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Helicopter Trimming and Tracking Control Using
Direct Neural Dynamic Programming

Russell Enns and Jennie Si

Abstract—This paper advances a neural-network-based ap- neuro-dynamic programming [2], adaptive critics [3], and so
proximate dynamic programming control mechanism that can forth. Recently and most often, it has been referred to as approx-

be applied to complex control problems such as helicopter flight ; ; ; ; ; ;
control design. Based on direct neural dynamic programming imate dynamic programming (ADP) [4]. This paper is notin a

(DNDP), an approximate dynamic programming methodology, the POSition to discuss which name fits the field the most. Rather,
control system is tailored to learn to maneuver a helicopter. The we consider techniques that converge to an (approximately) op-
paper consists of a comprehensive treatise of this DNDP-basedtimal policy over time in a nonlinear stochastic decision and
tracking contrc_)l framewor_k and exter)sive simulation studies for control problem. Particularly, in this paper, we show that a re-
an Apache helicopter. A trim network is developed and seamlessly ) -
integrated into the neural dynamic programming (NDP) controller cently proposed learning control framework [8], still under the
as part of a baseline structure for controlling complex nonlinear theme of neural network, can solve very complex problems such
systems such as a helicopter. Design robustness is addressed bgs tracking of Apache helicopter.
e e g Em i sophenct ) ol - FO1 he ease of iscussio, e terms “disreteevent” p
nonliqnear validated modgl of the :Apachpe helicopter. This is prob- proa?hes and “continuous-state” approaches are used to discuss
ably the first time that an approximate dynamic programming solutions of ADP. The former refers to the fact that controls/ac-
methodology has been systematically applied to, and evaluated on,tions are obtained by search algorithms and the problems
a complex, continuous state, multiple-input-multiple-output non-  gre discrete event in nature. The latter refers to the fact that
R T e e, (approximate) radient iformaionis used in vlue funcion
general purpose tracking control. approximation and action generation, and the problems can be
in both continuous or discrete-state spaces.

Until very recently [5], generalization problems remain
a major hurdle in reinforcement learning community when
dealing with continuous or large discrete-state spaces or action
. INTRODUCTION spaces. In discrete environments, there is a guarantee that

HIS paper focuses on the application of direct neural dfny operation that updates the value function (according to
namic programming and demonstrates how it can be u%@ Bellman equation) can Only reduce the error between the
to control complex, realistic, and higher dimensional systen@irrent value function and the optimal value function. However,
The direct neural dynamic programming (DNDP) is to be usdliis guarantee does not generalize well when the size of the
to control a helicopter to perform realistic maneuvers and tléscrete-states are large. Using some simple examples, it was
paper demonstrates how this method provides an approximgli@wn in [6] that the value function errors may grow arbitrarily
solution to this optimal control problem that is often solved blarge by using value iteration. Besides, the problems tackled
dynamic programming, and, in doing so avoiding the curse by some state-of-the-art algorithms [5]-[7] are still artificial
dimensionality. The DNDP mechanism was first introduced iand small. They are also lacking in a systematic evaluation of
[8] and later in [9], which provided basic design principles alongystem performance. A car climbing hill example was used in
with a comprehensive evaluation of helicopter stabilization. [8]. The sparse coarse coding concept was proposed in [7] and
this paper, we expand on the original DNDP mechanism to prijaplemented using CMAC, but only demonstrated on a small
vide the ability to do command tracking for complex systemgcrobot. The most recent work in [5] makes use of variable res-
again demonstrating the control mechanism on a helicopter. olution discretization. It demonstrated the various approaches
The approach taken in the present paper resides in the agegplitting on the familiar, nonlinear, nonminimum phase, and
of “approximate dynamic programming.” This is an interdistwo-dimensional (2-D) problem of the “car on the hill.” It then
ciplinary area that has been actively researched but may eokluates the performance of a variety of splitting criteria on
be known to all relevant disciplines. Different terminologiesnany small benchmark problems, paying careful attention to
have been given to this area, such as reinforcement learning fhbkir number-of-cells versus closeness-to-optimality tradeoff
curves. There is no clear evidence of how this approach may

Index Terms—Approximate dynamic programming, helicopter
flight control, helicopter trim, neural dynamic programming.
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tracking an Apache helicopter using a full-scale industrial he Rei‘;?g‘:‘gmem

licopter design model. This is probably the first time that ADF

has been systematically applied to and evaluated on a comp X(t) A }
continuous state multi-input—multi-output (MIMQO) nonlinear
system with uncertainty. /

