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Survey  Papers 

A Survey of Dynamic  Programming 
Computational  Procedures 

ROBERT E. L,%RSOY, MEMBER, IEEE 

Abstract-Although dynamic  programming has long provided a 
powerful approach to optimization  problems, its applicability has been 
somewhat  limited  because of the  large  computational  requirements 
of the standard  computational algorithm. In recent  years a number 
of new  procedures with greatly  reduced  computational  requirements 
have  been  developed. The purpose of this paper is to  survey a number 
of the more  promising of those  techniques. A review of the theory of 
dynamic programming and  the  standard  computational  algorithm is 
included.  Several  appiications of the new  techniques are discussed. 

I. IKTRODUCTION 

One of the  most powerful techniques  developed  for the solution 
of optimization  problems is Bellman's  dynamic programming.[11-[31 
This  technique solves, at least in principle,  many  important  problems 
from fields such as electrical  engineering,  aerospace  engineering, 
chemical engineering, economics, and  operations  research.  However, 
because of the high computational  requirements of the  standard dy- 
namic  programming computational  algorithm, only relatively  simple 
problems  have  been solved on  existing  computers. 

In recent  years a number of new computational  methods  based on 
dynamic programming have  been  developed. Many of these  methods 
retain  the  poxer  and  generality of dynamic programming and  yet 
have  substantially  reduced  computational  requirements  o\er  those 
of the  standard  algorithm.  This  paper  surveys a number of the more 
promising of these  techniques  and  mentions  some  recent  applications 
of them. 

The  fundamental  concepts of dynamic programming are reviewed 
in Section 11. The general  deterministic  variational  control  problem 
is  formulated.  The  iterative  functional  equation  based on Bellman's 
principle of 0ptimality[~1-[31 is then  derived.  The  standard  dynamic 
programming  computational  algorithm is next  described and dis- 
cussed.  Finally,  the  extension of these  results to  stochastic  control  and 
other  problems  involving  uncertainty is indicated. 

The new procedures are presented in Section 111. They  are 
grouped  into  four  categories.  In  Section 111-A procedures  for  obtaining 
a complete  feedback  control  solution  are discussed. In  all cases,  these 
procedures  have  greatly  reduced high-speed memory  requirements. 
However,  because optimal  control  still  must  be  computed  for  every 
admissible state,  these  procedures  (except  where  mentioned ex- 
plicitly) have  computing  time  requirements which are  about  the  same 
as for  the  standard  algorithm.  In  Section 111-B procedures  for finding 
the  optimal  control  sequence  from a single initial state  are examined. 
Because  control  does  not need to  be  computed  over much of the  ad- 
missible state space,  great  savings  in  both  memory  and  time  are 
achieved.  However, it is interesting  to  note  that  with  these pro- 
cedures a true  feedback  solution is computed  in a region about  the 
optimal  trajectory.  In  Section 111-C procedures  for infinite-stage 
problems are given.  These  procedures solve a multistage  problem 
with a very  large  number of stages  by  making  single-stage  calculation 
iteratively.  Finally, in Section 111-D procedures that  do  not fit any 
of these  categories  are discussed. 

Some  applications of the new techniques  are discussed in  Section 
I\:. Because  these  techniques  are  not yet in widespread use, the  author 
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has chosen to  present  work  being  performed by himself and  his asso- 
ciates. The examples  come  from  many  different fields, and  they  indi- 
cate  the  broad  range of applicability of the  ideas discussed in the 
paper. The examples  include  minimum-time-to-intercept  trajectories 
for a ground-based  interceptor missile, minimum-fuel  trajectories  for 
the SST, an airline  scheduling  problem,  optimum  operation of natural 
gas pipeline networks,  optimum  operations and planning  for  multi- 
purpose  water  resource  systems,  optimal  control of reliable and  main- 
tainablc  systems,  and  the  optimum  control of a robot in a partially 
unknown  environment.  Many  other  applications of dynamic  pro- 
gramming,  including  some in which the new techniques are  used, 
can  be  found ~ ~ ~ ~ ~ ~ ~ r e . ~ ~ l ~ ~ ~ l ~ l ~ l ~ ~ ~ ~ l ~ l ~ ~ l ~ l ~ ~ l  

11. FUNDAMENTALS OF Dn-Amc PKOGRAMUING 
A.  Problem Formulation for the Deterministic  Case 

Most of the problems for which dynamic programming has been 
used to  obtain  numerical  solutions  can  be  formulated as deterministic 
discrete-time  variational  control pr~blems.[~l-[~]  The general  case of 
this  problem is formulated as follows. 

Gizen 

1) 4 system  described by  the nonlinear difference equation 

x ( k  + 1) = @ [ x ( K ) ,  u(k), k l  (1) 

where x is an n-dimensional state  vector, u is an m-dimensional  control 
vector, k is an index  for the  stage  variable,  and is an n-dimensional 
vector  functional. 

2) A variational  performance  criterion 

where J is the  total  cost  and L the  cost for a single stage. 
3 )  Constraints 

-y!k) (3) 
UE C(x,  K )  (4) 

where X(Kj is a set of admissible state.: a t  stage k ,  and Cjx, K )  a set 
of admissible  controls at state X ,  stage k .  

4) An initial state 

x(0) = c. is) 

Find 

The  control  sequence u(O), . . . , ujk) such that -7 in (2) is mini- 
mized subject  to  the  system  equation (1). the  constraint  equations 
(3) and (A),  and  the  initial  condition (5). 

Continuous-time  variational  control  problems  can  be  treated  by 
assuming that  the  control is piecewise constant  in  time  and  making 
appropriate  transformations to  the discrete-time ~ase.[~l- l~]   Exten-  
sions to problems  involving  uncertainty  can  be  made as in Part D of 
this section. 

