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On the Infinite Horizon Performance
of Receding Horizon Controllers

Lars Grüne and Anders Rantzer, Fellow, IEEE

Abstract—Receding horizon control is a well established ap-
proach for control of systems with constraints and nonlinearities.
Optimization over an infinite time-horizon, which is often compu-
tationally intractable, is therein replaced by a sequence of finite
horizon problems. This paper provides a method to quantify the
performance degradation that comes with this approximation.
Results are provided for problems both with and without terminal
costs and constraints and for both exactly and practically asymp-
totically stabilizable systems.

Index Terms—Dynamic programming, model predictive control
(MPC), receding horizon control (RHC), suboptimality.

I. INTRODUCTION

R ECEDING horizon control (RHC), often also termed
model predictive control (MPC), is by now a well estab-

lished method for the optimal control of linear and nonlinear
systems [1]–[3]. One way of interpreting this method in a discrete
time setting is the following: In order to approximate the solution
to a (computationally intractable) infinite horizon optimal con-
trol problem, a sequence of—often suitably constrained—finite
horizon optimal control problems is solved. Then in each time
step the first element of the resulting optimal control sequence
is used as a feedback control value for the current state.

This interpretation immediately leads to the question about
the suboptimality of the resulting RHC feedback: how good is
the resulting RHC controller with respect to the original infinite
horizon cost functional? This question has been addressed in a
number of papers and estimates for the infinite horizon perfor-
mance are given, e.g., for nonlinear systems in [4] with zero
endpoint constrained finite horizon problems and in [5] with
(local) Lyapunov function terminal cost, respectively, and for
linear systems in [6] without terminal costs or constraints. The
paper [7], again dealing with linear systems, presents a nega-
tive result about the monotonicity of the infinite horizon per-
formance of RHC controllers with terminal cost. In this paper
we consider discrete time nonlinear systems on arbitrary metric
spaces both without and with terminal costs and constraints. For
these systems we derive explicit estimates for the degree of sub-
optimality which in particular induce bounds for the minimal
optimization horizon needed for stabilization.
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Despite the fact that RHC schemes without stabilizing ter-
minal costs and constraints possess a number of advantages (see
the discussion at the beginning of Section IV), in the litera-
ture they appear less frequently addressed. Notable exceptions
from this rule are, among others, the papers by Shamma and
Xiong [6], Primbs and Nevistić [8], Jadbabaie and Hauser [9]
and Grimm et al. [10]. In [6], for discrete time linear finite di-
mensional systems it is shown that the knowledge of the finite
horizon optimal value functions can be used in order to com-
pute a bound on the degree of suboptimality of the receding
horizon controller and that this result can be applied by using
numerical approximations of the optimal value functions. This
result was extended in [8] to linear systems subject to linear con-
straints. For nonlinear continuous time systems with stabilizable
linearization, it is shown in [9] that a receding horizon controller
stabilizes the system for sufficiently large optimization horizon.
The paper [10] addressing discrete time nonlinear systems is
in a similar spirit, however, instead of imposing conditions on
the linearization it uses rather general and genuinely nonlinear
detectability conditions. The papers [9], [10] have in common
that suboptimality is not considered and that the stability results
are merely asymptotic, i.e., for sufficiently large horizon. Com-
pared to these four papers, our contribution is most similar to
[6] and [10]: as in [6] we derive explicit bounds on the degree
of suboptimality of the RHC closed loop system and as in [10]
we address general discrete time nonlinear systems (here even
on arbitrary metric spaces) without imposing conditions on the
linearization. The main difference to [6] is that our conditions
do not rely on the knowledge of the finite time optimal value
functions but rather on suitable bounds on these functions, see
Remark 4.10 for details. The main difference to [10] is that we
derive explicit bounds for suboptimality and stability instead
of asymptotic estimates for sufficiently large horizons; further-
more, some aspects of our conditions are more general, cf. Re-
mark 5.11.

Concerning our results for RHC schemes with terminal costs
and constraints, a property which is related to our question is
the inverse optimality of RHC controllers: it is well known that
under suitable conditions RHC controllers are infinite horizon in-
versely optimal, i.e., they are optimal for an infinite horizon op-
timal control problem with a suitably adjusted running cost, see,
e.g., [3], [11], [12]. However, this property does not yield esti-
mates for the suboptimality with respect to the original running
cost, as the adjusted running cost contains precisely those terms
which characterize the mismatch between the infinite horizon
optimal and the RHC controller, i.e., those terms that we intend to
estimate. A paper which is closer to our approach is [5] in which it
is shown that infinite horizon optimality is maintained if the ter-
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minal cost equals the infinite horizon optimal value function. In
this paper we extend this result by showing how and in which
quantitative sense this results remains true if the terminal cost
merely approximates the infinite horizon optimal value func-
tion, cf. Remark 6.3 for details.