: e s i X(1) Action § f“rifj-’: J i
DNDP is an ADP method. More specifically, it is an approxi Netwosk¢ | u(r) | Netork %=

mate neural dynamic programming (NDP) method that does n
J(t-1)-r(t)

require explicitly building a system model prior to learning tc
improve system performance. DNDP was perceived as a stra
candidate for a learning system for helicopter flight control be
cause, in addition to its ability of online learning, it can be ap
plied to complex systems such as helicopters without the need to
decouple the control system into simpler subsystems. As suclfjdt 1. Schematic diagram for implementation of the DNDP. The solid lines
can learn to take advantage of any of the system cross Coupﬁ?fﬁesent signal flow, while the dashed lines are the paths for parameter tuning.
characteristics when generating its control solution, including
coupling benefits that may not be apparent to a control systefigsed, neural-network-based, or otherwise. The purpose is to
design engineer. NDP methods can deal with both explicitly agémonstrate the power of DNDP as an approximate dynamic
implicitly defined system performance measures which are ugsttogramming control methodology on a challenging controls
ally a function of the system states and control actions. NQ¥foblem that other approximate dynamic programming algo-
methods avoid the “curse of dimensionality” that dynamic prgithms may not be able to handle. We provide a number of cases
gramming methods suffer from by providing approximate solde show the ability of the learning control system to perform
tions. This, however, may also be considered as the down sidcraft maneuvers. Statistical results showing DNDP’s ability
of the NDP when true “optimality” is demanded. to learn acceleration maneuvers from hover to 50 ft/s at various
From a flight control perspective, there have been numerosiscelerations, up to the aircraft upper limits of 0.25 gt(8),
control methodologies successfully applied to many flight coare provided. Results are also shown for deceleration maneuvers
trol problems. In fact, there have already been many examptasm 100 to 50 ft/s at various decelerations. Simulations are per-
of neural networks in flight controls. Much of the neural-netformed in both clear air and in the presence of turbulence and
work research has either been limited to simulation studies &tbp gusts using an industrial Dryden model. Plots of the typ-
simple (usually scalar) control subsystems [10], [11] or has dieal and statistical tracking performance are also shown for two
coupled sophisticated systems into smaller subsystems guigggresentative cases. Unlike many results which are based on
by the designer’s expertise [12]-[14]. Further, most of these girearized models and corresponding assumptions, our DNDP
pers use neural networks to either approximate or improve @8signs and simulations are conducted using the FLYRT model.
the approximation of an aircraft inverse dynamics. Cadisal. Thus, we are dealing with a very realistic system with nonlin-
have contributed a large body of work that uses neural netwoiksrities, actuator dynamics, etc.
to improve on an underlying dynamic model inversion control This paper is organized as follows. Section Il provides a com-
methodology [12]-[14]. The neural networks compensate fprehensive description of the DNDP mechanism. Section I
any model inversion error that exists by augmenting a contigliefly describes the helicopter model used for evaluating the
adjustment to the nominal proportional-derivative control terrNDP designs. Section IV applies the DNDP methodology de-
Only a handful of research has been done in the area of y@foped in Section Il to the helicopter flight control tracking
inforcement learning for flight control. Ha [15] uses neural neproblem. Section V focuses on developing a trim network, a crit-
works as a direct form of control, though the study is limitegtal element required for successful DNDP designs. Section VI
to lateral-directional control for a linear model. Balakrishnan igefines the design objectives and provides simulation results.
one of the first to use a form of reinforcement learning (adagection VII then provides some conclusions.
tive critic-based networks) for aircraft flight controls [16]. How-
ever, the research limits itself to the longitudinal axis and as
a result the system only has a single control. Prokhetoal.
[17] have demonstrated their adaptive critic designs (ACDs)Fig. 1 is a schematic diagram of the original approximate dy-
in an auto-lander application, which takes in altitude, verticamic programming control scheme [8]. The binary reinforce-
speed, and horizontal position (three states total), and in soment signat(¢) is provided from the external environment and,
cases pitch and horizontal speed (for five states total), and caypically, is either a “0” or a 1" corresponding to “success”
putes the required pitch command (one output total). Thus, their“failure,” respectively.
demonstration is limited to scalar control. Their system wasIn our on-line learning control design, the controller is
tested on a linearized 2-D model of a commercial aircraft. Noteaive” when it just starts to control, namely the action network
that the above reinforcement learning papers take a model-baaed the critic network are both randomly initialized in their
approach, as opposed to the model free approach that cawleehts/parameters. Once a system state is observed, an action
used by DNDP. will be subsequently produced based on the parameters in the
The purpose of this paper is not to compare our methodsaction network. A “better” control value under the specific
any of the existing methods, be they reinforcement learningystem state will lead to a more balanced equation of the

Ud(t)

II. DNDP MECHANISM
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Fig. 2. DNDP-based helicopter controller integrating three cascaded artificial neural networks in one action network, a trim network, anehaartié\tso
allows for an explicit cost function to be used.

principle of optimality. This set of system operations will bavhereg.(t) is the learning rate of the critic network at time

reinforced through memory or association between states amich usually decreases with time to a small value

control output in the action network. Otherwise, the control

value will be adjusted through tuning the weights in the action OE.(t) — IE.(t) Dec(t) = ae.(t) (6)

network in order to make the equation of the principle of aJ(t)  Oec(t) 0J()

optimality more balanced. . -
More specifically, consider the critic network in Fig. 1. Th%r}da‘]( )/0we(t) is & function of the critic network structure

output of the critic element (th€ function) approximates the "

discounted total reward-to-go. Specifically, it apprOX|mate|§ Action Network

R(t) at timet given by

The principle in adapting the action network is to backprop-
Rit)=r(t+1)+ar(t+2)+--- (1) agate the error between the desired ultimate objective, denoted
by U., and the cost functiof(¢). Either the actual cost func-
where R(t) is the future accumulative reward-to-go value &ion (), or an approximation to if (¢), is used depending on
time ¢, « is a discount factor for the infinite-horizon problemwhether an explicit cost function or a critic network is avail-
(0 < a < 1), andr(t) is the external reinforcement value agble. In the latter case backpropagation is done through the

time ¢. critic network as shown in Fig. 1 and later Fig. 2. For notational
simplicity J(t) represents either the actual or approximate cost
A. Critic Network function, depending on which is being used.