B .  Derivation of the Basic  Iterative  Functional  Equatiotz 

The  dynamic programming  solution to  the above  problem is 
obtained  by using an iterative  functional  equation that determines 
the  optimal  control for any admissible  state at any stage.  This  equa- 
tion follows immediately  from  Bellman's principle of optimality.[11-131 
However,  in the  interest of clarity, a direct  derivation will be  given, 
and  the principle of optirnality will then be interpreted in terms of 
this  equation. 
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Fig. 1. Dynamic  programming  calculation  in  one-dimensional  example a t   s ta te  x*. 
stage K -1 .  0-quantized  states  at  stage K where I ( a ,  b )  is  known. 

The first step  in  the  derivation is to  define the minimum  cost 
function for all xEX and  all k, k = O ,  1. . . . . K ,  as 

where 

x ( k )  = x. 

The  summation is then  split  into  two  parts,  the  term  evaluated 
for j = k and  the  summation  over j = k+ 1 to j = K. The minimization 
is similarly  split  into  two  parts.  The  result is 

The first term in brackets  in (7) is not affected by  the second minimi- 
zation. Thus, (7) becomes 

j & + l . . - . . K  

The second  term  in  brackets in (8) is exactly  analogous to  the defini- 
tion  in (6), where the  argument of I is @[x, u ( k ) ,  kj. k+l. .\bbre- 
viating u ( k )  as u, the  iterative  functional  equation becomes 

I(x, k) = min ( L ( x ,  u, k )  + Z[@(x, u, k ) ,  k + 111. (9) 
U 

This  equation is a mathematical  statement of Bellman's  principle of 
optimality. It  states  that  the  minimum cost for state x at stage k is 
found by choosing the  control  that  minimizes  the sum of the  cost  to 
be  paid at the  present  stage  and  the minimum  cost in going to  the 
end  from  the  state at stage k + l  which results  from  applying  this 
control. The  optimal  control at state x and  stage k ,  denoted b>- 
B ( x ,  k), is  directly  obtained as the  value of u for  \vhich the  minin~um 
in (9) is attained. 

- k  

Fig. 2. Recovery of the  optimal  trajectory irom initial  state c. O-quan- 
tized  states  at  which Wx. k) and I(a. L )  are  computed. 

Since (9) determines Z(x, k) and ir(x, k) in  terms of I(x, k + l ) ,  
it  must  be solved backward  in k. -4s a terminal  boundary  condition 

~ ( x ,  K )  = min { ~ ( x ,  u, K ) }  . (10) 

The optimization  over a sequence of controls is thus reduced to  a 
sequence of optimizations  over a single control  vector. 

C. The Standard Contputatiom.1 Algorithm 

U 

In  the  standard  method  for  solving (9), each state  variable x i ,  
i =  1, 2, . . . , 72, is quantized  to LVi levels,  and  each  control  variable 
u j ,  j = 1, 2, . . . , m ,  is quantized to  M j  levels. 

Initiallv, I(x, K) is found for all  quantized  states x c X  by evalu- 
ating Ljx, u, K) for each  quantized  control uE 1; and choosing the 
minimum l-alue  by a direct  comparison. The  optimal  control OIx, K) 
is the  value of u that minimizes L(x, u, K). In  many problems no 
control is applied at the final stage K; in  this  case Ijx, K) is evaluated 
directly as L(x, A-). 

Sext ,  at k =h-- l ,  for each  quantized  state &X, each  quantized 
control UE G is applied,  and  the  next  state @(x, u, K- 1) is com- 
puted.  The minimum  cost at the next  state, I[@(x, u, K-11, R], is 
found b>- interpolation using thevalues of I ( x ,  K) a t  quantized  states. 
The  quantity Ljx, t z ,  K-1) is computed  directly. The sums of these 
quantities for each  quantized  control  are  then  compared,  and  the 
minimum value is stored as Ijx, K-1) .  The optimal  control 
i?(x,  K - l),  is stored as the  value of u for which the minimum is at- 
tained.  This  procedure is illustrated  for a one-dimensional problem 
in Fig. 1. 

The procedure  continues  in  this  manner,  with I(x, k) and b(x, k) 
being computed  in  terms of I(x, k +  l ) ,  until k = O  is reached. The 
quantized  states at which these  quantities  are  computed  in a one- 
dimensional  example are shown  in Fig. 2. 

The optimal  control  sequence  from the given  initial state c is 
obtained  from  the  values of G(x, k) at quantized states. The first con- 
trol is read  directly as i?(~, 0). The  next state is then  computed as 

[c, b(c, 0), 11, and  the  corresponding  control is evaluated using 
interpolation on values of G(x, 1) at quantized x. This  procedurecon- 
tinues  until  the  entire  control  sequence is obtained.  This  is  shown in 
Fig. 2 for a one-dimensional example. 

The same  procedure can  be used to  compute  the  optimal  control 
sequence  for  an>-  initial state starting  at  any  stage. If the initial 
state is  not a quantized  state,  an  additional  interpolation  mal-  be 
necessary. Thus,  the  solution to many  optimization  problems is 
obtained  in  the same  calculation as for the original problem.  Bellman 
calls this  invariant in1bedding.[11-[31 

This  computational  procedure is .;cry appealing  for a number of 
reasons. In  the first place, thorny  questions of existence and unique- 
ness are  avoided; as long as there is at least  one feasible control se- 
quence,  then  the  direct-search  procedure  guarantees that  the  absolute 
minimum  cost is obtained.  Furthermore,  extremely  general types of 
system  equations,  performance  criteria,  and  constraints  can  be 
handled.  Constraints  actually  reduce  the  computational  burden  by 
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decreasing the admissible sets X and Lr. Finally,  the  optimal  control 
is obtained as a true  feedback  solution  in which the  optimal  control 
for any admissible state and  stage is determined. 