The common technique for all our results in the different set-
tings is a relaxed dynamic programming inequality. Inequali-
ties of such type have been used frequently in the optimal con-
trol literature, however, a systematic study seems to have per-
formed only recently in [13], [14]. A specific relaxed dynamic
programming inequality, formulated in Proposition 2.2, is the
cornerstone of our analysis.

The paper is organized as follows. We start by describing
the setup and some preliminary results on relaxed dynamic
programming in Section II. Section IV contains our main
results on RHC without using terminal costs and constraints
and presents an assumptions under which we can prove sub-
optimality for RHC schemes for asymptotically stabilizable
systems. Section V shows how to relax this assumption in
order to deal with only practically stabilizable systems and
Section VI presents our results for RHC with terminal cost and
terminal constraints. The final Section VII concludes our paper.

II. SETUP AND PRELIMINARY RESULTS

We consider a nonlinear discrete time system given by

(1)

with and for . Here we denote the
space of control sequences by and the solution
trajectory for some by . Here the state space
is an arbitrary metric space, which in particular means that our
results also apply to the discrete time dynamics induced by a
sampled infinite dimensional system, cf. [15] for a continuous
time analysis of this setting.

Our goal is to find a feedback control law mini-
mizing the infinite horizon cost

(2)

with running cost . We denote the optimal
value function for this problem by

If this optimal value function is known, it is easy to prove using
Bellman’s optimality principle that the optimal feedback law
is given by

Remark 2.1: We assume throughout this paper that in all rele-
vant expressions the minimum with respect to is attained.
Although it is possible to give modified statements using ap-
proximate minimizers, we decided to make this assumption in
order to simplify and streamline the presentation.

Since infinite horizon optimal control problems are often
computationally infeasible, we use a receding horizon ap-

proach in order to compute a controller by considering the finite
horizon problem given by

(3)

for (using ) with optimal value function

(4)

A variant of this approach often considered in the literature
is obtained when we add a terminal cost to the
problem. In this case, (3) is changed to

(5)

Another common extension is the introduction of a terminal
constraint set for the finite horizon optimization,
which amounts to replacing (4) by

(6)

Here, we assume that the set is forward invariant, i.e., for
each there exists with . When
imposing such a terminal constraint, the domain of points on
which is defined is restricted to the feasible set , which
is the set of initial values which can be controlled to in at
most steps, i.e.

Note that (3) is a special case of (5), with , and that (4)
is a special case of (6) with . Here, we have stated (3)
and (4) explicitly because it is the simplest version of receding
horizon control and a major part of our results apply particularly
to this case.

Based on this finite horizon optimal value function we define
a feedback law by picking the first element of the optimal
control sequence for this problem. Since Bellman’s optimality
principle for the functions reads

(7)

with this amounts to
defining

(8)

Note that the feedback law is not the optimal controller
for the problem (4). However, the optimal trajectory for this
problem can be expressed via the controllers in the
following inductive fashion

(9)

The goal of the present paper is to give estimates about the sub-
optimality of the feedback for the infinite horizon problem.
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More precisely, if denotes the solution of the closed loop
system

and we define the infinite horizon cost corresponding to by

then we are interested in upper bounds for this infinite horizon
value, either in terms of the finite horizon optimal value function

or in terms of the infinite horizon optimal value function .
In particular, the latter will give us estimates about the “degree
of suboptimality” of the controller .

A result closely related to our problem is the inverse opti-
mality of receding horizon schemes, see [3, Section 3.5], [12]
or [11]. This result states that the controller is an infinite
horizon optimal controller for the cost

and that is the corresponding infinite horizon optimal
value function. The importance of this result lies in the fact
that it establishes infinite horizon optimality for the resulting
controller. However, its disadvantage is that — unless one has
informations about the relation between and —it only does
so for the new running cost . Thus, in general this result does
not tell us much about the performance of with respect to
the original cost , which is what we are interested in. Note
that in (undiscounted) infinite horizon optimal control one is
in general interested in nonnegative running cost functions,
in order to be able to conclude, e.g., stability of the closed
loop system. Thus, in this context the inverse optimality re-
sult is only useful if , implying the condition

. Essen-
tially, our approach is based on deriving estimates of this type
(for precise formulations see the Lemmas 4.1 and 5.3) from
appropriate conditions on either the functions or on the
running cost .