. . : . The weight updating in the action network adjusts the action
The critic network is trained to approximate the “value
o L h i hetwork weights to minimize the following objective function:
function”J(¢) by minimizing the objective function, which

represents the balance of the principle of optimality Fa(t) = %eg(t) %
E.(t) = 3e2(0) @ where
where eq(t) = J(t) — Uc(t). (8)
ec(t) = alJ(t) —[J(t — 1) —r(¢)] (3) The weights in the action network are then updated similarly to

the critic network according to
The weights of the critic network are updated according to a

gradient-descent algorithm Wo(t+ 1) =w,(t) + Aw, (1) 9)
OF,(t
We(t +1) =w.() + Aw.(¢) @) Awa(?) ﬂ(>Pawi$} (10)
Aw.(t) =f.(t) [ avapEi;} where

~

OE,(t)  OE,(t) 0J(t) du(t)
Owa(t)  3J(t) du(t) Owe(t)

®)

DE.(t) dJ(t) } a

=B.(t) [ dJ(t) dw.(t)
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whered.J(t)/0u(t) is obtained by backpropagation through the TABLE |

critic network, anddu(t)/dw,(t) is a function of the action HELICOPTEROPERATING CONDITIONS
network structure [8]. -

In every time frame the weight equations are updated until Weight 16324 Ib

either the error has been sufficiently reducéd< E;,;) or the C.G. - FS/BL/WL | 201.6 in, 0.2 in, 144.3 in
internal update cycles\.,.) of the weights have been reached.
The action and the critic networks are updated alternately. Fur-
ther details of the learning algorithm can be found in [8]. Altitude 1770 ft

Temperature 59° F

I1l. HELICOPTERMODEL
IV. DNDP MECHANISM APPLIED TOHELICOPTERCONTROL

A helicopter is a sophisticated system with multiple inputs , Ning th ;
used to control a significant number of states. There exists a/Ve nowturn oqrattennon toward applying t € DNDP frame-
rk to the tracking control of an Apache helicopter. The ob-

large amount of cross coupling between control inputs afrk to i X
states. Further, the system is highly nonlinear and chané%%t've is to learn to create appropriate control actions solely by

significantly as a function of operating condition. For thes@bserving the heligopter states, evaluating the controller perfor-
reasons the helicopter serves as an excellent and challendﬂ‘@f‘ce and adjusting the neural networks accordingly. _
platform for testing approximate dynamic programming '19- 2 out!mes the DNDP co_ntrol structure applied to heli-
systems. copter tracking Contrpl. It cons!sts of a structureql_cascade of
The helicopter’s states are controlled by a main rotor amgural nerorks forming the qcnon network, th_e critic network,
a tail rotor. There are three main rotor actuators whose po@Pd the trim network. The action network provides the controls
tions, z4, 25, andzc, control the position and orientation Ofre_q_ulred to drive the _hehcopter to the deS|_red.system state. The
a swash plate which in turn controls the main rotor’s blade affitic network approximates the cost function if an explicit cost
gles as a function of rotational azimuth. There is a single tfffnction does not exist. The trim network provides nominal trim
rotor actuator position:{) which controls the tail rotor’s blade cOntrol positions as a function of the system desired operating
angles. The aircraft states are numerous. For flight control pGRndition. .
poses, the rates of interest are limited to the aircraft translational this paper, we introduce the concept of a structured cas-
(u, v, w) and rotationaly, ¢, 7) velocities and the aircraft orien- cade of artificial neural networks (ANNs) as the action net-
tation @, ¢, +) for a total of nine states. The helicopter’s lonWork. The explicit structure embedded in this ANN, lacking in
gitudinal (), lateral @), and vertical velocitiesi() are in feet €arlier DNDP designs [8], allows the NDP controller to more
per second. The helicopter’s roll rage (pitch rate ¢), and yaw easily learn and take advantage of the physical relationships
rate ¢) are in degrees per second. The helicopter’s Euler angl@gd dependencies of the system. To perform command tracking
pitch (9), roll (¢), and yaw {) are in degrees. The states can b@ Vectorx, as a function of time is to be specified first. For
written in vector form ax = [u, v, w, p, ¢, 0, ¢, ]. The con- helicopters, it is well established that four of the states in the
trols can be written in vector form as= [z.4, z5, z¢, zp]. state vectorx are explicitly controllable. In this experiment,
For simulation purposes, we use a detailed helicopter mod¢g desire to control the velocities, », andw and the air-
run at 50 Hz for evaluating our NDP controller’'s performancéraft's yaw . The rotational velocities and remaining Euler
The model, named FLYRT, is a sophisticated nonlinear fligi@gles (pitch and roll) will be determined by NDP to achieve
simulation model of the Apache helicopter developed by Boeiiie specified tracking goal. We denote this new desired tracking
over the past two decades [26]. vectorx) = [u,v,w,]: a subset of the original desired state
FLYRT models all the forces and moments acting on the heectorxg.
licopter. The rotor is modeled using a blade element model.Such structure in the action network is similar to classic con-
FLYRT dynamically couples the six-degrees-of-freedom rigitiollers for helicopters, providing for inner loop body rate con-
body of the helicopter to the main rotor through Euler equ&l, attitude control and outer loop velocity control. In this way,
tions. The drive train is represented as a single degree of freeddw explicit relationships between body angular rates, attitudes
model and is coupled to the main rotor, tail rotor, and engin@nd translational velocities are taken advantage of. The potential
The engine is modeled in sufficient detail to cover performanéeglvantage of the structured ANN over classic design method-
over all phases of flight, including ground modes. The landirgjogies is that it permits full cross-axes control coupling that
gear is modeled as three independent units interfacing withm&ny single-input—single-output (SISO) proportional integral
rigid airframe. Quaternions are used during state integrationderivative (PID) controller designs do not. However, the struc-
accommodate large attitude maneuvers. tured ANN does introduce a level of human knowledge/exper-
FLYRT also models the mechanical geometry between thige to its implementation that is not transparent to nonexperts.
actuators and the helicopter blades as well as the dynamics dlt is possible, but rather cumbersome, to show that a classic
the actuators. Each actuator is modeled as a first-order lag witloportional controller can be equated to one instance (one set
time constant = 0.03, reflective of a typical actuator. Actuatorof weights) of our structured ANN if the network nonlinearities
rate and position limits are also modeled. are removed (or linearized about the network operating point).
The operating conditions for which our simulation studies a®uch a relationship between the two designs can be used to pro-
performed are shown in Table I. The center of gravity (C.G.) isde a good first guess of the action network weights should one
listed in the standard Apache FS/WL/BL coordinate frame [28)jant to apply this “expert” knowledge to the learning system.
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However, all results shown in this paper were obtained while
the learning system was trained from scratch without using any