In  practice,  however, the  computational  requirements of this 
technique become excessive when  it is applied to  large problern~[~1-1~1 
(Bellman's  curse of dimensionality). The  most  severe  restriction 
arises  because of the  number of high-speed storage  locations  required 
to store I(x, k + l )  during  the  computation of I ( x ,  k )  and a ( x ,  k ) .  
This  number  is 

Another  consideration,  which is generally  not as restrictive as 
the high-speed memory  requirement (HSMR), is the  total  amount 
of computing  time  (CT)  required.  This  is 

where at, is the  computing  time  required for a single evaluation of 
the  quantity in  brackets  in (9) and a single scalar  comparison. 

The final factor that  must  be  taken  into  account is the  amount 
of off-line storage  required to  store  the  complete solution.  This 
number of storage  locations is 

D. Extension to  Problems  Containing  Gme7tainty 

A number of computational  methods  based  on  dynamic  program- 
ming  have  been  developed  for  problems  containing  uncertainty. 
One case that  has received much attention is Bellman's  optimum 
stochastic  control In  this problem the  state of the  system is 
perfectly  measurable, but a random forcing function w ( k ) ,  which has 
a known probability  density  function,  enters  the  system  equation. 
The problem  formulation  is  exactly as in Part -3, except that  

1) the  system  equation is affected by  the  random  forcing  function 
vector, so that (1) becomes 

x(K + 1) = o[x(n), u ( h ) ,  w(K), k l ;  (14) 

2) the expected  value of the performance  criterion is to  be mini- 
mized,  where the  expectation is over the sequence of random  forcing 
functions w(O), w(l) ,  . . , w(K) .  

An  iterative  functional  equation for this  problem  can  be  de- 
veloped  exactly as in  Part B. The minimum  cost  function is defined as 

where 

x ( k )  = x. 

Assuming that samples of w ( k )  at different  stages  are  uncorrelated,' 
the desired  equation is obtained as 

Z(x, k )  = min { E [ L ( x ,  u, w, K )  + Z[@(x, u, w, K ) ,  k + 11). (16j 

As before, the  optimal  control G ( x ,  k )  is the  control for which the 
minimum  is  attained. As a terminal  boundary  condition, 

u w  

Z(x, K )  = min { E[L(x, u, w, K ) ] ]  . (17) 

A computational  procedure  analogous to   tha t  of Part C can  be  ap- 
plied; the  random  forcing  function w is quantized,  the corresponding 
probability  density  function is converted  to a discrete  probability 
distribution,  and  the  expectation is taken by summation. 

X more  general  stochastic  control  problem, called the combined 
optimum  control  and  estimation  problem,[']  is  represented  in  Fig. 3. 

u w  

state  variables to account ior the correlation. 
1 This  assumption  can  always be relaxed at   the expense oi defining  additional 

COMBINED  OPTIMUM 
CONTROL  AND 

ESTIMATION SYSTEM 
RANDOM  FORCING 
FUNCTION  INPUT 

STATE 
OF 

SYSTEM 

MEASUR'EMENT 
NOISE 

Fig. 3. Combined  optimum  control  and  estimation  problem. 

Here  the state of the  system  is  not known exactly, but instead  is 
observed  through a noisy measurement  system. -An iterative  func- 
tional  equation  can  be  derived  for  this  problemI+[~l  in  which  the 
argument of the  minimum  cost  function at a given  stage is either  the 
entire  sequence of past  controls  and  measurements or else a sufficient 
statistic for the a posteriori  probability  density  function of the 
present state. This  argument is generally called the information state. 
In  either case it is necessary to  calculate  the  latter  probability 
density  function  by  recursive  application of Bayes' rule.['1-[7] Other 
approaches  to  this  problem are discussed in K~shner [~*J  and 
\\'onham.[391 

Dynamic programming has also  been  applied to a number of 
other  problem  formulations  involving  uncertainty,  notably  optimum 
estimation  and identification,[~l~['I-L~~l optimum  adaptive con- 
trol,[21~['1-[71 and  differential garnes.[L11.11*1 

111. KE\V  CObiPUT.4TIONAL PROCEDURES 

A.  Procedures for Obtaining  a  Complete  Feedback Control Solution 

I )  C l o s e d - F O Y ~  Solutioa. The  most  computationally efficient 
method for solving (9) is to  find a closed-form expression  for I(x, K ) .  
However,  the  number of cases where  this  can  be  done is small. The 
best  known case is that in which the  system  equations  are  linear 

x(k  -t 1) = F(k)x(k)  + D ( k ) u ( k ) ;  (18) 

the  performance  criterion is quadratic 

J = c [ X W A ( k ) X ( K )  + uT(k)B(K)u(K) ] ;  
K 

(19) 

and  there  are  no  constraints.  In  this case it can  be shown that I(x, k )  
takes  the 

L O  

Z(x, k )  = xTP(k)x  (20) 

where P ( k )  satisfies the well-known Riccati  equation 

P ( k )  = A @ )  + FT(k)P(h + l)F(k) 
- FT(k)P(k + l ) D ( k ) [ B ( k )  + D T ( k ) P ( k  + l)D(k)]p 

x DT(k)P(k + l ) F ( k ) .  (21) 

The corresponding  optimal  control G(x,  k )  takes  the form[I31 

d(X, a )  = - W(k)x (22) 

where 

W ( K )  = [ B @ )  + DT(k)P(k + l)D(K)]-lDT(k)P(k + l ) F ( k ) .  (23) 

The computations  for an n-dimensional  problem thus  reduce  to  the 
iteration of an nXn  symmetric  matrix difference equation. A great 
saving  in  both  storage  and  time is obtained. 

