A re-
presentative reservoir is assigned a storage capacity
of 50,000 acre-ft, which is discretized into eleven
values ranging from 0 to 50,000 acre-ft in 5000-
acre-ft increments,

Figure 7 relates the annual benefit to the annual
delivery of irrigation water. Negative value is
given to small deliveries of water because the agri-
cultural investment of the users is not utilized.
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The graph approximates a smooth curve by a series
of linear functions to simplify digital computer
use of this data. Figure 8 relates the annual
recreational benefit to the end of the water year
(30 September) storage in the reservoir. A negative
value is given to zero storage because the investment
in recreation facilities is not utilized. The values
of this benefit at the quantized values of reservoir
storage are used in computations. An analysis of
the history of water year inflows yielded the discrete
probability distribution function which is shown
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in Table 4. Figures 7 and 8 and Table 4 describe
the state of knowledge of the manager of the reser-
voir in the autumn when the contract with the
clectric power company is negotiated.

TABLE 4. PROBABILITY DISTRIBUTION OF INFLOW

Probability of occurrence

Volume (acre-ft)

0-02 1715
0-08 3920
0-10 6550
010 9300
0-10 12,200
0-10 15,200
0-10 18,800
0-10 23,500
0-10 29,400
0-10 39,100
0-08 55,800
0-02 92,000

By comparing records of the predicted and actual
inflows into a number of reservoirs during the
summer months, it is possible to obtain a probab-
ility distribution function of the expected flow
during the summer given the amount that flowed
during the winter. Table 5 shows this result. To
ease computations it is assumed that 65 per cent of
the annual inflow (Table 4) occurs during the winter
months., However, once this period is past the
rest of the inflow is described by a ““more packed”
probability distribution function than the one
available at the beginning of the water year. The
decrease in uncertainty results from knowledge
of the amount of water stored in the mountains in
the form of snow and from the shorter prediction
interval necessary to predict to the end of the water
year.
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TABLE 5. SUMMER PROBABILITY DISTRIBUTION
OF INFLOW

Annual predicted rainfall which

Probability occurs in the summer
0]
0-10 20
0-20 30
0-40 35
0-20 40
0-10 50

3. Problem formulation and indicated solution.
Application of the technique of iteration in policy
space [5] requires that quantized state variables,
transition probabilities, and rewards be defined.
The level of the reservoir at the beginning of each
water year is a continuous variable which can be
quantized into a relatively small number of discrete
values. Neither the transition probabilities nor
the rewards for these transitions which are required
for iteration in policy space are specified directly
in Part C-2 of this section, but both can be com-
puted from this data and the conditions specified in
Part C-1. The remainder of the problem becomes a
straight-forward application of iteration in policy
space. The optimal schedule of release levels that
the manager should promise as a function of reser-
voir level corresponds to the optimal policy obtained
from the iterative procedure.

4. Results. The technique described in section
ITI-C-3 above has been implemented in a FORTRAN
computer program. This program has been mach-
ine translated to ALGOL and run on the Burroughs
B5500 at Stanford Research Institute. It requires
about 1 min to complete the computation of one
case and usually converges to a solution in three or
four policy iterations.

A number of cases have been run {11} using the
data outlined in part C-2 of this section. The only
quantities that were allowed to vary were the out-
flows that could be promised the hydroelectric
company and the charges associated with this
contract (S1, §2, and S3). These charges are chosen
so that the return per acre-foot is comparable to
that obtained from the scale of irrigation water.
The charge under contract (S1) is chosen in the
range of the slopes shown in Fig. 7 so there is a
conflict between various policies. Two cases and
the results are shown in Table 6.

In these two cases, the decision options and the
contractual penalties remain the same, but the
contract payment (S1) changes. When the contract
price drops from $10 to $6 per acre-foot, the expect-
ed annual income declines from $110,284 to
$72,839. The policy changes indicate that the
reservoir management should not risk losing irri-
gation and recreation revenue at the lower contract

price. The relative values show the long-term value
of being in a given state x(*) at the present time
compared to the value of being in a state x(!’ at the
present time. Notice that the percentage loss in
value of a full reservoir is even greater than the
percentage decline in contract price.