TABLE 1l

933

FAILURE CRITERION FORHELICOPTER STABILIZATION

expert knowledge. - — -

Refer to Fig. 2, the inputs to the first ANN are the Iongitudina Aircraft State | Initial Allowed | Final Allowed | Error Rate
and lateral velocity errorg.,, = uq — u andve,, = vq — v, re- Error Error
spectively. The first ANN outputs are the resulting desired pitc
alr31d roll gfthe helicopteé, al;d ¢q. The inputs togthe secoFr)1d v 201t/ 4ft/s —08(t/s)/s
ANN are the errors in the aircraft attitudes, = 64+ O¢rim — 0, PqT 30°/s 6°/s —-1.2°/s/s
¢err = ¢d + ¢trim - ¢1 andwerr = ’l/}d - l/} The second ANN 0,0,% 30° 6° —-1.29/s

outputs are the desired roll, pitch, and yaw rates 44, r4) of
the helicopter, as a function of the attitude errors. These are then

summed with the actual angular rates to obtain the angular rate-ase failure criteria were chosen judiciously but no claims

EIMOIS,perr = Pd = Ps Gere = qa — q @Nd7ery = g — 7. The 510 1846 1o their optimality. The results show that these criteria
angular rate errors and the vert!cal velocity EMOk = Wa =W  create a control system that can control the helicopter both
then form the inputs to the third ANN. The third ANN thenin nominal conditions and when subjected to disturbances.
computes the controlny = [uxy,1, NN .2, UNN,3, uNN 4] 85 Heyristic failure criteria is one of the advantages of NDP if one
afu_nctlon of the_ an_gular rate_ and vertical velocity errors. The "8oes not have an accurate account of the performance measure.
.S‘UItmguNN’Wh'Ch Is normalized beqause ofthe ANN SUUCWISryiq s also one characteristic of the NDP design that differs
|s.then scaleq by th_e controller scaling gﬁ@‘)m and S“mme‘?' from other neural control designs. The critic network plays the
with the nominal trim control from the trim network. That iSirole of working out a more precise account of the performance
U = KeontUNN + Utrim. o measure for credit/blame assignment derived from the heuristic

As Qescrlbed n Sect_lon IV, the objec_t|ve of the_N_DP COMriteria. If the networks have converged, an explicitly desired
troller is to create a series of c_ontr_ol actlpns to opnmueI a d'§t’ate has been achieved which is reflected inlfheerm in the
counted total reward-to-go, which is rewritten as follows: NDP structure.

The trim network is a neural network, or lookup table, that
is trained, or programmed, to schedule the aircraft's nominal
actuator position and aircraft orientation as a function of oper-

Typically, NDP has been applied to systems where expliciting conditions. It is a critical element in nonlinear flight con-
feedback, or instantaneous cost evaluation, is not availableratl system design. In the following, we show what trim is and
each time step. In such cases, the reinforcement sigtighkes how to integrate this trim design seamlessly into the DNDP con-

a simple binary form withr(¢) = 0 when the final event is suc- trol design.
cessful (an objective is met), oft) = —1 if the final eventis a

failure (the objective is not met). For many real-world tracking
problems however, explicit feedback is continually available

and so we can define a more informative quadratic reinforce-Controlling the helicopter is a nonlinear control system de-
ment signal sign problem. An important part of practical helicopter control

is the ability to determine the trim states for the helicopter over
all flight conditions. For nonlinear systems, the trim states are
those that lead to steady-state flight conditions. More specifi-
cally, they are the positions of the controls and the dependent
states associated with achieving a desired steady-state condi-
where, in our applicatiom = 4, z{ is theith state variable of tion. For example, with an aircraft, one tries to adjust (trim)
20 = [u, v, w, ], 29 = [uq, va, wa, Y] is the desired state, andthe controls to balance the aerodynamic, inertial, and gravita-
2V .., is a normalization term. tional forces and moments in all axes at all times. The aircraft