Analogous  results  can  be  obtained for the  optimum  estimation 
problem in which the  system  equations  and  measurement  equations 
are  linear  and all random  variables  are Gaussian,['l-I~Ol~["l for  the 
stochastic  control problem in which the  system  equations  are  linear 
and  the  performance  criterion is quadratic,[1jl  and for the combined 
optimum  control  and  estimation  problem  in which the  system  equa- 
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~ i ~ .  4. Values of df in state increment  dynamic  programming  ior  controls 
~<(i), i = 1, 2 ,  . , 5, applied at   state x*, time I*. 

tions  and  measurements  equation  are  linear,  all  random 1-ariables are 
Gaussian,  and  the performance criterion is quadratic.[1V[171 

2) Polynonzial  Approninration of the Xiz i tnum Cost Fumtion. 
In  certain well-behaved  problems it is possible to  obtain an accurate 
approximation  to I(x, k + l )  over  all x E X  by expressing 1 as a lo\v- 
order polynomial  in In  such  cases a saving in high-speed 
memory  requirement can be made by storing only the  cocfficients of 
the polynomial, rather  than  values of I for  all quantized x. 

3) Search  Procedures other than Quantizing Control. If the  inter- 
polation  formulas  for I(x, k + l )  are of the proper form,  it is some- 
times possible to use efficient  search  procedures  in the minimization 
in (9),  rather  than  quantization of control  and  direct comparison. 
Search procedures that  have been  used  in the  past include  Fibonacci 
search,[~l-131~171 the simplex  method of linear progra1nn1ing,I31.I71 and 
certain steepest-descent  algorithms.[31~[71.['~~ 

4) Cse of Amly t i ca l  Results and  Xecessary  Conditions. Analysis 
of a particular problem may sometimes  reveal  useful  information 
about  the solution. For example, in the  bang-bang  control problem 
it  can be shoxn  that  the  optimal  control is alxays one of the  two 
extreme admissible Conditions such as  this  can reduce 
computational  requirzments  by decreasing the size of the admissible 
control set V ( x ,  k). 

5)  State  Increment  Dynamic  Programming. I n  discrete-time  opti- 
mal control  problems that  have been transformed from continuous- 
time problems, a  substantial  saving in high-speed memov require- 
ments  can be obtained  by using state  increment  dynamic program- 
rning.['l.[201-I221  If the s>-stem equations for the  continuous-time prob- 
lem are 

k = f(x, u, t)  (2.1) 

where t is a continuous  stage  variable (usually time), f an n-dimen- 
sional vector  functional,  and  the  dot  denotes d/dt, and if the 
performance criterion is 

J = J)X> u, t)dt + \C[x(ti,,t,rl (25) 
a 

where J is the  total  cost, to the  initial  time, tl the final time,  and 1 and 
$ are scalar functionals  representing cost per unit  time  and  terminal 
cost,  respectively, and if the  approximations  are  made  that 

x(t + 6f) E x(t)  4- f [ x ( i ) ,  u(t), t16t (26) 

and  that 

Jtf4fL[x(u), u(.), old0 E I [ X O ) ,  u(t), tlat, (27) 

then  the  iterative  functional  equation becomes 

Z(x, f) = min (I(x, u, f)6i + I [ x  + f (x ,  u, @f, t + at] ) .  (28) 

In the  state  increment d p a m i c  programming computational 
procedure,  the  state x and  control u are  quantized  as before. The 

U 

STAGE k STAGE k + I 

Fig. 5. States  at  stage k i l  for which I(x. k + l )  must  be  available  inorderto 
compute  optimal  control for the indicated states  at  stage k.  @-corresponding 
states. 

stage  variable t is also quantized with an  increment size At,  and 
minimum  cost and  optimal  control are computed only at quantized 
values of x and 1. However, 6t, the  time  increment  over which a gixren 
piecewise constant  control is applied, is determined  as 

6f = min 
Ax+ ) 

i -1 .2  ..... i I f i ( x ,  u, t )  1 '  (29) 

where Ax< is the  quantization  increment in the  ith  state  variable  and 
k ( x ,  u, t )  the  ith  component of f(x, u, t) .  This  equation  ensures  that 
the change  in any  state  variable xi over the  increment 6t is a t  most 
&xi and  that 6t is at most At. Representative  values of 6t for a one- 
dimensional  example are show-n in  Fig. 4. 

The  major consequence of this  value of 6t is that I [ x + f ( x ,  u, t)6t, 
t+6t] can be  determined using only values of the  minimum cost 
function at neighboring quantized  states for two or three  time incre- 
ments.  Interpolation is in 11 - 1 state  variables  and t if 6t<U and in 
n state  variables if 61 = X  

This  result c a n  be exploited by processing data in units called 
b l o ~ k s , [ ~ I ~ ~ ~ ~ ~ - ~ ~ ~ ~  which  cover few increments along  each state  vari- 
able axis but several  increments in t .  A great  saving in  high-speed 
memory  requirement can thus be  achieved at a small cost in  com- 
puting  time.  In one  example the saving  in  high-speed  memory  re- 
quirement from lo6 storage locations to 100 lo~ations.[~1~[~01 A\ 

general  program for implementing this  technique in programs  having 
four or less state  variables  has recently  been written.L71 

6)  Reduction of& Dimen.sionality of High-Speed dTetno7y Eequire- 
7netzt front n to $12.  If m<a, i.e., if there  are  fewer  control  variables 
than  state  variables,  then  a  substantial  saving in high-speed  memory 
requirement  can be  achieved by  transforming  the  state space so that 
the  control  vector changes  only ~ t t  of the  state  variables.FJ~[?4 As a 
result, ? z - m  of the  state  variables in the  next  state  can be fixed, and 
values of minimum  cost at the  nest  state need be stored only as a 
function of nt of the  state variables. 