The approach we take in this paper relies on recently devel-
oped results on relaxed dynamic programming [13], [14]. In the
remainder of this section we present a variant of the basic re-
laxed dynamic programming inequality in Proposition 2.2 and
give a sufficient condition for it which is adapted to our receding
horizon setting in Lemma 4.1.

Proposition 2.2: Consider a feedback law and a
function satisfying the inequality

(10)

for some and all . Then for all the
estimate

holds.
Proof: The proof is similar to that of [14], Proposition 3:

Consider , the trajectory generated by the

closed loop system using , and the control sequence generated
by . Then from (10) we obtain

Thus, summing over yields

Thus, is an upper bound on and we immediately obtain

Remark 2.3: All of our results remain true if the set of
admissible control values is subject to—possibly state depen-
dent—constraints.

Similarly, the set of states does not necessarily need to be
the original state space of the system. Indeed, all of our results
immediately carry over if is an arbitrary subset of the state
space which is forward invariant under the receding horizon
feedback. Another generalization would be to choose as the
feasible set of a state constrained problem, similar to the con-
struction used in [8] in the linear setting in order to carry over
the stability results from [6] to constrained systems.

III. SUMMARY OF THE MAIN RESULTS

Before we turn to the technical presentation, in this section
we give a brief non-technical summary of our results.

The main theme of this paper is to apply relaxed dynamic
programming techniques to receding horizon control schemes
for discrete time nonlinear systems on arbitrary metric spaces.
The basis for our results is Proposition 2.2 which we are going to
apply to , i.e., to the finite time optimal value function.
Hence, we need to establish checkable conditions under which

satisfies (10). As we will see, these techniques are applicable
to schemes with and without terminal costs and constraints as
well as to “mixed” forms.

Our results for RHC schemes without terminal cost in
Section IV are in the spirit of [6], [8]–[10] and give conditions
on the running cost under which Proposition 2.2 can be applied
and thus precise suboptimality estimates [and thus stability,
cf. Remark 4.6 (i)] can be derived. Intuitively, our results
state that if the instantaneous running cost contains sufficient
information about the optimal value function, then the resulting
controller will also be sub-optimal. Here, the term “sufficient
information” is formalized by an inequality, requiring that the
scaled running cost for some be larger than
the optimal value functions , cf. Assumption 4.2. If this is
the case, then the in Proposition 2.2 and consequently the
degree of suboptimality of the controller can be readily
computed from the factor and the horizon length . These
conditions can be either checked analytically using a priori
controllability information about the system, cf. Proposition
4.7 or numerically at the time the scheme (or a numerical
simulation) is running, cf. Remark 4.6 (ii).

A variant of these results is presented in Section V in which
we do no longer assume that the system is controllable to the
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0–level set of the running cost . In this situation we can show
the existence of a set around the 0–level which is forward in-
variant for the RHC controller and that the resulting trajecto-
ries are sub-optimal until they enter this set. This is similar to
practical asymptotic stability results, in which a system behaves
like an asymptotically stable system until it reaches a forward
invariant set, which is why we call this property “practical sub-
optimality.”

Our final set of results is given in Section VI in which we deal
with RHC schemes with Lyapunov function terminal costs, the
situation most widely discussed in the literature. Again, we use
a condition on the running cost , however, in contrast to the re-
sults without terminal costs now the condition is on the relation
between and the terminal cost . The results in Theorem 6.2,
which extend those in [5], show that if the terminal cost ap-
proximates the infinite horizon optimal value function and
is in a suitable sense compatible with the running cost (cf. As-
sumption 6.1 ), then the degree of suboptimality precisely equals
the difference . Again, the proof is based on Proposition
2.2, now with . As we only assume to be a local Lya-
punov function, these results are only valid on those regions of
the state space from which the optimal trajectories enter the re-
gion on which the local Lyapunov function is valid, which may
be small if the optimization horizon is small. However, this local
terminal cost can be coupled with the conditions on the running
cost outside the domain of the terminal cost. Thus, combining
the two conditions in Theorem 6.4 we obtain a scheme which is
locally stable and suboptimal by virtue of the local terminal cost
and globally suboptimal by virtue of properties of the running
cost away from the origin.

