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Survey Papers

A Survey of Dynamic Programming
Computational Procedures

ROBERT E. LARSON, MEMBER, IEEE

Abstract—Although dynamic programming has long provided a
powerful approach to optimization problems, its applicability has been
somewhat limited because of the large computational requirements
of the standard computational algorithm. In recent years a number
of new procedures with greatly reduced computational requirements
have been developed. The purpose of this paper is to survey a number
of the more promising of those techniques. A review of the theory of
dynamic programming and the standard computational algorithm is
included. Several appiications of the new techniques are discussed.

I. INTRODUCTION

One of the most powerful techniques developed for the solution
of optimization problems is Bellman's dynamic programming.[1=(s]
This technique solves, at least in principle, many important problems
from fields such as electrical engineering, aerospace engineering,
chemical engineering, economics, and operations research. However,
because of the high computational requirements of the standard dy-
namic programming computational algorithm, only relatively simple
problems have been solved on existing computers.

In recent yvears a number of new computational methods based on
dynamic programming have been developed. Many of these methods
retain the power and generality of dynamic programming and yet
have substantially reduced computational requirements over those
of the standard algorithm. This paper surveys a number of the more
promising of these techniques and mentions some recent applications
of them.

The fundamental concepts of dynamic programming are reviewed
in Section II. The general deterministic variational control problem
is formulated. The iterative functional equation based on Bellman’s
principle of optimality[U-l is then derived. The standard dynamic
programming computational algorithm is next described and dis-
cussed. Finally, the extension of these results to stochastic control and
other problems involving uncertainty is indicated.

The new procedures are presented in Section III. They are
grouped into four categories. In Section I11-A procedures for obtaining
a complete feedback control solution are discussed. In all cases, these
procedures have greatly reduced high-speed memory requirements,
However, because optimal control still must be computed for every
admissible state, these procedures (except where mentioned ex-
plicitly) have computing time requirements which are about the same
as for the standard algorithm. In Section I11-B procedures for finding
the optimal control sequence from a single initial state are examined.
Because control does not need to be computed over much of the ad-
missible state space, great savings in both memory and time are
achieved. However, it is interesting to note that with these pro-
cedures a true feedback solution is computed in a region about the
optimal trajectory. In Section III-C procedures for infinite-stage
problems are given. These procedures solve a multistage problem
with a very large number of stages by making single-stage calculation
iteratively. Finally, in Section I1I-D procedures that do not fit any
of these categories are discussed.

Some applications of the new techniques are discussed in Section
1V. Because these techniques are not yet in widespread use, the author
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has chosen to present work being performed by himself and his asso-
ciates. The examples come from many different fields, and they indi-
cate the broad range of applicability of the ideas discussed in the
paper. The examples include minimum-time-to-intercept trajectories
for a ground-based interceptor missile, minimum-fuel trajectories for
the SST, an airline scheduling problem, optimum operation of natural
gas pipeline networks, optimum operations and planning for multi-
purpose water resource systems, optimal control of reliable and main-
tainable systems, and the optimum control of a robot in a partially
unknown environment. Many other applications of dynamic pro-
gramming, including some in which the new techniques are used,
can be found elsewhere.[1=[3]-[7]-[18] . [25] .(27]

1I. FUNDAMENTALS OF DYNAMIC PROGRAMMING
A. Problem Formulation for the Deterministic Case

Most of the problems for which dynamic programming has been
used to obtain numerical solutions can be formulated as deterministic
discrete-time variational control problems.[7[8] The general case of
this problem is formulated as follows.

Given
1) A system described by the nonlinear difference equation

x(k + 1) = @[x(k), ulk), &) (1

where x is an #n-dimensional state vector, # is an m-dimensional control
vector, k is an index for the stage variable, and ® is an #-dimensional
vector functional.

2) A variational performance criterion

J=§LMQUWJ] 2
k=0

where J is the total cost and L the cost for a single stage.
3) Constraints

x& X(k) 3)
u& Ulx, & (4)

where X (k) is a set of admissible states at stage &, and U(x, k) a set
of admissible controls at state x, stage k.
4) An initial state

x(0) = c. (5)
Find

The control sequence u(0), - - -, u{k) such that J in (2) is mini-
mized subject to the system equation (1), the constraint equations
(3) and (4), and the initial condition (5).

Continuous-time variational control problems can be treated by
assuming that the control is piecewise constant in time and making
appropriate transformations to the discrete-time case.l[I=[}] Exten-
sions to problems involving uncertainty can be made as in Part D of
this section.