The conditions under which the  transformation  can be  madeIUl 
are closely related  to  Kalman's  controllability.[24j  For  the  scalar 
control case ( n r  = l), the  transformation consists of rewriting (1) in 
the form 

XI(k + 1) = X.&) 
xz(k  + 1) = x&) 

x"-& + 1) : L ( k )  
G ( k  f 1) = ajal(L9, . . . , x=@), u(b) l .  (30) 

For fixed values of .m(k),  x3(k), - . , x,@), the  state  variables 
x l ( k + l ) ,  kn(k+ l ) ,  . - , xn--l(k+l) are also fixed. Thus  at  these fixed 
values, optimal  control at all values of xl(k) can be computed  by 
storing  the  minimum costs as  a  function of x, (k+ 1) only. The  point 
a t  which optimal  control is computed at  stage k and  the correspond- 
ing points a t  stage k + l  for which the  minimum cost must be stored 
in high-speed  memory are shown  for an example  where m = 1, and 
n = 2  in  Fig. 5. The generalization  for m> 1 is  discussed  in  \%'0ng.[~~1 
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7)  Forward Dynamic: Pt.ogremming. If the  minimum cost function 
is redefined to be the  minimum cost to reach a given state  and  stage 
from the  initial  state,  an  iterative  functional  equation analogous to 
(9) can  be derived.  In  this case the calculations  proceed forward  in 
k rather  than  backward. 

For  many  applications  this solution is more  desirable than  the 
backward  dynamic programming solution.  This is particularly  true 
when  the  initial  state is fixed and  the  terminal  state  and/or  stage is 
free. The  optimum final state can be selected by searching  over  all 
admissible final states  and, if desired,  adding a terminal cost function. 
The  terminal cost  function can be quite flexible, and  the effect of 
using  different functions  can easily  be seen without  repeating  the 
dynamic programming  calculation.  One  class of problems  where this 
procedure has considerable appeal is real-time dispatching in xvhich 
the  initial  state is  fixed and  the  human  operator is alloned some 
freedom in determining  the final state. 

Xcomputationalprocedure analogous to  that of Section 11-B can  be 
used.  However, this necessitates  inversion of the system equations, 
i.e., finding x ( k )  such that 

@[x@),  u (k ) ,  k ]  = x(k + 1) 

for a given x ( k + l )  and u(k).l71 An alternzative  procedure  is to use 
the system equations  fonvard in time, establish a tentative  minimum 
cost  for  each new next state  computed, compare  this  cost  whenever 
another  trajectory  arrives at the same  next state,  and  store  the 
tentative  minimum  costs  as  actual  minimum  costs  when all controls 
have  been applied  for all quantized present states.171 

B. Procedures for Obtaining the Optimal Trajectory 
from a Single Ini'iul State 

1 )  Direct Iteration. In order to  begin this  approach, all available 
information about  the system is utilized to  obtain a nominal trajec- 
tory.  The  set of admissible states X ( k )  is then  adjusted  to cover a 
region about  this  trajectory,  and a normal dynamic programming 
computation is made. This  calculation is usually done at a great 
saving in both  storage  and  time  requirements over the case  where 
X ( k )  covers the  entire admissible state  space. 

If it  is found  that  the  optimal  trajectory from the initial state is 
unsatisfactory,  e.g., if i t  leaves the  set X @ )  a t  some stage,  then  the 
region  is readjusted  and  a new computation is made. Iterations  are 
performed  until a  satisfactory  trajectory is obtained. 

The successful application of a direct  iterative  procedure  depends 
to a large extent on how close to  the  true  optimal  trajectory is the 
nominal trajectory.  In  many  applications a good nominal trajectory 
can readily be found, while  in other cases this is a very difficult task. 

A direct  iterative procedure of particular  interest  =hen a good 
nominal cannot be found is to choose a large  initial  region  for X j k )  
and  to use a coarse quantization in both  state  and  control variables. 
Then  in successive iterations  the size of the region is decreased and 
the  quantizations  are  made finer.[311[71~[1*1 

In a  direct  approach  bajed on state  increment  dynamic  program- 
ming, the region is specified by choosing  only certain blocks to be 
processed. The  variation of 6t according to (29) is useful  for  insuring 
that  the  constraints on X ( k )  are  not  violated  when  the region becomes 

Still  other  direct  iterative  techniques  are  currently being 
studied.[%] I n  all  these cases a useful by-product of the  calculations 
is the  optimum feedback control in a region about  the  optimal 
trajectory. 

2)  Quasilinearicetion. Another computational  procedure  based  on 
the existence of a nominal trajectory is quasilinearization.1'1-131.1251 
The basic idea behind this  technique is to  make a linear  expansion 

sma]l.['l~[gl 

3) Successire  App'oximations. In  this  approach a nominal trajec- 
tory is again assumed. For  the case ?n =a, i.e., where there  are as 
many  control variables as state  variables,  the sequence of state  vari- 
ables is held fixed for all but  one.  This  state  variable is then used in a 
onedimensional  dynamic programming  problem,  where the  control 
vector is t z  dimensional, except  that holding the sequences of the 
other n - 1 state  variables fixed imposes n - 1 equality  constraints on 
the  control variables. The performance criterion  and  constraints 
remain the same. After  this problem has been  solved, the  optimal 
sequence of states for this  state  variable is found,  and  the  procedure 
is repeated with a different state  variable.  Iterations  continue  until 
convergence is obtained. I n  this  manner  the solution of an t z -  
dimensional dynamic programming  problem  is  reduced to  solving a 
sequence of one-dimensional problems.~~1~1~1~~'~1 

The  computational  savings in both  time  and  storage  are  very 
impressive. There  are several variations on this basic technique,  and 
extensions can be made to problems  in  which m#n. In  all  cases the 
result is the  same:  the solution of a high-dimensional  problem is 
reduced to solving a sequence of lowerdimensional  ones.~31~[~1 