IV. RESULTS WITHOUT TERMINAL COST

The presumably simplest version of RHC schemes are those
in which the infinite horizon functional is truncated to a finite
horizon functional and no constraints are imposed. In the
literature, this version appears less frequently addressed than
versions with terminal costs and constraints, although it has a
number of advantages compared to more complicated schemes:
for nonlinear systems the Lyapunov function property of the
terminal cost—which is typically needed in order to ensure
stability—is difficult to establish globally. Local Lyapunov
functions are easily computed at equilibria if the linearization
is controllable but they require terminal constraints making the
optimization problem computationally harder and restricting
the operating region to the feasible set, often leading to large
optimization horizons for large operating regions. Local Lya-
punov functions are also difficult to obtain if more general
sets than equilibria are to be stabilized or if the problem is
time varying, like in tracking problems, where in our own
numerical experiments we observed RHC without terminal cost
to perform very well [16], [17].

It seems that one reason for not exploiting these advantages
in practice — at least in the practice reported in the literature
— is the lack of theoretical foundation, in particular a lack of
rigorous stability proofs, given that within the vast amount of
papers on RHC/MPC there are only few papers addressing this
issue. Notable papers among these few are, e.g., the papers [6]

and [8] for linear and [9] and [10] for nonlinear systems, whose
contributions were already discussed in the introduction.

When using RHC schemes without terminal cost, the first
straightforward observation is the inequality

(11)

for all with .
Our approach now is to apply Proposition 2.2 to .

More precisely, our goal is to provide checkable conditions
under which satisfies (10). For this purpose, the following
straightforward observation is useful.

Lemma 4.1: Consider and the receding horizon feed-
back law . Assume that

(12)

holds for some and all . Then satisfies
(10) and, in particular

holds for all .
Proof: Combining (7) and (8) and inserting (12) yields

which shows (10). Now Proposition 2.2 yields the assertion.
The following assumption contains our central condition.
Assumption 4.2: For a given there exists such

that the inequalities

hold for all .
Remark 4.3: If the inequality holds

for all and all , then (11) immediately implies
Assumption 4.2.

Proposition 4.4: Let and assume that Assumption 4.2
holds for this . Then the inequality

holds for all .
Proof: We first show that Assumption 4.2 implies the

estimate

(13)

for all and all . In order to prove (13), we
use the optimality principle
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Now Assumption 4.2 implies

which shows (13).
By induction over we prove

(14)

for

For (14) follows directly from Assumption 4.2 because

For the induction step , for we obtain

where we have used (13) in the first inequality and the induction
assumption in the second inequality. This implies (14) because

Combining Proposition 4.4 with Lemma 4.1 we can now de-
rive the main result of this section.

Theorem 4.5: Consider and such that
holds. Assume that Assumption 4.2 holds for

these and . Then the inequality

holds for all . In particular, the inequality

holds for the relative difference between and .

Proof: From Proposition 4.4 we obtain

Using this inequality for and combining it
with inequality (13) for we can conclude

Hence we can apply Lemma 4.1 with

in order to obtain the assertion.
The following remark summarizes a number of observations

for our result.
Remark 4.6: (i) If the running cost is positive definite

and proper with respect to some compact set and is a
finite dimensional space, then Theorem 4.5 implies asymp-
totic stability of if or, equivalently,

. This follows from
inequality (12) which holds by virtue of Theorem 4.5 and im-
mediately yields that is a Lyapunov function for the closed
loop system. More generally, one can obtain stability replacing
the positive definiteness of by a detectability condition, for
details we refer, e.g., to [10].

(ii) Our condition depends on the knowledge of which can
be computed in two different ways: on the one hand it is pos-
sible to give sufficient analytical conditions on the dynamics of
the system seen through the “output” . Such conditions
are developed in the remainder of this section. On the other
hand, our conditions can be checked during the runtime of the
RHC algorithm or respective numerical simulations: although
we have supposed the inequalities in Assumption 4.2 to hold
for all , in the proofs of our results we only need these in-
equalities along the optimal trajectories which are known once
the optimization problem has been solved. This way we can es-
timate the degree of suboptimality of the RHC feedback scheme
a posteriori. Details of such run time estimates and algorithms
which use this a posteriori information for an online adaptation
of the optimization horizon are currently under investigation.