B. Derivation of the Busic Iterative Functional Equation

The dynamic programming solution to the above problem is
obtained by using an iterative functional equation that determines
the optimal control for any admissible state at any stage. This equa-
tion follows immediately from Bellman’s principle of optimality.[1~[3
However, in the interest of clarity, a direct derivation will be given,
and the principle of optimality will then be interpreted in terms of
this equation.
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Fig. 1. Dynamic programming calculation in one-dimensional example at state x*,

stage K —1. O—quantized states at stage K where I(x, k) is known.

The first step in the derivation is to define the minimum cost

function for all x€X and all 2, 2=0, 1, - - - , K, as
3 l
I(x, k) = min 3 > LxG), u(j), §1; (6)
ug) =k )
hdaler K
where
x(k) = =.

The summation is then split into two parts, the term evaluated
for j =k and the summation over j=%-1 toj=K. The minimization
is similarly split into two parts. The result is

K
I(z, k) =min  min %L(x,u(k),k)+ > L[x(j),u(j)j]t. )
) _=kulu') X jektl
ekt

The first term in brackets in (7) is not affected by the second minimi-
zation. Thus, (7) becomes

I(x, k) = min iL[x,u,(k),k]
k)
K
+ omin [ 3 2l 1]} ®
btk M

The second term in brackets in (8) is exactly analogous to the defini-
tion in (6), where the argument of I is ®[x, u(k), k], k+1. Abbre-
viating u(k) as u, the iterative functional equation becomes

I(x, k) = min {L(x, u, &) + I[®(x, u, &), & + 1]}. ©)

This equation is a mathematical statement of Bellman’s principle of
optimality. [t states that the minimum cost for state x at stage & is
found by choosing the control that minimizes the sum of the cost to
be paid at the present stage and the minimum cost in going to the
end from the state at stage k41 which results from applving this
control. The optimal control at state x and stage %, denoted by
a(x, k), is directly obtained as the value of u for which the minimum
in (9) is attained.
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Fig. 2. Recovery of the opt_imal trajectory from initial state c. O—quan-
tized states at which @(x, k) and I(z, L) are computed.

Since (9) determines I(x, k) and 1(x, %) in terms of I(x, £2+1),
it must be solved backward in k2. As a terminal boundary condition

I(x, K) = min {L(x, u, K)}. (10)

The optimization over a sequence of controls is thus reduced to a
sequence of optimizations over a single control vector.

C. The Standard Computational Algorithm

In the standard method for solving (9), each state variable x;,
-, #, is quantized to N; levels, and each control variable
u;,j=1,2,+ -+, m,is quantized to 17; levels.

Initially, I(x, K) is found for ail quantized states x= X by evalu-
ating L(x, u, K) for each quantized control u U and choosing the
minimum value by a direct comparison. The optimal control @(x, K)
is the value of u that minimizes L(x, u, K). In many problems no
control is applied at the final stage K; in this case I(z, K) is evaluated
directly as L(z, K).

Next, at k=K —1, for each quantized state x& X, each quantized
control uE= U is applied, and the next state ®(x, u, K—1) is com-
puted. The minimum cost at the next state, I[cb(x, u, K—1), K], is
found by interpolation using the values of I(x, K) at quantized states.
The quantity L(x, u, K —1) is computed directly. The sums of these
quantities for each quantized control are then compared, and the
minimum value is stored as I(x, K—1). The optimal control
{x, K —1), is stored as the value of u for which the minimum is at-
tained. This procedure is illustrated for a one-dimensional problem
in Fig. 1.

The procedure continues in this manner, with I(z, &) and 4(z, &)
being computed in terms of I(x, k+41), until 2=0 is reached. The
quantized states at which these quantities are computed in a one-
dimensional example are shown in Fig. 2.

The optimal control sequence from the given initial state ¢ is
obtained from the values of ¢(x, k) at quantized states. The first con-
trol is read directly as d{c, 0). The next state is then computed as
@[c, dle, 0), 1], and the corresponding control is evaluated using
interpolation on values of @(x, 1) at quantized x. This procedure con-
tinues until the entire control sequence is obtained. This is shown in
Fig. 2 for a one-dimensional example.

The same procedure can be used to compute the optimal control
sequence for any initial state starting at any stage. If the initial
state is not a quantized state, an additional interpolation may be
necessary. Thus, the solution to many optimization problems is
obtained in the same calculation as for the original problem. Bellman
calls this invariant imbedding.[1~[3

This computational procedure is very appealing for 2 number of
reasons. In the first place, thorny questions of existence and unique-
ness are avoided; as long as there is at least one feasible control se-
quence, then the direct-search procedure guarantees that the absolute
minimum cost is obtained. Furthermore, extremely general types of
system equations, performance criteria, and constraints can be
handled. Constraints actually reduce the computational burden by

t=1,2,-"
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decreasing the admissible sets X and U. Finally, the optimal control
is obtained as a true feedback solution in which the optimal control
for any admissible state and stage is determined.