I t  is easy to  shox  that  convergence is monotonic, but  the condi- 
tions  under which an  absolute opinium is obtained  are  not precisely 
known. For a number of problems  involving four or less state  vari- 
ables,  the  method was  found to converge to  the  true 
In still  other examples,  most with  a larger number of state  variables, 
the solution appears  reasonable;  however,  the  true  optimum  cannot 
be computed  as a check.171 

Convergence to  the  true  optimal  trajectory is more  llkely to occur 
if the nominal trajectory is close to  the  true  optimal  trajectory. 
A method for  choosing a good nominal trajectory in  problems  \vhere 
successive approximations  can be applied is  discussed  in L a r s ~ n . [ ~ ]  
Other  methods  for improving the likelihood of convergence are 
discussed  in  Bellman and Dreyfus.131 

4)  Use of a  Lagrange  Nultiplier. In  problems  with  certain  types 
of constraints,  it is  possible to  eliminate  state  variables by  defining 
Lagrange  multiplier~.[J1~1~*1  This  reduction in dimensionality  makes 
possible substantial savings  in both  storage  and  time. 

C. Procedures f o r  Obtuitzing a Skady-State Solution 

1 )  Approximatiotz in Function  Space. Under  certain conditions, 
e.g., if and L do not explicitly  depend on k and if K+ =, then 
lis, k) does  not  depend on k .  The  functional  equation  then becomes 

I ( X )  = min ( ~ ( x ,  u) + I[@(., u)]}. (31) 

The problem is thus effectively  single stage; however, the solution is 
complicated by  the  fact  that  the minimum  cost  function  appears 
both inside and outside the minimization. 

One  method of obtaining a solution to  this problem is to  make  an 
appropriate guess of I ( x ) ,  say I(o)(x),  and solve  for a sequence of 
minimum  cost  functions  according  to  the  relation 

U 

If I(O)(x) is a close approximation  to  the  true I ( x ) ,  this  procedure 
may be expected to converge to  the  proper  function. However, the 
conditions under which  con\-ergence can be guaranteed  are  quite 
restrictive. 

2) Approximation in Policy Space. alternative  method, which 
has better convergence properties, is to guess an  optimal policy 
W ( x ) .  The corresponding  minimum  cost function I(Oj(x) is then 
computed by a direct  iteration according to  the  relation 

of system  equations  and a quadratic expansion of the performance Z(O.'L'j(x) = L[x, d(O)(X)] + Z(O+D[X,   G(O) (x ) ] ) .  (33) 
criterion  about  this nominal trajectory  and  then  to use the closed- 
form  solution  discussed  in Part -4-1. A number of variations of  this The initial  guess I ( o , o ) ( x )  is usually 
method have been studied,  and  computer  programs  for implementing 
many of them  are available.[251 Z(O-Oj(x) = 0. (34) 
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When I(O)(x) has been  found  from iteration of (33), a new policy 
W ( x )  is  found by solving 

z*(x) = min ( ~ ( x ,  u) + Z ( O ) [ @ ( X ,  u)]]. (35) 

The policy G(I)[x) for a given value of x is determined  as  the  value of 
u for m-hich the minimum is attained in (35). However, I* (x )  is not 
Z( l ) (x) ,  the  minimum cost function corresponding to policy Gc1)(x), 
because I(O)[@(x, u)] appears inside the  brackets  in (35). .Another 
direct  iteration  as in  (33)  is thus necessary. 

In  general,  the  minimum cost  function I ( i ) ( x )  corresponding to 
the policy GG) (x)  is found by  iterations of 

U 

1(jvi+l)(x) = L[x ,  &G)(x)] + I ~ ~ ~ i ) [ ~ ( x ,  &(i)(x)] (36) 

with  initial  guess 
ZCi-o'(x) = 0. (37) 

A new policy C ( i + l ) ( ~ )  is then formed  from 

I*(x) = min [ ~ ( x ,  u) + Z(~)[I(X, u)]]. (38) 

Convergence to  the  true  optimum  can  be proved  for many  important 
cases. 

Ho\vard[*iI has generalized this procedure to  the  stochastic con- 
trol case. He shows that in the limit of K- =, the  minimum  cost 
function  takes  the form 

U 

I(=) = V ( x )  + gR (39) 

where V ( x )  is a transient cost and g is a steady-state  "gain."  By follow- 
ing a procedure somewhat analogous to (36),  which he calls the  value 
determination  operation (VDO), he finds the V ( x )  and g correspond- 
ing to  a  particular policy. To obtain  a new policy, he minimizes g; 
this  process,  which he calls the policy improvement  routine (PIR), 
is similar to employing  (38).  Again,  convergence can be proved  for a 
quite general  set of cases. 

3) St& Increment Dynamic Programming. In  some  problems the 
minimum  cost  function  and  optimal  control  can  be  found  in  one  step 
by using state  increment  dynamic programming.  Both steady-state- 
problems of the  type described in Part C-1  and  certain  minimum 
time-to-origin  problems have been  solved in this manner.171*[?0] Appli- 
cations  have been made  to  both  deterministic  and  stochastic cases.[7] 

D. Other Procedures 

I )  Adufltizve Data  Processing. By \raving  increment sizes,  nominal 
trajectories,  and  other  program  inputs,  it is possible to  cut down 
substantially  the  number of computations for a given  problem. These 
variations can either be preprogrammed or made in real time  by  the 
programmer/operator.[3].['1 

2) Xezt Concepts in Co-nzputers. Improvements in computer  hard- 
ware  and  sofixare  are  constantly increasing the scope of dynamic 
programming.  Some recent ideas  for computer  reorganization, espe- 
cially in the  areas of parallel  processing and cellular  logic,[zEl  could 
lead to  very large reductions in the  computer  time  and  storage re- 
quired  for  solving  large  problems. 