(iii) Note that our results give precise suboptimality bounds
on the performance once the quantity has been computed ac-
cording to ii). In particular, the results are not merely asymptotic
(“for sufficiently large ”) but provide precise quantitative in-
formation for the size of needed in order to ensure a desired
performance.

(iv) As an alternative to the inequalities in Assumption 4.2
one could use

in order to prove a result similar to Theorem 4.5, see [18] for
details.
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In the remainder of this section we investigate analytical con-
ditions on the running cost which ensure Assumption 4.2.

Proposition 4.7: Assume that there exists a function
and constants , and such that for

all the following two conditions hold:
(i) for all (ii) there exists a control sequence such
that the corresponding solution with satisfies

Then Assumption 4.2 holds with .
Proof: Condition (ii) implies

Combining this with condition (i) yields

for all and thus in particular for , implying
Assumption 4.2 for and for , implying As-
sumption 4.2 for .

Remark 4.8: (i) The condition is a combination of an observ-
ability condition (i) and a controllability condition (ii). More
precisely, condition (ii) is an exponential controllability condi-
tion for the running cost . Note that exponentially converging
cost functions can always be constructed from control Lyapunov
functions, however, since such control Lyapunov functions are
hard to find, this approach may not be feasible. In an RHC
context, exponential controllability conditions for the running
cost are discussed in [10, Section 3], in particular for homo-
geneous systems. Note that if the system is exponentially con-
trollable to the origin, then the condition is always satisfied for

and , although other
choices of and may yield better constants , and .

(ii) In order to check the condition we need to know a null
controlling control sequence . Note, however, that this se-
quence does not need to be optimal and that it does not need
to be in feedback form in order to apply the proposition. Ex-
ample 4.9, below, illustrates this procedure.

For Theorem 4.5 we do now have three types of assumptions
and conditions, which differ in the type of information used:

• an assumption involving the optimal value functions and
the RHC controllers (Assumption 4.2);

• a sufficient condition involving the optimal value functions
(Remark 4.3);

• a sufficient condition involving an auxiliary function
(Proposition 4.7).

The following simple example highlights the difference be-
tween these assumptions.

Example 4.9: Consider the linear 1-D control system

with and . We first consider the
running cost

Here it is easy to solve the infinite horizon optimal control
problem, because for the related optimal value
function

satisfies the optimality principle, because

Using the same argument one also sees that the finite time op-
timal value functions are given by

with corresponding RHC feedback laws

Thus, for , the RHC controller is indeed optimal for the
infinite horizon problem.

This optimality property can be obtained from Theorem 4.5
using Assumption 4.2 : this Assumption is satisfied for each

with for . Thus, for each we
obtain the estimate

i.e., a sharp estimate.
Note that for checking Assumption 4.2 directly we have

used information about the RHC controller, which we cannot
expect to know in general. If this information is not avail-
able, Remark 4.3 can be used instead: its assumptions are
easily verified by estimating using the control sequence

, yielding and thus again
.

In order to illustrate the use of Proposition 4.7 we alter the
running cost to

Then, using one obtains (i) with . Applying
the control sequence
yields (ii) with and , resulting in .
Table I shows the minimal horizon length needed according
to Theorem 4.5 in order to ensure the given values for the rela-
tive accuracy.

Note that we do not claim that these estimates in Table I are
tight or even optimal. In particular, the use of other sequences

might lead to smaller values of and hence tighter estimates.
We have chosen the given sequence because it allows for
easy computations. In fact, the possibility to use arbitrary null
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TABLE I
PERFORMANCE FOR RUNNING COST ���� �� � � � �

controlling control sequences allowing for easy computations
can be considered as a particular advantage of our approach.

Remark 4.10: Our results bear some similarities with those
obtained for linear finite dimensional systems in [6]. Apart from
the fact that here we treat nonlinear systems on arbitrary metric
spaces, the main difference of our results to [6] is that we pro-
vide sufficient conditions on the running cost in order to ensure
that the difference between and is small, while in [6]
this is a condition which is to be verified by computing numer-
ical approximations to the optimal value functions and

. While for linear systems—at least in low dimensions—the
numerical computation of is a feasible task, in our
nonlinear setting on arbitrary metric spaces this is typically im-
possible, which is why our conditions, which can be either veri-
fied analytically or checked numerically at run time, are prefer-
able. It may, however, be possible to modify the approach in [6]
in order to yield conditions which are also checkable at run time.