In practice, however, the computational requirements of this
technique become excessive when it is applied to large problems!!~[3I
(Bellman’s curse of dimensionality). The most severe restriction
arises because of the number of high-speed storage locations required
to store I{xz, k+1) during the computation of I(x, k) and 4(z, k).
This number is

HSMR = [] s

=1

{1

Another consideration, which is generally not as restrictive as
the high-speed memory requirement (HSMR), is the total amount
of computing time (CT) required. This is

cr=(1I Ni) 11 MJ) KAl

i=1 J=1

(12)

where Al is the computing time required for a single evaluation of
the quantity in brackets in (9) and a single scalar comparison.

The final factor that must be taken into account is the amount
of off-line storage required to storé the complete solution. This
number of storage locations is

LSMR = ( II N,-) Km. (13)
=1

D. Extension to Problems Containing Uncertainty

A number of computational methods based on dynamic program-
ming have been developed for problems containing uncertainty.
One case that has received much attention is Bellman's optimum
stochastic control problem. 2 In this problem the state of the system is
perfectly measurable, but a random forcing function w(k), which has
a known probability density function, enters the system equation.
The problem formulation is exactly as in Part A, except that

1) the system equation is affected by the random forcing function
vector, so that (1) becomes

x(k + 1) = ®[x(®), ulk), w(k), £]; (14

2) the expected value of the performance criterion is to be mini-
mized, where the expectation is over the sequence of random forcing
functions w(0), w(1), - - - , w(KX).

An iterative functional equation for this problem can be de-
veloped exactly as in Part B. The minimum cost function is defined as

I(x, k) =

min

alk) o (K)

K
-3‘9(,@)“{:“_"7(@ [; L[x(j), u(p), w(ym]]% (15)

where
x(k) = x.

Assuming that samples of w(k) at different stages are uncorrelated,!
the desired equation is obtained as

Iz, k) = min {E[L(x, u, w, &) + I[®(x, u, w, k), £ + 1]}. (16)

As before, the optimal control 4(x, k) is the control for which the
minimum is attained. As a terminal boundary condition,

I(x, K) = min {E[L(x, u, w, K)]}. an
u w

A computational procedure analogous to that of Part C can be ap-
plied; the random forcing function w is quantized, the corresponding
probability density function is converted to a discrete probability
distribution, and the expectation is taken by summation.

A more general stochastic control problem, called the combined
optimum control and estimation problem, 4 is represented in Fig. 3.

* This assumption can always be relaxed at the expense of defining additional
state variables to account for the correlation.
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Fig. 3. Combined optimum control and estimation problem.

Here the state of the system is not known exactly, but instead is
observed through a noisy measurement system. An iterative func-
tional equation can be derived for this problem!4~(7 in which the
argument of the minimum cost function at a given stage is either the
entire sequence of past controls and measurements or else a sufficient
statistic for the a posteriori probability density function of the
present state. This argument is generally called the information state.
In either case it is necessary to calculate the latter probability
density function by recursive application of Bayes' rule.l4I=["] Other
approaches to this problem are discussed in Kushner(l and
Wonham. 3]

Dynamic programming has also been applied to a number of
other problem formulations involving uncertainty, notably optimum
estimation and identification,[?l 1= optimum adaptive con-
trol,[21-2' 7] and differential games.[11-(12]

III. NEw COMPUTATIONAL PROCEDURES

A. Procedures for Obtaining a Complete Feedback Control Solution

1) Closed-Form Solution. The most computationally efficient
method for solving (9) is to find a closed-form expression for I(x, &).
However, the number of cases where this can be done is small. The
best known case 1s that in which the system equations are linear

x(k + 1) = F(k)z(k) + Dk)u(k); (18)
the performance criterion is quadratic
K
7= X K ®40x®) + uT®BEu®)]; (19)
=0

and there are no constraints. In this case it can be shown that I(x, &)
takes the form[l

I(x, k) = xTP(k)x
where P(k) satisfies the well-known Riccati equation
Pk) = Ak) + FT(R) Pk + DF ()
— FT(k)P(k + 1) D(R)[B(k) + DT(R)P(% + 1) D(k)]
X DT(k)P(k + V)F(F).
The corresponding optimal control @(x, &) takes the form!(l

a(x, k) = — Wk)x

(20)

21

(22)
where
W(k) = [B(k) + DT®)P(k + 1) DB DT(R) Pk + DE®R). (23)

The computations for an z-dimensional problem thus reduce to the
iteration of an #X#» symmetric matrix difference equation. A great
saving in both storage and time is obtained.