3) Clever Problem Fornmlatimz. I n  the final  analysis,  careful  choice 
of state,  control,  and  stage  variables, selection of an  appropriate per- 
formance  criterion,  and use of judicious approximations  are  the most 
important  factors in the successful application of dynamic program- 
ming.  Unless the  mathematical problem formulation is both a concise 
and  a meaningful representation of the  actual  situation,  the applica- 
tion of sophisticated  computational procedures will yield  little 
benefit. 

11:. APPLICATIOHS 
A .  .~~ininzunt-T~me-to-Infercept Trajectories for  a 
Ground-Based Znterceptor Xissile 

In  attempting to intercept  an  enemy missile or aircraft  xith an 
interceptor missile, the  initial launch strategy is extremely  important. 
Although later  guidance  commands  can  compensate for  some  errors, 

Z. ALTITUDE 1 
INTERCEPT 
POINT 

x ,  E A S T  
MISSILE 

SITE 

Fig. 6. Coordinat- r. 8. o. and Q in minimum-time-to-intercept  problem. 

the outcome of an  engagement is largely determined  by  the initially . 
chosen trajectory. 

In  order  to  aid in the selection of an initial  trajectory, a dynamic 
programming  program has  recently been written for  finding the 
minimum-time  trajecton- from the missile site to  any  point in three- 
dimensional ~pace.[~$l The program uses fonvard dynamic program- 
ming.  Although the problem appeared a t  first to  have six state 
variables, namely, missile position and velocity  along  each co- 
ordinate axis, the  number was quickly  reduced to  three.  First,  it was 
observed that minimum-time trajectories always stayed in the  plane 
determined  by  the  intercept point and  rhe local vertical at  the missile 
site;  this eliminated txo  state  variables.  Sest,  the  radial  distance r 
from the missile site was selected as the  stage  variable;  this reduced 
the  number of state  variables to three.  These  variables  were  chosen 
to be  angle of missile  position vector xt-ith respect to horizontal e, 
magnitude of missile velccit>- E ,  and angle of missile velocity vector 
with respect to  horizontal +. The final choice of coordinates is shown 
in Fig. 6. 

The program can be modified to  handle  any misjile dynamics  and 
any  constraints.  Alternative performance criteria, such as  minimum 
loss of velocity,  can  also be considered. -4 terminal performance 
measure,  such as  the angle  between missile velocity vector  and 
target velocity  vector  can  be  imposed. 

The program  was run with data for a  hypothetical missile. The 
program required 40 minutes on the IBM 5090 to  generate  optimal 
trajectories  to  any  point  that  the missile is capable of reaching. These 
results have been stored on tape,  and a program has been written 
for  recovering the  trajectory  to  any specified point or points;  this 
latter program takes less than 40 seconds to recover the  optimum 
trajectory  to  any 100 selected  points. The accuracy of the program 
was tested by  using a quasilinearization technique  to  generate  the 
minimum-time  trajectory  to some representative  points;  the  dynamic 
programming  solution was used as the  initial nominal trajectory.  In 
all cases the  improvement in minimum time was by lesj than two 
percent. 

B. ,Ilinimlm-Fuel  Trajectories for the SST 

A computer program  based on state  increment  dynamic  program- 
ming has been written for computing minimum-fuel trajectories for 
the SST.['1.1201-[221.(301 The program is capable of handling  a wide 
variety of aerodynamic  equations  and  constraints.  The program can 
be run  either in an  evaluation  mode in nhich  it  generates  optimum 
trajectories from  all  feasible  initial states, or  in a real-time control 
mode in  which  it generates  optimum  trajectories only in  a region 
about  a preselected  nominal trajectory. 

C .  Airline Scheduling 

In the airline  scheduling  problem it  is desired to assign a fleet of 
aircraft  to  a  set of scheduled  flights  in an optimum  manner. The 
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Fig. i. Configuration of four-dam  problem. 
S = START 
G = GOAL 

Fig. 8. Optimal control of a robot in a partially  unknown environment. Prob- 
ability of barrier  being on the square equals  the number in the square if one is multistage decision aspects of this problem enter because not onlv given. aud zero otherwise. 

is an aircraft  committed for a specified time  interval,  but also its 
position  in space at   the  end of that  time is specified. The problem 
becomes  especially  difficult  when  one  or  more aircraft become  un- In this application a dynamic programming program not 
available because of unscheduled maintenance or when  one  or  more 
airports become  inaccessible  because of weather.  In  addition,  there implemented  in  real time,  but  instead i ts  results were  used to suggest 

are  a  number of operating  constraints, such as the  maximum  number and  evaluate a suboptimal  algorithm  that is currently being  imple- 

of hours  an  aircraft can fly over the  day. mented in an  actual network. 

A dynamic programming  program  for optimally scheduling air- 
craft was discussed in Lar~on.1~~1 Although  this  program was pri- 
marily designed  for operations over a 21-hour period,  it  can easily  be 
adapted  both  to  short-term scheduling  when the originally  planned 
schedule is interrupted  by  weather or aircraft  failure and  to longer- 
term scheduling. I t  is very flexible in the  constraints it can  consider 
and in the  factors used in the performance  criterion. However, be- 
cause of computational  requirements  its  applicability is limited to 
about six aircraft. 

A new program, based on successive approximations,  has  recently 
been  written.[’] This program  is capable of handling a few hundred 
aircraft  on  presently  available  computers. On a medium-speed com- 
puter2  the solution to a problem  with 70 aircraft, 10 airports,  and 
over 300 flights  was obtained in 3 minutes. 