V. PRACTICAL OPTIMALITY

There are cases where it is too optimistic to expect that the
conditions presented in the last section hold. For instance, it
may happen that the discrete time system considered is obtained
from sampling a continuous time system with zero order hold
and even if this continuous time system is controllable to some
fixed point it is likely that the corresponding sampled-data
system is only controllable to a neighborhood of this fixed point
(see the example in [19, Sec. 9.4]), i.e., it is only practically
stabilizable at . In this case, for a positive definite running cost
with respect to , i.e., , it is not possible
to find a control sequence yielding and it
is easily seen that in this case Assumption 4.2 is not satisfied
because the functions grow unboundedly for .

If we are able to compute a forward invariant stabilizable
neighborhood of then it is straightforward to apply our
results from the previous section to running costs which are
positive definite with respect to . In practice, however, it may
be impossible to compute such a set which makes the design
of an appropriate cost function a difficult task. In this case, a
much simpler approach is to choose positive definite with re-
spect to ignoring the lack of exact stabilizability. Since such
a function is smaller near than far away from one may
expect that the RHC controller will still drive the system to a
neighborhood of , thus yielding the closed loop system practi-
cally stable and—more important in our context—yielding sub-
optimal trajectories before reaching this neighborhood.

In this section we relax our Assumption 4.2 in order to cope
with this setting. Before we investigate practical versions of our
relaxed dynamic programming assumptions and statements and
illustrate them in Example 5.10, below, we prove appropriate
practical versions of the preliminary results from Section II. We
start with a practical version of Proposition 2.2.

Proposition 5.1: Consider a feedback law and a
nonnegative function satisfying the inequality

(15)

for some , some and all .
Let be the minimal set which is invariant for such

that for all the inequality

holds and let

Consider the modified running cost

the corresponding infinite horizon optimal value function
and the corresponding functional using the controller .

Then for all the estimate

holds.
Proof: Consider , the trajectory

generated by the closed loop system using , and the control
sequence generated by . Let be min-
imal with setting if this never happens.
Then, from the definition of and (15) for we
obtain

where we have used in the inequality that the right hand
side is nonnegative because of and the defini-
tion of . For the invariance of implies

, thus . Hence, for any and
summing over yields

Since was arbitrary, is an upper bound for
and we obtain the assertion.

Remark 5.2: The definition of in this proposition is implicit
and the precise shape of can not be deduced from (15). How-
ever, we can obtain an estimate for from (15) by defining

Then the inclusion

holds.
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In order to prove this claim it is sufficient to show that is
invariant under and

for all . The stated inequality follows immediately
from (15) because outside the inequality
holds. In order to show invariance of under , i.e.,

for , we distinguish two cases:
Case 1: . In this case (15) and
yields

implying
Case 2: . In this case the definition of

yields , hence the maximum in (15) is
attained in the first term and thus we obtain

again implying .
The reason for formulating Proposition 5.1 using the implic-

itly defined set lies in the fact that the estimate via may be
conservative and using in general yields a sharper estimate.

We would also like to point out that there are other methods
for estimating , like, e.g., the techniques developed in [10].
The next lemma is a practical version of Lemma 4.1.

Lemma 5.3: Consider and the receding horizon feed-
back law . Assume that

(16)

holds for some and all . Then satisfies
(15) and, in particular

holds for all using the notation from Proposition 5.1.
Proof: Combining (7) and (8) and inserting (16) yields

which shows (15). Now Proposition 5.1 yields the assertion.
Having derived the appropriate practical versions of our pre-

liminary results we can now turn to the formulation of a practical
version of Assumption 4.2.

Assumption 5.4: For given there exists and
such that the inequalities

for hold for all .
Remark 5.5: Essentially, this assumption relaxes Assump-

tion 4.2 by introducing a bound on which is always strictly
positive, more precisely, due the the non-negativity of it is al-
ways greater or equal or , respectively. In particular,
this allows to apply the assumption if the grow unboundedly
in on the whole state space , cf. also Remark 5.11. Note that
in practical examples there may be a tradeoff between and .
Example 5.10, below, illustrates this situation.

The next proposition is the modification of Proposition 4.4
for Assumption 5.4.