Analogous results can be obtained for the optimum estimation
problem in which the system equations and measurement equations
are linear and all random variables are Gaussian,[71=[19]-[14] for the
stochastic control problem in which the system equations are linear
and the performance criterion is quadratic,i*] and for the combined
optimum control and estimation problem in which the system equa-
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Fig. 4. Values of & in state increment dynamic programming for controls
20, i=1,2,+++, 3 applied at state ¥, time ¥,

tions and measurements equation are linear, all random variables are
Gaussian, and the performance criterion is quadratic.[181-[17]

2)_Polynomial Approximation of the Minimum Cost Function.
In certain well-behaved problems it is possible to obtain an accurate
approximation to I(x, 2-+1) over all x= X by expressing I as a low-
order polynomial in x.I'I'Bl In such cases a saving in high-speed
memory requirement can be made by storing only the cocfficients of
the polynomial, rather than values of I for all quantized x.

3) Search Procedures other than Quantising Control. If the inter-
polation formulas for I(x, £41) are of the proper form, it is some-
times possible to use efficient search procedures in the minimization
in (9), rather than quantization of control and direct comparison.
Search procedures that have been used in the past include Fibonacci
search,[1-88)1"] the simplex method of linear programming,Bl-I71 and
certain steepest-descent algorithms, 31 (7]-[18]

4) Use of Analytical Resulis and Necessary Conditions. Analysis
of a particular problem may sometimes reveal useful information
about the solution. For example, in the bang-bang control problem
it can be shown that the optimal control is always one of the two
extreme admissible values.['¥ Conditions such as this can reduce
computational requirements by decreasing the size of the admissible
control set U(x, k).

5) _State Increment Dynamic Programming. In discrete-time opti-
mal control problems that have been transformed from continuous-
time problems, a substantial saving in high-speed memory require-
ments can be obtained by using state increment dynamic program-
ming,[7-(20]-122] If the system equations for the continuous-time prob-
lem are

%= f(x, u, 1) 4)

where ¢ is a continuous stage variable (usually time), f an »#-dimen-
sional vector functional, and the dot denotes d/df, and if the
performance criterion is

7=(" I(x, u, 8)dit + ¥[x@),] (25)

f
where J is the total cost, & the initial time, # the final time, and / and
¥ are scalar functionals representing cost per unit time and terminal
cost, respectively, and if the approximations are made that

=t + o) = =(1) + £[x(), u(2), t]ot (26)
and that
B¢
[ 1), u@), oldo 2 1lx0, utd, 4, @n
H
then the iterative functional equation becomes
I(z, 1) = min {{(z, u, 5t + Ix + £(x, u, D51, ¢ + 8]},  (28)
u

In the state increment dynamic programming computational
procedure, the state x and control u are quantized as before. The
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Fig. 5. States at stage k<1 for which I(x, #+1) must be available in order to
compute optimal control for the indicated states at stage k. @—corresponding
states.

stage variable ¢ is also quantized with an increment size Af, and
minimum cost and optimal control are computed only at quantized
values of x and £. However, &, the time increment over which a given
piecewise constant control is applied, is determined as

Axy

b3
filz, u, ) I’ At;
where Ax; is the quantization increment in the ith state variable and
fi(z, u, £) the ith component of £(x, u, ¢). This equation ensures that
the change in any state variable x; over the increment 5 is at most
Ax; and that & is at most Af. Representative values of &t for a one-
dimensional example are shown in Fig. 4.

The major consequence of this value of 5 is that I [x+ f(x, u, £)8t,
48] can be determined using only values of the minimum cost
function at neighboring quantized states for two or three time incre-
ments. Interpolation is in # —1 state variables and ¢ if 8 <Af and in
n state variables if 8= AL.

This result can be exploited by processing data in units called
blocks, [71-[29-{22] which cover few increments along each state vari-
able axis but several increments in ¢. A great saving in high-speed
memory requirement can thus be achieved at a small cost in com-
puting time. In one example the saving in high-speed memory re-
quirement was from 10¢ storage locations to 100 locations.[7l-[20] A
general program for implementing this technique in programs having
four or less state variables has recently been written,[?]