The critic and action networks are then trained per Section . trimmed when the desired balance is achieved or the aircraft
The equations governing the training of the action network aeaters a desired steady state. In the case of a helicopter, the
significantly more complex than prior work since backpropagaontrols to be trimmed are the four actuators and the depen-
tion must be performed through ANNs 2 and 3 for the trainindent states to be trimmed are the pitch, roll, and yaw, i.e., seven
of ANN 1. In essence, it is equivalent to training a six-layer netrim state variables in total. These states are trimmed for the
work if we assume that each ANN has two layers of weights.desired specified steady-state translational velocitie® (w)

The objective is to train the controller to perform the specifiednd angular rate( ¢, r), i.e., six variables representing de-
maneuver regardless of the operating conditions or the vehisleed steady states. When flying a conventional mechanically
initial conditions. The states of interest are the aircraft transleentrolled helicopter, a pilot continually trims the helicopter via
tional (u, v, w) and rotationaly, ¢, r) velocities and the aircraft his closed-loop control. Similarly, traditional PID-based control
Euler angles pitch4), roll (¢), and yaw {)). Failure criteria are techniques inherently trim the helicopter, the integrators serve
used to bound allowed error for each state. The allowed erroas, the trim component.
shown in Table I, are initially large and decrease as a functionThe concept of trim can also be applied to physical systems
of time to an acceptable minimum. other than aircraft. In such a case, one tries to balance the system

Rt)=r(t+1)+ar(t+2)+rt+3)+---. (12

V. TRIMMING THE HELICOPTER

(13)

JOEEDY (Lio_ xd’”)

i=1 max,
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Fig. 3. Neural-network structure for determining trim. The objective is to mininimize the specified cost fusigtion

so that the change in state derivative (e.g., acceleration) is eitfegent than what we need to trim (body orientation and controls).

zero or minimized. Further, most of the existing work assumes knowledge of the
The ability to use NDP to trim the helicopter is paramount tequations governing the system (i.e., model-based approaches).

successfully applying DNDP to the tracking control problemn our approach, no such assumption is made. Instead a strictly

Previous NDP control designs were successful because the sysnerical approach is taken. Further research may be warranted

tems that were tested (e.g., the inverted pendulum) had a zeraetermine if the proposed approach is also applicable to the

trim requirement [8]. Similarly, many flight control papers havaero-mechanical trim problem.

assumed linear models, in which case, there is also a zero trim

requirement since the model is linearized about a trim cond- Neural-Network-Based Trim Method

tion. However, in general trim requirements cannot be ignoredThiS paper proposes a neural-network approach for trimming
for controllers of nonlinear systems, including those for aircraff. helicopter. The method uses the existing DNDP neural-net-
Trim Capablllty is also useful for faCIIItatlng realistic Simulawork framework and, hence' can be Seamiessiy integrated with
tions. Often one wants to start a simulation at an arbitrary inititde NDP controller for a very simple and efficient implementa-
condition rather than performing the task of flying the helicoptgjgn.
to that particular state (Wh|Ch in certain cases may be hard to dorrimming requires determining the seven trim state vari-
precisely). Existing trim methods such as that used by FLYRiples to include four control positions and three body angles
are limited to performing trim for only a limited set of initial (jater defined to bex2) for a given flight condition. For this
conditions. Thus, a method of trimming the helicopter at an aieason, we divide the original state vectorinto two parts
bitrary specified initial condition is desired. x! = [u,v,w,p,q,7] andx? = [f, ¢, 1], wherex! represents
This paper develops a neural-network-based method for trifhe desired steady state variables for which we want to deter-
ming the helicopter that addresses the above issues. Thepfighe the seven trim positions.
sulting trim network schedules the nominal control trim position Fig. 3 shows the neural-network structure used to determine
as a funCtion Of aircraft state and enVironmentaI/ﬂight paramﬂre seven aircraft trim positionﬁrim andxztrim for any desired
ters (Such as aircraft We|ght, air density, etC.). This trim methogi,m Steady_statﬁltrim_ To make use of the existing NDP pro-
though applied to helicopters here, can be applied to any gengf@mming structure for seamless integration, it is natural to use
physical control system. the action network as the trim network. However now the trim
. i network is a one layer weight feedforward network with seven
A. Existing Trim Methods biases b) that corresponding to the seven trim states. The net-
Several techniques have been developed to trim helicoptensrk has a nonlinear sigmoid function fanning out the outputs.
[18], [19]. Two methods that are commonly used are shootitig using the action network for trim, the inputs to the trim net-
methods, typically using (damped) Newton's method, and fivork are zeroed and there are seven outputs from the network
nite element methods [20], [21]. Both are iterative numeric@icluding four controls and three body angles.
techniques that can be implemented in either a serial or parState equations associated with Fig. 3 are as follows.
allel scheme. In the serial scheme, during each iteration the con-
trol input trim positions are updated first and then the estimates [Werims X2 trim | = Fuig(b) (14)
of the trimmed initial conditions are updated. In the parallel
scheme, both control input and initial trim values are updat
simultaneously. The claim is that the parallel scheme generally
finds the solutions faster but with a higher risk of solution di-

ere

vergence. A third trim method is the auto-pilot trim procedure £ig(b) =[fsig(b1), - - fuig(b7)] (15)
[22], [23]. Often, this method is augmented with one of the two Fanl€) =2 (L—e%) . (16)
other methods [24]. A comprehensive review of trimming is- ve (I1+e7¢)
sues, theory and techniques is provided in [25].