Proposition 5.6: Let and assume that Assumption
5.4 holds for this . Then the inequality

holds for all .
Proof: Consider the optimal control problem with running

cost defined by

The corresponding optimal value functions satisfy

and the optimal controls for and coincide. This implies

and similarly

Now we can proceed inductively as in the proof of Proposi-
tion 4.4 (note that nonnegativity of and is not needed in this
induction) using either from Assumption 5.4 or in each
induction step. This proves the estimate

(17)

for as in the proof of Proposition 4.4. Translated back to ,
this yields the asserted inequality.
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Remark 5.7: Note that the inequality from Proposition 5.6
implies the more explicit estimate

however, for our subsequent calculations the sharper inequality
stated in Proposition 5.6 is more suitable.

Finally, we can state the practical version of Theorem 4.5.
Theorem 5.8: Consider and such that

holds. Assume that Assumption 5.4 holds for
these and and some . Then

using the notation from Proposition 5.1.
Proof: From Proposition 5.6 we obtain the inequality

which implies

(18)

Analogous to (13), from Assumption 5.4 for we obtain

Combining this with (18) for yields

Hence, we obtain (16) with

which using Lemma 5.3 implies

Remark 5.9: It should be noted that in the motivating example
at the beginning of this section is unbounded, in which case
the final inequality in Theorem 5.8 is useless.

We illustrate Theorem 5.8 by a simple example.
Example 5.10: Consider the discrete time system

with

for some , and (this discrete
time system mimics the behavior of the radial component of the
second sampled-data system discussed in [19, Sec. 9.4]).

Using the feedback law one easily sees that
the set is asymptotically (even finite time) stable,
however, it is not possible to steer the system into the interior of
this set.

We choose the running cost and fix
. Using the control sequence , for

one obtains

which yields Assumption 5.4 for arbitrary .
For , using the control sequence

we obtain

for all and thus

(19)

Since for all , for this implies As-
sumption 5.4 for

For symmetry reasons, the same estimate holds for .
Thus, Assumption 5.4 holds for all with .
Note that results in , i.e., there is a tradeoff
between and .

By symmetry of the problem, the stabilized set is of the form
. Assuming without loss of generality (we

can always enlarge , if necessary) we obtain . Thus,
Theorem 5.8 yields the estimate

for the modified cost function from Proposition 5.1, provided
is so large that the denominator of the fraction is positive.

Here we have used the first inequality in (19) for and
for estimating in the last step.

It remains to estimate the stabilized set . Here we proceed
similar to Remark 5.2 exploiting, however, the symmetry of the
problem: since the problem is symmetric with respect to the
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origin and is monotonically increasing with respect to
we obtain that is symmetric and monotonically increasing
in , too. From this it is easy to conclude that the set

is a sublevel set for each which implies that it is forward in-
variant. Thus, we do not have to construct the forward invariant
set from Remark 5.2 but can conclude directly that the re-
ceding horizon controller will stabilize the set . Since for

we can choose arbitrarily close to if , this stabi-
lized set converges to as .

Remark 5.11: In some references, an inequality of the form

for some function , all and all
is imposed in order to conclude stability or practical stability
of the RHC closed loop, cf. e.g., [10], Standing Assumption 4,.
While our Assumption 4.2 fits into this framework, Assump-
tion 5.4 is more general, since in the example above we ob-
tain global practical asymptotic stability of the set even
though holds for all and all with

.

VI. RESULTS FOR TERMINAL COSTS BEING

LYAPUNOV FUNCTIONS

Many RHC schemes make use of a suitable terminal cost in
order to ensure closed loop asymptotic stability of the RHC con-
troller. Often, in these settings the terminal costs are chosen as
Lyapunov functions with respect to the running cost , see [3]
and the references therein. In this section we discuss the conse-
quences on suboptimality of these choices. Here we make the
following assumption on the terminal cost .

Assumption 6.1: For a neighborhood of 0 and each
there exists such that

This condition is often imposed in receding horizon schemes
in order to ensure asymptotic stability of the closed loop, see [5,
Section II] or [3, Section 3.3 and the references therein]. Note
that Assumption 6.1 implies (10) for with . Hence,
Proposition 2.2 implies on and we can de-
fine the positive difference .
Observe that in order to simplify the presentation we assume
to be defined on the whole state space . If is only defined
locally then, for instance, one could choose as a sublevel set
of and extend continuously outside by a constant func-
tion, cf. [5, Formula (8)].