6) Reduction of the Dimensionality of High-Speed Memory Reguire-
wment from n to m. U m<n, ie, if there are fewer control variables
than state variables, then a substantial saving in high-speed memory
requirement can be achieved by transforming the state space so that
the control vector changes only m of the state variables.[?'[¥] As a
result, # —m of the state variables in the next state can be fixed, and
values of minimum cost at the next state need be stored only as a
function of m of the state variables,

The conditions under which the transformation can be madel®!
are closely related to Kalman's controllability.(2tl For the scalar
control case (s =1), the transformation consists of rewriting (1) in
the form

o = (29)

min |

i=1,2.+-0n

xi(k 4 1) = xo(k)
x(k + 1) = x3(k)

Tl + 1) = (k)
k1) = Bulm(h), - - -y 2a(k), u(B) . (30)

For fixed values of x»(k), x3(%), - - -, x.(E), the state variables
k1), ko(k+1), - -+, xna(k-+1) are also fixed. Thus at these fixed
values, optimal control at all values of x1(k) can be computed by
storing the minimum costs as a function of x,(k+1) only. The point
at which optimal control is computed at stage k and the correspond-
ing points at stage k41 for which the minimum cost must be stored
in high-speed memory are shown for an example where m =1, and
n=2 in Fig. §. The generalization for m >1 is discussed in Wong.[2I

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on August 27,2025 at 12:18:38 UTC from IEEE Xplore. Restrictions apply.


刘德荣
线条

刘德荣
线条


SURVEY PAPERS

7) Forward Dynamic Programming. If the minimum cost function
is redefined to be the minimum cost to reach a given state and stage
from the initia] state, an iterative functional equation analogous to
(9) can be derived. In this case the calculations proceed forward in
k rather than backward.

For many applications this solution is more desirable than the
backward dynamic programming solution. This is particularly true
when the initial state is fixed and the terminal state and/or stage is
free. The optimum final state can be selected by searching over all
admissible final states and, if desired, adding a terminal cost function.
The terminal cost function can be quite flexible, and the effect of
using different functions can easily be seen without repeating the
dynamic programming calculation. One class of problems where this
procedure has considerable appeal is real-time dispatching in which
the initial state is fixed and the human operator is allowed some
freedom in determining the final state.

A computational procedure analogous to that of Section I1-B can be
used. However, this necessitates inversion of the system equations,
i.e., finding x(%) such that

®[x(k), ulk), k] = =t + 1)

for a given x(k+1) and u(%).I An alternative procedure is to use
the system equations forward in time, establish a tentative minimum
cost for each new next state computed, compare this cost whenever
another trajectory arrives at the same next state, and store the
tentative minimum costs as actual minimum costs when all controls
have been applied for all quantized present states.l”]

B. Procedures for Qbtaining the Optimal Trajectory
Sfrom a Single Initial State

1) _Direct Iteration. In order to begin this approach, all available
information about the system is utilized to obtain a nominal trajec-
tory. The set of admissible states X (k) is then adjusted to cover a
region about this trajectory, and a normal dynamic programming
computation is made. This calculation is usually done at a great
saving in both storage and time requirements over the case where
X (%) covers the entire admissible state space.

1f it is found that the optimal trajectory from the initial state is
unsatisfactory, e.g., if it leaves the set X (k) at some stage, then the
region is readjusted and a new computation is made. Iterations are
performed until a satisfactory trajectory is obtained.

The successful application of a direct iterative procedure depends
to a large extent on how close to the true optimal trajectory is the
nominal trajectory. In many applications a good nominal trajectory
can readily be found, while in other cases this is a very difficult task.

A direct iterative procedure of particular interest when a good
nominal cannot be found is to choose a large initial region for X (k)
and to use a coarse quantization in both state and control variables.
Then in successive iterations the size of the region is decreased and
the quantizations are made finer.[3-17]-[18]

In a direct approach based on state increment dynamic program-
ming, the region is specified by choosing only certain blocks to be
processed. The variation of 8 according to (29) is useful for insuring
that the constraints on X () are not violated when the region becomes
small.[71[9

Still other direct iterative techniques are currently being
studied.[*] In all these cases a useful by-product of the calculations
is the optimum feedback control in a region about the optimal
trajectory.

2) _Quasilinearization. Another computational procedure based on
the existence of a nominal trajectory is quasilinearization.(1~3]-[%%]
The basic idea behind this technique is to make a linear expansion
of system equations and a quadratic expansion of the performance
criterion about this nominal trajectory and then to use the closed-
form solution discussed in Part A-1. A number of variations of this
method have been studied, and computer programs for implementing
many of them are available.[%%
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3) Successive 4 pproximaiions. In this approach a nominal trajec-
tory is again assumed. For the case m=#, i.e., where there are as
many control variables as state variables, the sequence of state vari-
ables is held fixed for all but one. This state variable is then used in a
one-dimensional dynamic programming problem, where the control
vector is n» dimensional, except that holding the sequences of the
other n—1 state variables fixed imposes # —1 equality constraints on
the control variables. The performance criterion and constraints
remain the same. After this problem has been solved, the optimal
sequence of states for this state variable is found, and the procedure
is repeated with a different state variable. Iterations continue until
convergence is obtained. In this mannet the solution of an #-
dimensional dynamic programming problem is reduced to solving a
sequence of one-dimensional problems. [8-[7]-[18]