TABLE 6. EXAMPLE FOR ITERATION
IN POLICY SPACE

Alternative policies (acre-ft)

0 15,000
2000 20,000
5000 27,000
8000 35,000
11,000 45,000
Results
Case 1 Case 2

S1=10%/acre-ft
S§2= 3$/acre-ft
S§3=15%/acre-ft

S1= 6%/acre-ft
$2= 3%/acre-ft
S$3=15%/acre-ft

Optimal Relative Optimal Relative
policy value policy value
State  (acre-ft) (&) (acre-ft) )]
1 8000 0 5000 0
2 15,000 51,108 11,000 29,287
3 20,000 101,108 15,000 60,000
4 27,000 148,312 20,000 90,000
5 27,000 202,875 27,000 118,443
6 35,000 251,108 27,000 148,787
7 35,000 297,460 35,000 180,000
8 45,000 351,108 35,000 206,744
9 45,000 297,460 45,000 240,000
10 45,000 428,952 45,000 266,744
11 45,000 461,914 45,000 290,872
Gain $110,284 $72,839

S1—payment for each acre-ft delivered under contract

S2—payment for each acre-ft delivered in excess of the
contract

S3—penalty for each acre-ft contracted for but not
delivered

D. Optimum planning of system additions

The benefit of a large natural resource project
is dependent on the timing of its construction. If
it is completed too early, years may pass before
its benefits can be fully utilized. However, it if is
completed too late, there will be a long period
when system users are denied its benefits or forced
to pay higher costs than necessary. Thus, the
decision of when to commit capital to a large
project becomes -critical. Unused investment is
waste, and so is underdevelopment.

Dynamic programming is one way to optimally
schedule when additional investment should be
made when a long range solution is desired. KOR-
sAK of SRI [13] has worked out the example given
below of planning expansion of a power facility
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30 years into the future. The problem may be
stated as follows.

A power system has a current hydro capacity of
200 MW and a current demand of 500 MW. The
hydro-generated energy remains constant and no
cost is associated with this type of generation. The
power demand is assumed to grow at a rate of 7 per
cent per year. To simplify the model, it is assumed
that the power demand makes discrete jumps of
7 per cent at the beginning of a given year and re-
mains constant until the beginning of the next year.

The difference between the power demand and
the hydro capacity can be made up each year
in one of two ways. One may use plants that were
purchased in preceding years and buy the remaining
power at the rate of 12 mills per kWh or one may
buy and install either a 250 MW or a 500 MW
nuclear plant (but not one of each) at the beginning
of the year. The operating cost of a nuclear plant
is 3 miils per kWh. A 250-MW plant costs $3.45 x
107 dollars and a 500-MW plant costs $5.60 x 107
dollars. Since buying a plant might not meet the
power requirement in a given year, one might still
need to buy some power.

An interest rate of 12 per cent per annum on
initial capital is used in determining the costs of
any power plants.

The cost incurred during the kth year can thus be
expressed as follows:

Vi)  127x107_
it W

+508 x 107[1-07 = h(k)—x(k)] (1)

C(k)=

where

C(k)=cost incurred during the kth year adjusted
to beginning of first year with interest of

V(k)=cost of purchasing a plant in the kth year
h(k)=hydro capacity in the kth year

x(k)=total number of 500-MW units installed
at time £ (a 250-MW unit is considered
half a 500-MW unit).

If no power is purchased,

Vik) 127 %107

Clk)=
®) 1-12¢1 112

x(k). (22)

The optimization is to minimize

29
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subject to specified terminal constraints. The state
variable x(k) satisfies the equation

(k)= x(k— 1) +u(k)

where u(k) is the control variable representing
the decision to add 0, 250 MW, or 500 MW.

This problem was solved by forward dynamic
programming. The optimum policy for reaching
any feasible final state is determined. If the final
state is selected as the one for which least cost is
incurred, the optimal policy is as shown in Fig. 9.
In this case the system capacity at the end is less
than the demand; however, it can also be seen
that in early years the capacity exceeds demand.
These results reflect the assumption that no con-
sideration is made of system operation after the
final year. If the final state is constrained so that
system capacity at the end exceeds demand, the
optimal policy is exactly the same as in Fig. 9,

12 per cent. except that during the last year before termination
a 500-MW unit is purchased.
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F1G. 9. Comparison of demand and capacity for 30 years.
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1V. CONCLUSIONS

In this paper it has been shown that dynamic
programming provides a powerful approach to
many of the optimization problems that occur
in water resource systems. Extremely general
system equations and performance criteria can be
handled, multiple constraints of a wide variety
present no difficulties, an absolute optimum solu-
tion is obtained, the results are in a feedback control
form, and stochastic variations can be explicitly
taken into account. The major difficulty in applying
it to practical problems has been the computational
requirements associated with the standard comp-
utational algorithm. Sophisticated computational
procedures are available that retain these desirable
properties while substantially reducing computa-~
tional requirements from those of the standard
algorithm. The successive approximations technique
applied in section III-B provides a particularly
promising approach to high-dimensional problems.