The major difference between existing papers and this fEhe cost function used is/y = 1/2x7x%, wherex; =
search is that the existing papers describe how to trim the lfe!; — z'¢vim,i) /2 max,in @ = 1,...,6.

licopter from an aeromechanical viewpoint rather than a control The basic technique for determining the trim positions is to
systems viewpoint. That is, the states that are trimmed in theésn a network, whose inputs are zeroed and that has biases,
papers (blade flapping angles, lag angles, and controls) are tifminimize an objective (cost function). After training is com-
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plete, the resulting biases then provide the aircraft trim posi- TABLE 1Ii
tions. The weights in this network are of no importance other ~NEURAL-NETWORK PARAMETER VALUES FORDETERMINING TRIM
than the bias vector. This trim network is trained over a numb
of epochs where in each epoghthe FLYRT model is initial-
ized, the plant dynamics are evolved for a specified timand Value 3.0 0.3 500 ms | 5.0
backpropagation is performed to adjust the trim network biases
to minimize the objective at timg; for that epochn. In gen-
eral, we denote the variableat time¢; for epochm asv(m).
For example, the objective function at time for epochm is x!(m) =x'(ty) (23)
denotedJ;(m). x2 i (m) =x2(t f)- (24)
The network biases, are trained using the same gradient

descent training method described for NDP. That is Step 6) Evaluate the objective functidp(in).
Step 7) Update the network biases per the update (17)—(20).

Parameter | Ag in control trim | Ag in attitude trim tr Keont

Step 5) Measure the states of interest

_ End loop
b(m + 1) =b(m) + %E(Zn)> (17) Step 8) Compute the trim positions from the network biases per
Abi(m) =A(m) [— o } Gi=1...7. (18 (14).
Obi(m) The number of epochs was chosen toMie= 1000 by ex-

perience. The learning rate was set to decrease as a function of
epoch numben(m) = A\o(1—m/M). For the results presented
in this paper, the network biases were initialized to zero. How-
0Jy(m) _ 0Jy(m) Ox? (m) du(m) i=1...4. (19) ever, one could use system knowledge to make a good initial
Obi(m)  Ox*(m) Ou(m) 9bi(m)’ guess of the trim positions and then calculate the corresponding
) ) ) biases and initialize the biases with these values. The model run
For the three biases corresponding to the trim body angles ime ¢ is chosen to be large enough to have some measurable
response but small enough so that linearity properties about that
. ,i=5...7. (20) oOperating point hol(_js during the run time. 3
x2(m) 0b;(m) Note that we desire to trim the aircraft for a specified ground
] o ) speed (i.e., in the earth reference frame), rather than for body
In both cases the first partial is evaluated in the manner dgsme velocities (as implied by existing trim papers interested in
scribed earlier in the DNDP mechanism. For the trim angles biggy_mechanical issues). A problem is that our model initializa-
updates, the part|al§x1(.m)/8x?(m) and 8?‘1(7”)/8“(7”) tion and cost function are specified in terms of body frame ve-
can be galculated numencally via perturbations to the SySte{fities rather than earth frame reference frame velocities. The
Alternatively, the partialox! (m)/ ax?(m) can be approxi- yq reference frames are related by the still to be determined
mated analytically at hover from simple physics (rotate th@m pody angles. The solution to this problem is to use the cur-

gravity vector into the body frame and use appropriate sSmallyt hody angle trim estimates to resolve the two frames.
angle approximations). We computed the partials at hover only

and used them for all flight conditions to generate our resultsD. Trim Results

Once training is complete the trim positions are then deter'The neural-network-based trim method is tested for a variety

tmh"lef{g frt()m thet net\l/(vng: b!asgs \f/f'? thef_ s?r_n(gd fungno?_ ;\Itﬁr@f flight conditions for the Apache helicopter. Since there are an
atthe tnm network Is trained ofi-iin€ irst, independent ot N snite numper of trim solutions at a given operating condition

action and the critic networks in the DNDP controller.

For the four biases corresponding to the trim controls

Abi(m) — 0x(m)

0
0

(infinite combinations ofp¢,i,, and;.im), @ unique solution
was found by constrainingy,;,, to zero. The neural-network

i ) . ) parameters used for determining the trim positions are presented
An implementation procedure of the trim algorithm can bg, Taple II1.