The computational savings in both time and storage are very
impressive. There are several variations on this basic technique, and
extensions can be made to problems in which m#=#. In all cases the
result is the same: the solution of a high-dimensional problem is
reduced to solving a sequence of lower-dimensional ones.[3]:[7]

1t is easy to show that convergence is monotonic, but the condi-
tions under which an absolute opinium is obtained are not precisely
known. For a number of problems involving four or less state vari-
ables, the method was found to converge to the true optimum.[?
In still other examples, most with a larger number of state variables,
the solution appears reasonable; however, the true optimum cannot
be computed as a check.("]

Convergence to the true optimal trajectory is more likely to occur
if the nominal trajectory is close to the true optimal trajectory.
A method for choosing a good nominal trajectory in problems where
successive approximations can be applied is discussed in Larson.[”
Other methods for improving the likelihood of convergence are
discussed in Bellman and Dreyfus.[

4) Use of a Lagrange Multiplier. In problems with certain types
of constraints, it is possible to eliminate state variables by defining
Lagrange multipliers.[3:{18] This reduction in dimensionality makes
possible substantial savings in both storage and time.

C. Procedures for Obtaining a Steady-State Solution

Iy[Approximation in Function Space] Under certain conditions,
e.g., if ® and L do not explicitly depend on % and if K— =, then
I(x, k) does not depend on k. The functional equation then becomes

I(x) = min {L(x, u) + I[®(x, v)]}. (31
ua

The problem is thus effectively single stage; however, the solution is

complicated by the fact that the minimum cost function appears

both inside and outside the minimization.

One method of obtaining a solution to this problem is to make an
appropriate guess of I(x), say I‘9(x), and solve for a sequence of
minimum cost functions according to the relation

IGH(x) = min {L(z, u) + IV[@(z, u)]}. (32)
u

If 7(x) is a close approximation to the true I(x), this procedure
may be expected to converge to the proper function. However, the
conditions under which convergence can be guaranteed are quite

restrictive.

2)| A pproximation in Policy Space| An alternative method, which
has better convergence properties, is to guess an optimal policy
9 (x). The corresponding minimum cost function I®(x) is then
computed by a direct iteration according to the relation

[0 0(x) = Llx, a®(x)] + 100 {@[z, a0x)]}.  (33)
The initial guess 709 (x) is usually
10:0(x) = 0, (34)
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When I®(x) has been found from iteration of (33), a new policy
#M(x) is found by solving

I*(x) = min {L(x, u) + I®[@(z, u)]}. (35)
u

The policy @V (x) for a given value of x is determined as the value of
u for which the minimum is attained in (33). However, I*(x) is not
IM(x), the minimum cost function corresponding to policy @‘V(x),
because I®[&(x, u)] appears inside the brackets in (35). Another
direct iteration as in (33) is thus necessary.

In general, the minimum cost function I%9(x) corresponding to
the policy 2@ (x) is found by iterations of

16%0(x) = L[z, a9 (x)] + 199[@(x, a9(x)] (36)
with initial guess
160 (x) = 0. (37
A new policy #0+9(x) is then formed from
) = m&n {L(z, u) + ID[I(x, w)]}. (38)

Convergence to the true optimum can be proved for many important
cases.

Howard([27] has generalized this procedure to the stochastic con-
trol case. He shows that in the limit of K— «, the minimum cost
function takes the form

I(x) = V(x) + gK

where V(x) is a transient cost and g is a steady-state “gain.” By follow-
ing a procedure somewhat analogous to (36), which he calls the value
determination operation (VDOQ), he finds the V(x) and g correspond-
ing to a particular policy. To obtain a new policy, he minimizes g;
this process, which he calls the policy improvement routine (PIR),
is similar to employing (38). Again, convergence can be proved for a
quite general set of cases.

3) State Increment Dynamic Programming. In some problems the
minimum cost function and optimal control can be found in one step
by using state increment dynamic programming. Both steady-state-
problems of the type described in Part C-1 and certain minimum
time-to-origin problems have been solved in this manner.{7]:1201 Appli-
cations have been made to both deterministic and stochastic cases.l’]

39

D. Other Procedures

1) Adaptive Date Processing. By varying increment sizes, nominal
trajectories, and other program inputs, it is possible to cut down
substantially the number of computations for a given problem. These
variations can either be preprogrammed or made in real time by the
programmer /operator. Bl:[7]

2) New Concepts in Computers. lmprovements in computer hard-
ware and software are constantly increasing the scope of dynamic
programming. Some recent ideas for computer reorganization, espe-
cially in the areas of parallel processing and cellular logic,?® could
lead to very large reductions in the computer time and storage re-
quired for solving large problems.