The four problems discussed at length in section
III show the breadth of the water resource problems
that can be solved. These range from hourly
control of a system involving hydroelectric power,
water storage, and irrigation to long-range optimum
investment planning. The stochastic character of
nature is considered in the example of section II-C.
None of these examples are the most difficult of
their type that can now be solved, but they do
demonstrate the principles and power of dynamic
programming. Much more complicated problems
are being solved now, and further research in
computer technology and dynamic programming
techniques will allow an even greater range of
applications.
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Résumé—La complexité et le colit des projets de systémes
hydrauliques ont apporté un interét accru, durant ces
derniéres années, & 'optimalisation du fonctionnement et
de ’étude A I’aride de techniques basées sur les calculateurs.
La programmation dynamique constitue un moyen puissant
d’approcher une grande varieté de ces problémes.

La plupart des problémes de systémes hydrauliques peut
é&tre classée dans une des catégories suivantes;

(1) Fonctionnement optimal pendant une courte période,
telle que 24 heures, lorsque toutes les quantités sont connues;

(2) Optimalisation de la politique mensuelle ou annuelle,
lorsque certains paramétres du systéme, tels que les débits
affluents, ne sont pas connus avec précision;

(3) Planification ou allocation des ressources a long terme
lorsque les demandes peuvent étre connues avec précision
ou non,

Les problémes réalistes de ressources hydrauliques
possédent de nombreuses contraintes de décisions et de
variables d’état. Il existe également des non-linéarités ou
des variations aléatoires a la fors dans les équations d’état
et dans la fonction de reaction larticle explique comment
la programmation dynamique peut traiter ces difficultés.

Plusiers techniques spécialisées de programmation dynam-
ique applicables aux problémes hydrauliques sont également
introduites. Celles-ci comprennent les approximations
successives, la programmation dynamique directe, la
programmation dynamique pour commande aléatoire et
Pitération dans I’espace des politiques.

Quatre exemples sont résolus et discutés—I’optimalisation
a court terme d’un systéme A 2 réservoirs est résolue a Iaide
de la programmation dynamiques directe; I’optimalisation
a court terme d’un systéme a 4 réservoirs est traitée par
approximations successives; le fonctionnement optimal sur
une année, lorsque les débits affluents sont des varjables
aléatoires, est trouvée par iteration dans les espaces de
politiques; et la planification optimale a long terme des
additions au systéme, étant donnée une demande planifrée,
est traitée par la programmation dynamique directe.

Zusammenfassung—Wegen der Kompliziertheit und der
Kosten von Bewisserungsprojekten brachte man in den
letzten Jahren der optimalen Operation und dem Entwurf
durch den Einsatz der Rechentechnik steigendes Interesse
entgegen.

Die meisten Wasserversorgungsprobleme konnen in eine
der drei folgenden Klassen eingeordnet werden:

(1) Optimale Operation wihrend einer kurzen Periode,
etwa von 24 Stunden, wenn alle GroBlen bekannt sind.

(2) Monatliche oder jihrliche praktische Optimierung,
wenn einige Systemparameter, wie der ZufluB, nicht genau
bekannt sind.

(3) Langfristige Planung oder Hilfsmittelzuteilung, wenn
die Forderungen bekannt oder unbekannt sein kénnen.
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Realistische Bewisserungsprojekte besitzen viele Bes-
chriankungen in den Entscheidungs- und Zustandsvariablen.
Vorhanden sind iiberdies Nichtlinearitdten oder stochastische
Verdnderungen und zwar sowohl in den Zustandsgleichungen
als auch in der Riickkehrfunktion. Die Arbeit beschreibt,
wie diese Schwierigkeiten durch die dynamische Programmie-
rung behoben werden koénnen.

Mehrere spezielle Verfahren der Anwendung der dyna-
mischen Programmierung auf Bewésserungsprobleme werden
vorgestellt. Sie schlieBen sukzessive Approximationen ein,
dynamische Vorwértsprogrammierung, dynamische Pro-
grammierung fiir stochastische Kontrolle und Iteration im
Raum der Strategie.

Vier Beispiele werden gelost und diskutiert.—Fine
kurzfristige Optimierung eines Zwei-Speicher-Systems wurde
geldst, eine kurzfristige Optimierung eines Vier-Speicher-Sy-
stems mit sukzessiver Approximation behandelt. Optimale
Operation Uber ein Jahr, wobei die Stromlinienfliisse
stochastische Variable sind, wird durch Iteration in Strategie-
Riumen gefunden. Optimale langfristige Planung von
Systemerweiterungen gegebenen projektierten Bedarfs wird
durch dynamische Vorwirtsprogrammierung behandelt.