A typical situation in which meeting Assumption 6.1 can
be found is if the linearization of is controllable to 0 and

is close to a quadratic function around the origin. In this
case, can be chosen as the optimal value function of the
linear quadratic problem for a quadratic cost function which
is strictly smaller than . Then, the closer and are and the
smaller the neighborhood is chosen, the smaller becomes,
see also the discussion after Lemma 3 in [9].

In the following theorem we distinguish the case with and
without terminal constraint set.

Theorem 6.2: Assume that the terminal cost in (1) satisfies
Assumption 6.1 on some neighborhood of the origin. Define

and let .
i) Consider the optimal receding horizon controller from

(8) based on from (4), i.e., without terminal constraint.
Let be the set of initial values for which the
optimal solution for the finite horizon functional (5)
satisfies . Then the inequality

holds for each .
ii) Consider the optimal receding horizon controller from

(8) based on from (6) with terminal constraint set
. Then the inequality

holds on the feasible set . Let, furthermore,
be the set of initial values for which the optimal so-

lution for the infinite horizon functional (2) satisfies
. Then the inequality

holds for each .
Proof:
i) For abbreviate . Then,

from the optimality principle we obtain .
Now consider an optimal control sequence
for the problem (4) with horizon length and
the corresponding trajectory with initial value

. Since we obtain
. Let denote the control

value from Assumption 6.1 for and define a control
sequence .
This sequence yields

Thus, (12) follows with which implies

The inequality follows immediately
from the definition of and and , which
was observed in the discussion after Assumption 6.1.

ii) The inequality is concluded as in (i).
The second inequality again follows from the definition of

and and , observing that for the
optimal control sequence for (2) satisfies the constraint
in (6).

Remark 6.3:
i) Note for terminal cost functions which are continuous

and constant outside , Theorem 6.2 (i) remains true
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under the terminal state constraint . This fol-
lows from [5], Theorem 1, where it is shown that is
forward invariant under the RHC feedback . For this
specific structure of the terminal cost the proof of this
theorem can also be used as an alternative proof of the
first inequality in Theorem 6.2 (i), because there

is shown for . Summing
up this inequality again yields the desired inequality.

ii) For the particular case we get and
thus Theorem 6.2 yields infinite horizon optimality of the
receding horizon controller on or , respectively.
Thus we recover the result from [5], Theorem 2. Our more
general result proves the conjecture posed at the end of
the introduction of [5], i.e., that one obtains suboptimality
with guaranteed error bounds when approximates .

The last result we are going to present shows how Theorem
6.2 (i) may be combined with the results from Section IV.

The motivation for such a combination stems from the fact
that Assumption 4.2 may hold away from the origin but may
fail to hold in a neighborhood of the origin. Then, on this neigh-
borhood, a local Lyapunov function terminal cost may be used
in order to stabilize the RHC scheme. Since this construction
works without imposing terminal constraints, we can combine
local stability with global operating region because we do not
need to consider any feasible sets.

Theorem 6.4: Assume that the terminal cost in (5) satisfies
Assumption 6.1 on some neighborhood of the origin. Define

and let .
Consider the optimal receding horizon controller from (8)

based on from (4), i.e., without terminal constraint. Let
be the set of initial values for which the optimal solution

for the finite horizon functional (5) with satisfies
and assume that Assumption 4.2 holds for some

and each on .
Then the inequality

holds for each .
Proof: For the proof of Theorem 6.2 (i) yields

for . This implies

(20)

For we can proceed as in the proof of Proposition 4.4 in
order to conclude

(21)

Combining (20) and (21) yields the inequality in (21) for all
. From this the first inequality of the assertion follows

similarly to the proof of Theorem 4.5 while the second follows
as in the proof of Theorem 6.2 (i).

VII. CONCLUSION

We have derived rigorous suboptimality estimates for the in-
finite horizon performance of RHC controllers. In particular,
we have shown that suitable exponential controllability assump-
tions for the running cost allow for obtaining suboptimality es-
timates for RHC schemes without terminal cost and constraints,
a setting which to the best of our knowledge is not covered by
the existing inverse optimality results. These results are com-
plemented by novel estimates for the case where the RHC ter-
minal cost is a Lyapunov functions, which is the classical setting
for inverse optimality results. In both cases, techniques from re-
laxed dynamic programming are the main tool for establishing
our results.
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