3) Clever Problem Formulation. In the final analysis, careful choice
of state, control, and stage variables, selection of an appropriate per-
formance criterion, and use of judicious approximations are the most
important factors in the successful application of dynamic program-
ming. Unless the mathematical problem formulation is both a concise
and a meaningful representation of the actual situation, the applica-
tion of sophisticated computational procedures will yield little
benefit.

IV. APPLICATIONS

A. Minimum-Time-to-Intercept Trajectories for a
Ground-Based Interceptor Missile

In attempting to intercept an enemy missile or aircraft with an
interceptor missile, the initial launch strategy is extremely important.
Although later guidance commands can compensate for some errors,
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Fig. 6. Coordinates r, 8, 7, and ¢ in minimum-time-to-intercept problem.

the outcome of an engagement is largely determined by the initially -
chosen trajectory.

In order to aid in the selection of an initial trajectory, a dynamic
programming program has recently been written for finding the
minimum-time trajectory from the missile site to any point in three-
dimensional space.1?9l The program uses forward dynamic program-
ming. Although the problem appeared at first to have six state
variables, namely, missile position and velocity along each co-
ordinate axis, the number was quickly reduced to three. First, it was
observed that minimum-time trajectories always stayed in the plane
determined by the intercept point and the local vertical at the missile
site; this eliminated two state variables. Next, the radial distance 7
from the missile site was selected as the stage variable; this reduced
the number of state variables to three. These variables were chosen
to be angle of missile position vector with respect to horizontal 8,
magnitude of missile velocity », and angle of missile velocity vector
with respect to horizontal ¢. The final choice of coordinates is shown
in Fig. 6.

The program can be modified to handle any missile dynamics and
any constraints. Alternative performance criteria, such as minimum
loss of velocity, can also be considered. A terminal performance
measure, such as the angle between missile velocity vector and
target velocity vector can be imposed.

The program was run with data for a hypothetical missile. The
program required 40 minutes on the IBM 7090 to generate optimal
trajectories to any point that the missile is capable of reaching. These
results have been stored on tape, and a program has been written
for recovering the trajectory to any specified point or points; this
latter program takes less than 40 seconds to recover the optimum
trajectory to any 100 selected points. The accuracy of the program
was tested by using a quasilinearization technique to generate the
minimum-time trajectory to some representative points; the dynamic
programming solution was used as the initial nominal trajectory. In
all cases the improvement in minimum time was by less than two
percent.

B. Minimum-Fuel Trajectories for the SST

A computer program based on state increment dynamic program-
ming has been written for computing minimum-fuel trajectories for
the SST.[7-1201-(22-30] The program is capable of handling a wide
variety of aerodynamic equations and constraints. The program can
be run either in an evaluation mode in which it generates optimum
tfrajectories from all feasible initial states, or in a real-time control
mode in which it generates optimum trajectories only in a region
about a preselected nominal trajectorv.

C. Airline Scheduling

In the airline scheduling problem it is desired to assign a fleet of
aircraft to a set of scheduled flights in an optimum manner. The
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Configuration of four-dam problem.

multistage decision aspects of this problem enter because not only
is an aircraft committed for a specified time interval, but also its
position in space at the end of that time is specified. The problem
becomes especially difficult when one or more aircraft become un-
available because of unscheduled maintenance or when one or more
airports become inaccessible because of weather. In addition, there
are a number of operating constraints, such as the maximum number
of hours an aircraft can fly over the day.

A dynamic programming program for optimally scheduling air-
craft was discussed in Larson.B3! Although this program was pri-
marily designed for operations over a 24-hour period, it can easily be
adapted both to short-term scheduling when the originally planned
schedule is interrupted by weather or aircraft failure and to longer-
term scheduling. It is very flexible in the constraints it can consider
and in the factors used in the performance criterion. However, be-
cause of computational requirements its applicability is limited to
about six aircraft.

A new program, based on successive approximations, has recently
been written.[?] This program is capable of handling a few hundred
aircraft on presently available computers. On a medium-speed com-
puter? the solution to a problem with 70 aircraft, 10 airports, and
over 300 flights was obtained in 3 minutes.