C. Neural-Network-Based Trim Algorithm Implementation

summarized as follows. This neural trim method has proven to be efficient for Apache
Step 1) Specify the desired steady state to be trimmed faslicopter through numerous simulation studies. Fig. 4 com-
X i pares the NDP generated trim positions to those generated by
Step 2) Initialize the trim network bias&g0). FLYRT over the range of 0 to 150 kn forward speed. The results
Loopm = 1to M, whereM is the total number of appear to be identical except for roll which has a worst case
epochs for determining trim. difference of less than 0.25Fig. 4 is typical for other flight

Step 3) Set the FLYRT initial conditions and initial controls t@onditions when compared to the FLYRT.
the trim values
VI. DNDP—BASED TRACKING CONTROL RESULTS

X(to) =[X" trim X*trim(m — 1)] (21)  This section presents results showing the performance of the
u(t) =Ugrim(m — 1),t, <t <ty (22) DNDP controlling the Apache helicopter for a variety of maneu-
vers. This is a complex MIMO nonlinear control system design
Step 4) Let the plant dynamics evolve for timg (e.g., problem. It provides a realistic test bed for how well an approx-
500 ms). imate dynamic programming algorithm can generalize.
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Fig. 4. Trim positions as a function of airspeed for neural and FLYRT methods.

TABLE IV
LEARNING STATISTICS FORHOVER TO 50 FT/S MANEUVER AT VARIOUS ACCELERATIONS FORTHREE WIND CONDITIONS

Condition | Acceleration (ft/s?) 2 3 4 5 6 7 8

Case A Success Percentage | 94% | 62% | 67% | 656% | 66% | 66% | 74%
Average No. of Trials | 1600 | 2019 | 2115 | 1950 | 1983 | 2028 | 1870
Learning Deviation 214 | 339 | 324 | 307 | 293 | 306 | 252

Case B Success Percentage | 96% | 66% | 76% | 70% | 50%, | 57% | 53%
Average No. of Trials | 1367 | 1720 | 1770 | 1874 | 2173 | 1970 | 2419
Learning Deviation 191 | 280 | 255 | 275 | 381 | 337 | 400

Case C Success Percentage | 95% | 98% | 97% | 85% | 60% | 56% | 58%
Average No. of Trials | 642 | 824 | 1126 | 1843 | 1842 | 2145 | 2379
Learning Deviation 115 | 128 | 165 | 263 | 313 | 333 | 403

Characteristic to prior NDP research, the performance of thidempts (trials) to learn to successfully control the system.
DNDP is summarized statistically in tables. Fourteen mane@n attempt is deemed successful if the helicopter stays within
vers are considered: seven accelerations from hover to 50 fhis failure criteria bounds described in Table Il for the entire
at various accelerations and seven decelerations from 100 fiigght duration (50 s). After each failed trial, the system is
to 50 ft/s at various decelerations. Each maneuver is testedastarted with the same initial state as the previous trial but
three wind conditions: case A) no wind, case B) 10 ft/s step gugith the network weights at the previous trial’s termination.
for 5 s, and case C) turbulence simulated using a Dryden motfethe controller successfully controls the helicopter within
with a spatial turbulence intensity 6f= 5 ft/s and a turbulence 5000 trials, the run is considered successful; if not, the run
scale length of .y = 1750 ft. In addition to the tabular statis- is considered a failure.
tics provided, both statistical and typical time history plots of Table IV statistically summarizes the learning ability of the
the aircraft states are provided for two cases, a hover to 50 fBIDP controller to perform a hover to 50 ft/s maneuver at a
at 5 ft/S maneuver with turbulence and a 100 ft/s to 50 ft/s atumber of different accelerations. Results for 100 to 50 ft/s de-
—4 ft/s> maneuver with a step gust. celerations at a number of deceleration rates are provided in

The statistical success of the DNDP to learn to contrdible V. In both cases results are provided for the three wind
the helicopter is evaluated for the five flight conditions. Foconditions cited above. The success percentage reflects the per-
each flight condition, 100 runs were performed to evaluate tieentage of runs for which the DNDP system successfully learns
DNDP performance, where for each run initial weights in eadb control the helicopter. The average number of trials is what it
network were set randomly. Each run consists of up to 50@kes the DNDP system to learn to control the helicopter. Stan-
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TABLE V
LEARNING STATISTICS FOR100TO 50 FT/S MANEUVER AT VARIOUS DECELERATIONS FORTHREE WIND CONDITIONS

Condition | Acceleration (ft/s?) 2 3 4 5 6 7 8
Case A Success Percentage 98% | 90% | 85% | 80% | 84% | 76% | 73%
Average No. of Trials | 759 | 1700 | 1610 | 2114 | 1516 | 1800 | 2045

Learning Deviation 105 227 | 226 | 291 | 219 | 248 | 292

Case B Success Percentage 99% | 85% | 4% | 1% | 7% | 6% | 78%
Average No. of Trials | 1260 | 1460 | 1650 | 1979 | 2030 | 1950 | 1737
Learning Deviation 181 215 | 229 | 298 | 295 | 264 | 239

Case C Success Percentage | 100% | 98% | 93% | 93% | 97% | 89% | 91%
Average No. of Trials | 778 | 1258 | 1373 | 1489 | 1236 | 1350 | 1677
Learning Deviation 105 180 | 183 | 200 | 162 | 186 | 220
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Fig. 5. Statistical and typical state and control trajectories of the helicopter for a hover to 50 ft/'s maneuver acedtsration in turbulence. Turbulence is
simulated using a Dryden model with a spatial turbulence intensity f 5 ft/s and a turbulence scale lengthlofy = 1750 ft.