1). Optimum  Operations  and Planning of Water  Resource  Systems 

number of problems related to the  optimum  operations  and 
planning of multipurpose  water reservoir systems  have been  solved 
by dynamic programming. Several of these  are discussed  in  Larson 
and Kecklerl3’1 One  example is the  optimum  operation  over a 24-hour 
period of a four-dam system in a series-parallel  configuration  (Fig. 5 )  
in which the performance criterion  takes  into  account use of the sys- 
tem for  power generation,  irrigation, flood control,  and recreation. 
This problem was solved by successive approximations; convergence 
to  the  true  optimum was obtained in 30 seconds on a medium-speed 
computer.*  Another  example is the  optimum  operation of a single 
reservoir  over an  entire  year in  which the  stochastic  nature of stream 
flows must be taken  into  account;  a solution  for  this  case was obtained 
by  iteration in policy space.  Still another example is the long-term 
planning of system  additions;  this problem  was  solved by  forward 
dynamic programming. 

E. Optitnzm  Operation of a.  i.’atural Gas  Pipel.ine :\‘etwork 

Dynamic programming has been used to find the  short-term (on 
the  order of 24 hours)  operating policy  for  compressor stations, such 
that all demanded gas is deliversd at  contract pressure  or greater;  the 
pressure limits of the pipes are  not exceeded, and compressor operat- 
ing costs  are minirnized.[331 Dynamic  equations of the pipeline  were 
obtained  by  making lumped approximations  to  the  partial differential 
equations describing the flow of gas. 

:Burroughs  B-5500. 

F. Optimum Design of Reliable  and  Maintainable  Systems 

Dynamic programming has recently  been used to  solve the problem 
of optimally designing a system  when some of the  subsystems  have a 
nonzero probability of failing and when  there is limited repair  capa- 
bility.[341 The basic approach is to  augment  the  state  vector with 
variables  that  indicate  whether or not  the  subsystems  have failed and 
to  what  extent  the  repair  capability  has  already been used; in terms 
of the combined optimal  control  and  estimation  the~ry,[’I-[~l  this is 
the  “information  state” for the  system.  The decision of when to  repair 
is made  part of the  control  vector.  The resulting  problem formulation 
can be handled by  the  dynamic programming procedure  for  the  sto- 
chastic  control case.  Some  examples are worked out in  Ratner.[341 

G.  Optimal Control of a Goal-Seeking  Robot in a  Partially Unknown 
EnviFonment 

A problem that  contains  elements of dual  control  “clair- 
voyan~e,’![~]  and learning systems  theory is the following. A robot is 
attempting  to find its way  to a particular goal. The location of the 
goal  is not  known  exactly,  but  an  a priori probability  distribution is 
available.  There  are  barriers  that  the  robot is not allowed to cross, 
but  their location  is  also specified only by  an  a priori probability dis- 
tribution.  The  robot is allowed to  “see” only  in a small  area  about  its 
present  location;  however, it is  allowed to  remember  where it  has 
been  before. Also, it is allowed to  see a large area  by  paying a certain 
penalty.  The problem is to find the sequence of “moves”  and  “looks” 
that will enable  it  to minimize,  in an  expected  value sense, the  sum of 
the  penalty  for looks and  the  distances covered by moves. 

A dynamic programming formulation of this problem has  recently 
been de~eloped.[3~1 As in the previous section,  it is necessary to  aug- 
ment  the basic  system state  and  control  vectors. A number of sample 
problems have been  solved. In Fig. 8 one  such example is depicted in 
which the goal  location is known,  the possible barrier locations are 
known, and  the a priori probabilities  that  the  barriers  are  present  are 
given. A move  for  the  robot consists of moving f one unit in either 
the x or 3’ direction.  The  robot is allowed to  “see”  one  move  ahead a t  
all times,  and for a cost of 0.2 moves, it can  “see” two moves  ahead. 
The performance  criterion is the  total  expected  number of moves to 
reach the goal,  including the  costs for looks. As a  matter of interest,  it 
was  found that a group of engineers,  when  given the  same  set of rules 
for the problem, did  not achieve as good a performance as the com- 
puter-generated solution. 

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 27,2025 at 12:18:38 UTC from IEEE Xplore.  Restrictions apply. 



774 IEEE TRANSACTIONS ON AUTOMATIC  CONTROL, DECEMBER 1967 

V. COKCLUSIOKS 
I n  this  paper a number of new computational  procedures  based on 

drnamic programming have  been  presented.  These  methods hax-e 
computational  requirements that  are  far less than  those of the  stan- 
dard  computational  algorithm.  Many  nonlinear  problems involving 
four  state  variables  have  been  solved  by  these  methods,  and  several 
applications involving a  larger  number of state  variables  have  been 
made. 

The reduced  computational  requirements of these  procedures 
should lead to  increased  use by  control  engineers of dynamic pro- 
gramming as a computational  tool. .;\thans' comprehensive  survey 
paper on optimal  control  theor>-  and  appli~ations~'~1 showed little 
activity in applications of dynamic  programming, but considerable 
utilization of computational  algorithms  based  on  the calculus of vari- 
ations  and  the  maximum principle. However, as control  engineers 
attack a broader  range of problems, it is felt that  there will be  more 
demand for computational  algorithms  that  have  the  unique  advan- 
tages of dynamic  programming. I n  particular,  these  methods x i11  find 
application in problems  where  one or more of the following conditions 
is present: a feedback  control  solution is particularly  desirable; it is 
difficult to  guarantee a true  optimum  solution b>- using  indirect  meth- 
ods;  the  system  variables  are  naturally  discrete:  stochastic eKects 
must  be considered;  the 5)-stem equations  are  nonlinear;  the  perfor- 
mance  criterion  is a complicated  function; or constraints of a general 
nature  are  present. I t  is  hoped that  this  paper, by  pointing out effi- 
cient  computational  procedures  that  retain  these  ad\-antages. \\-ill 
simulate  further lvork by control  engineers,  both in applications of the 
present  algorithms  and  in  the  development of even more improx-ed 
methods. 
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