D. Optimum Operations and Planning of Water Resource Systems

A number of problems related to the optimum operations and
planning of multipurpose water reservoir systems have been solved
by dynamic programming. Several of these are discussed in Larson
and Keckler[® One example is the optimum operation over a 24-hour
period of a four-dam system in a series-parallel configuration (Fig. 7)
in which the performance criterion takes into account use of the sys-
tem for power generation, irrigation, flood control, and recreation.
This problem was solved by successive approximations; convergence
to the true optimum was obtained in 30 seconds on a medium-speed
computer.? Another example is the optimum operation of a single
reservoir over an entire year in which the stochastic nature of stream
flows must be taken into account; a solution for this case was obtained
by iteration in policy space. Still another example is the long-term
planning of system additions; this problem was solved by forward
dynamic programming.

E. Optimum Operation of a Natural Gas Pipeline Network

Dynamic programming has been used to find the short-term (on
the order of 24 hours) operating policy for compressor stations, such
that all demanded gas is delivered at contract pressure or greater; the
pressure limits of the pipes are not exceeded, and compressor operat-
ing costs are minimized.[¥ Dynamic equations of the pipeline were
obtained by making lumped approximations to the partial differential
equations describing the flow of gas.

‘Burroughs B-5500.
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Fig. 8. Optimal control of a robot in a partially unknown environment. Prob-
ability of barrier being on the square equals the number in the square if one is
given, and zero otherwise.

In this application a dynamic programming program was not
implemented in real time, but instead its results were used to suggest
and evaluate a suboptimal algorithm that is currently being imple-
mented in an actual network.

F. Optimum Design of Reliable and Maintainable Systems

Dynamic programming has recently been used to solve the problem
of optimally designing a system when some of the subsystems have a
nonzero probability of failing and when there is limited repair capa-
bility.[3 The basic approach is to augment the state vector with
variables that indicate whether or not the subsystems have failed and
to what extent the repair capability has already been used; in terms
of the combined optimal control and estimation theory,[#~17 this is
the “information state” for the system. The decision of when to repair
is made part of the control vector. The resulting problem formulation
can be handled by the dynamic programming procedure for the sto-
chastic control case. Some examples are worked out in Ratner.[34

G. Optimal Control of a Goal-Seeking Robot in @ Partially Unknown
Environment

A problem that contains elements of dual control theory, % “clair-
voyance,”[®] and learning systems theory is the following. A robot is
attempting to find its way to a particular goal. The location of the
goal is not known exactly, but an a priori probability distribution is
available. There are barriers that the robot is not allowed to cross,
but their location is also specified only by an a priori probability dis-
tribution. The robot is allowed to “see” only in a small area about its
present location; however, it is allowed to remember where it has
been before. Also, it is allowed to see a large area by paying a certain
penalty. The problem is to find the sequence of “moves” and “looks”
that will enable it to minimize, in an expected value sense, the sum of
the penalty for looks and the distances covered by moves.

A dynamic programming formulation of this problem has recently
been developed.B7 As in the previous section, it is necessary to aug-
ment the basic system state and control vectors. A number of sample
problems have been solved. In Fig. 8 one such example is depicted in
which the goal location is known, the possible barrier locations are
known, and the a priori probabilities that the barriers are present are
given. A move for the robot consists of moving + one unit in either
the x or y direction. The robot is allowed to “see” one move ahead at
all times, and for a cost of 0.2 moves, it can “see” two moves ahead.
The performance criterion is the total expected number of moves to
reach the goal, including the costs for looks. As a matter of interest, it
was found that a group of engineers, when given the same set of rules
for the problem, did not achieve as good a performance as the com-
puter-generated solution.
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V. CoxcLusIONS

In this paper a number of new computational procedures based on
dynamic programming have been presented. These methods have
computational requirements that are far less than those of the stan-
dard computational algorithm. AMany nonlinear problems involving
four state variables have been solved by these methods, and several
applications involving a larger number of state variables have been
made.

The reduced computational requirements of these procedures
should lead to increased use by control engineers of dynamic pro-
gramming as a computational tool. Athans’ comprehensive survey
paper on optimal control theory and applications!*l showed little
activity in applications of dynamic programming, but considerable
utilization of computational algorithms based on the calculus of vari-
ations and the maximum principle. However, as control engineers
attack a broader range of problems, it is felt that there will be more
demand for computational algorithms that have the unique advan-
tages of dynamic programming. In particular, these methods will find
application in problems where one or more of the following conditions
is present: a feedback control solution is particularly desirable; it is
difficult to guarantee a true optimum solution by using indirect meth-
ods; the system variables are naturally discrete; stochastic effects
must be considered; the system equations are nonlinear; the perfor-
mance criterion is a complicated function; or constraints of a general
nature are present. It is hoped that this paper, by pointing out effi-
cient computational procedures that retain these advantages, will
simulate further work by control engineers, both in applications of the
present algorithms and in the development of even more improved
methods.
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