dard deviations from successful runs for various maneuvers ard he neural-network parameters used during training are pro-
also used to demonstrate the (in)consistency of the learning ceitled in Table VI. The learning ratg$ for the action network
trol performance. and critic network are scheduled to decrease linearly with time
Fig. 5shows boththe statistical average state error and error (tgpically over a few seconds). In every time frame, the weight
viation over all successful runs and a typical plot of the controllequations are updated until either the error has sufficiently con-
performance forahoverto50ft/smaneuveratanaggressivé5filerged & < E;) or the internal update cyclesV(,.) of the
acceleration in the presence of turbulence. Fig. 6 shows both theights have been reacheW,, is the number of hidden nodes
statistical average state error and error deviation and a typical plothe neural networks.
of the controller performance for a 100 ft/s to 50 ft/s maneuver atlt is worth mentioning that a comprehensive analysis on the
4 ft/s? deceleration in the presence of a step gust. Helicopter azmhvergence performance of an entire NDP system in general
control dynamics are similar for the other maneuvers once ttlees not exist, and neither does an analytical framework on
learning controller becomes stabilized in learning. the relationship between the performance of the NDP learning
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Fig. 6. Statistical and typical state and control trajectories of the helicopter for a 100 to 50 ft/s maneuddt/sit acceleration in a step gust. The step gust is
10 ft/s in magnitude and has a 5-s duration.

TABLE VI
NEURAL-NETWORK PARAMETER VALUES FOR TRAINING

Parameter « ﬂa(to) ,Ba (tf) ﬁc(to) ﬁc(tf) Ncyc,a Ncyc,c Etol,a Etol,c Nh Kcont
Value 0.95 | 0.02 0.02 0.1 0.01 200 100 | 0.005 | 0.1 6 2.5

controller versus the learning parameters. It has been argued TABLE VI
[8] that updating individual networks alone, action or critic for ~ LEARNING STAT'S;'CS FORHOVER TO 50 FT/S MANEUVERS AS A
. . . . UNCTION OF LEARNING RATE

example, may be viewed as a stochastic approximation problem

and therefore, conditions similar to the Robbins—Monro al- . | Acceleration (ft/s?) 2 6 8

gorithm may be used as guidelines in scheduling the learning

parameters. Quantitatively, we have observed that the DNDP ~ 0.02 | Success Percentage | 94% | 66% | 74%

learning parameters do impact the learning ability of the Average No. of Trials | 1600 | 1983 | 1870

learning controller. For example, the learning rate for action

networks can be tuned to perform different maneuvers with

different system outcomes. This is illustrated by Table VII, 0.2 | Success Percentage | 100% | 80% | 20%

which shows the DNDP system performance for learning Average No. of Trials | 248 | 1708 | 2809

rates (3,) of 0.2 and 0.02 for both more aggressive and less

aggressive accelerations. Lower learning rates improve the suc- Learning Variance | 71 | 421 | 439

cess for more aggressive maneuvers but decrease the learning

ability (increase the number of trials) required to learn for less

aggressive maneuvers. tion evaluation when there is turbulence. As aresult, the network
Interesting to note is that despite what one may expect, overaights change more in (10) and, thus, the learning system ex-

the DNDP controller more reliably and more quickly learns tplores more of the solution space and is less likely to become

controlthe helicopterinthe presence ofturbulence. Thisis cleattgpped in local minima that do not provide an adequate control

evident in Tables IV and V. The learning performance improveolution. This suggests that in applications where turbulence or

ment can be attributed to the sustained larger excitation, dueotber excitation is not natural, it may be prudent to create an arti-

turbulence, to both the neural-networks inputs and the cost fufficial equivalent in order to improve learning performance.

Learning Variance 214 293 | 252
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Also note that, as with previous NDP designs, a large numbeu2]
of trials must occur to successfully learn to perform the ma-
neuver. Further, the more aggressive the maneuver (the high%?]
the acceleration), the more trials that are required. This is nqt4]
surprising for a learning system that is learning from experienc?lsl
without any a priori system knowledge. The ramification is that
this training is done offline (i.e., not in a real helicopter), where[16]
failures can be afforded, until the controller is successfully
trained. Once trained, the neural-network weights are frozep;
and the controller structure shown in Fig. 2 can be implemented
in a helicopter. Limited authority on-line training can then be[18]
performed to improve system performance.

(19]
VIl. CONCLUSION

This paper has advanced neural dynamic programming coff
trol research by introducing the DNDP control structure to a
sophisticated tracking control problem, contrasting to earlier ref21]
lated works that have been limited to stabilization only [9]. Para-
mount to this was the development of a DNDP-based methog)
for trimming the helicopter system and a structured approach
to implementing the action network. A sophisticated nonlinear
validated model of the Apache helicopter was used to test thgs
controller and its ability to learn to perform a number of diffi-
cult maneuvers. Our research has shown that the DNDP is ab
to successfully control the Apache helicopter for a wide range o
realistic maneuvers and over a wide range of flight conditions,
a few examples of which were used to illustrate the results i)
this paper. Thus, it appears that NDP is a viable candidate for
controlling complex MIMO systems and is suited particularly [26]
well for on-line and complex multiaxes coupling control appli-
cations. Our results have demonstrated the generalization capa-
bility of a learning control system, namely DNDP, to a large
continuous-state problem. The same principle can also be
rectly applied to large discrete-state/action problems.

4]
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