Pe3rome—CI0XKHOCTB M 3aTPAThI IPOEKTOB BOAAHBIX CHCTEM
IIPHHECITH YBEJIHYABAIOLIKACA WHTEPEC, B TEYCHHH TIOCIE -
HMX JIET, K ONTHMH3aluu (GYHKIMOHHPOBAHMUS K PaccyeTa C
NMOMOIIBIO TEXHHK OCHOBAHHBIX Ha BBIYC/IMTEIBHBIX Mallld~
Hax. JluHAMHYECKOE TNPOrpaMHPOBaHME IIPEACTABISAET
coboii Moutsbit crocod moaxona k Gompwoit pazHoobpas-
HOCTH TakuX IIpobiem.

BonbumHcTBO NpobneM BOAAHBIX CHCTEM MOXET OBITB
OTHECEHO K OAHON U3 CneayrolmX KaTeropuii:

(1) OntumanbHOEe QyHKIHOHHPOBAHHE B TEYEHHH OPOTK-

Oro nepuona, Kax Harnpumep 24 yaca, KOra BCe KOJUYECTBA
WU3BECTHBI;

(2) OnTUMH3ALHA €XEMECHYHON WU €XEerONHON MMOJUT-
MKH, KOT1a HEKOTOPBIE IIapaMeTPBl CHCTEMbI, KaK HAIIPUMED
MPUTOKH, TOYHO HE W3BECTHBI;

(3) HonrocpouHoe IJIAHAPOBAHUE HIIM HA3HAYEHHE pec-
CypCcOB, KOTAa TpeGOBaHUA MOLYT OLITH TOYHO W3BECTHBL
WK HeT.

Peanuctiyeckue npoGaeMsl BOASHBIX PECCYPCOB MMEIOT
MHOTOHYHCJICHHBIE OTPAHUYEHHWS PEIICHHH H MNEepeMEHHBIX
cocrosuusi. CylleCTBYIOT Takke HETMHEHHOCTH WM
CiyyaiHple H3MEHEHHsE KaK B YPABHEHHSX COCTOSHHSA
TaK ¥ B GyHKIMM oOpaTHO# CBa3n. CTaThsl OOBACHAET KaK
THHAMHYECKOE NPOrpaMMHPOBAHHE MOXET OOpalaTLECH C
3THMH 2aTPYAHCHHAMH .

BBeneHO TaKkke HECKOIBKO CIELMAIM3HPOBAHHBIX TEXHHK
AMHAMHYECKOTO NMPOrPAMMHDPOBAHUS NIPHMEHSEMEIX K BOJI-
SIHBIM TTPpOOJIeMaM. DTH TEXHMKH BKJIIOYAIOT MOC/IENOBa-
TeJIbHbIE NPUONVDKEHHs, HIPAMOe NHHAMHYECKOe MPOTPaM-
MHpPOBaHUE, OTUHAMHYECKOE NPOrpaMMHMpPOBAHHE I CTO-
XaCTHYECKOTO YIIPABICHUSA W HOBTOPCHHE B NPOCTPAHCTBE
ITOJIUTHK.

PemeHs1 1 06CyKAEHBI YeThIPpE NpUMeEpa- KpaTKOCPOYHAs
ONTHMH3ALMSA CHCTEMBI C IBYMs pe3epByapaMH pelleHa C
MOMOIIBIO IPSMOTOQ- JUHAMHYECKOTO INPOTrPaMMHPOBAHHUA;
KpaTKOCPOYHas ONTHMH3alIMA CHCTEMBI C YETHIPbMS peE3-
epyapaMH pPacCMOTpPEHA C IIOMOIIBIO ITOC/IeN0BaTE/BHBIX
NpuOIIDKEHAN; TOAMYHOE ONTUMANIbHOE (GYHKIMpOBAHHE,
KOrja HPUTOKH MPEACTABIAIOT COO0M ClIyyalHbIe MEpeMeEH-
HBIE, Hali[IEeHO C MOMOINbIO NOBTOPEHHUs B NPOCTPaHCTBaX
[IONIATHK; M JOJTOCPOYHOE ONTHMAJIBHOE ILIAHHUPOBAaHHE
npubasneHnit kK CHCTeMe, C 3apaHee 3aIUIAHHPOBAHHBLIMH
TpeOOBAHHAMH, pPAaCCMOTPEHO C MNOMOIIBIO IIPSMOro
IAHAMHYECKOT ONPOrPaMMHUPOBAHHUS.



