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Helicopter Trimming and Tracking Control Using
Direct Neural Dynamic Programming

Russell Enns and Jennie Si

Abstract—This paper advances a neural-network-based ap-
proximate dynamic programming control mechanism that can
be applied to complex control problems such as helicopter flight
control design. Based on direct neural dynamic programming
(DNDP), an approximate dynamic programming methodology, the
control system is tailored to learn to maneuver a helicopter. The
paper consists of a comprehensive treatise of this DNDP-based
tracking control framework and extensive simulation studies for
an Apache helicopter. A trim network is developed and seamlessly
integrated into the neural dynamic programming (NDP) controller
as part of a baseline structure for controlling complex nonlinear
systems such as a helicopter. Design robustness is addressed by
performing simulations under various disturbance conditions. All
designs are tested using FLYRT, a sophisticated industrial scale
nonlinear validated model of the Apache helicopter. This is prob-
ably the first time that an approximate dynamic programming
methodology has been systematically applied to, and evaluated on,
a complex, continuous state, multiple-input–multiple-output non-
linear system with uncertainty. Though illustrated for helicopters,
the DNDP control system framework should be applicable to
general purpose tracking control.

Index Terms—Approximate dynamic programming, helicopter
flight control, helicopter trim, neural dynamic programming.

I. INTRODUCTION

T HIS paper focuses on the application of direct neural dy-
namic programming and demonstrates how it can be used

to control complex, realistic, and higher dimensional systems.
The direct neural dynamic programming (DNDP) is to be used
to control a helicopter to perform realistic maneuvers and the
paper demonstrates how this method provides an approximate
solution to this optimal control problem that is often solved by
dynamic programming, and, in doing so avoiding the curse of
dimensionality. The DNDP mechanism was first introduced in
[8] and later in [9], which provided basic design principles along
with a comprehensive evaluation of helicopter stabilization. In
this paper, we expand on the original DNDP mechanism to pro-
vide the ability to do command tracking for complex systems,
again demonstrating the control mechanism on a helicopter.

The approach taken in the present paper resides in the area
of “approximate dynamic programming.” This is an interdis-
ciplinary area that has been actively researched but may not
be known to all relevant disciplines. Different terminologies
have been given to this area, such as reinforcement learning [1],
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neuro-dynamic programming [2], adaptive critics [3], and so
forth. Recently and most often, it has been referred to as approx-
imate dynamic programming (ADP) [4]. This paper is not in a
position to discuss which name fits the field the most. Rather,
we consider techniques that converge to an (approximately) op-
timal policy over time in a nonlinear stochastic decision and
control problem. Particularly, in this paper, we show that a re-
cently proposed learning control framework [8], still under the
theme of neural network, can solve very complex problems such
as tracking of Apache helicopter.

For the ease of discussion, the terms “discrete-event” ap-
proaches and “continuous-state” approaches are used to discuss
solutions of ADP. The former refers to the fact that controls/ac-
tions are obtained by search algorithms and the problems
are discrete event in nature. The latter refers to the fact that
(approximate) gradient information is used in value function
approximation and action generation, and the problems can be
in both continuous or discrete-state spaces.

Until very recently [5], generalization problems remain
a major hurdle in reinforcement learning community when
dealing with continuous or large discrete-state spaces or action
spaces. In discrete environments, there is a guarantee that
any operation that updates the value function (according to
the Bellman equation) can only reduce the error between the
current value function and the optimal value function. However,
this guarantee does not generalize well when the size of the
discrete-states are large. Using some simple examples, it was
shown in [6] that the value function errors may grow arbitrarily
large by using value iteration. Besides, the problems tackled
by some state-of-the-art algorithms [5]–[7] are still artificial
and small. They are also lacking in a systematic evaluation of
system performance. A car climbing hill example was used in
[6]. The sparse coarse coding concept was proposed in [7] and
implemented using CMAC, but only demonstrated on a small
Acrobot. The most recent work in [5] makes use of variable res-
olution discretization. It demonstrated the various approaches
to splitting on the familiar, nonlinear, nonminimum phase, and
two-dimensional (2-D) problem of the “car on the hill.” It then
evaluates the performance of a variety of splitting criteria on
many small benchmark problems, paying careful attention to
their number-of-cells versus closeness-to-optimality tradeoff
curves. There is no clear evidence of how this approach may
generalize.

In this paper, we show that our DNDP design [8] is promising
as a robust algorithm (measured by learning statistics, problem
scalability, the range of problems handled) to the ADP prob-
lems. We present a comprehensive case study of this design in
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tracking an Apache helicopter using a full-scale industrial he-
licopter design model. This is probably the first time that ADP
has been systematically applied to and evaluated on a complex
continuous state multi-input–multi-output (MIMO) nonlinear
system with uncertainty.

DNDP is an ADP method. More specifically, it is an approxi-
mate neural dynamic programming (NDP) method that does not
require explicitly building a system model prior to learning to
improve system performance. DNDP was perceived as a strong
candidate for a learning system for helicopter flight control be-
cause, in addition to its ability of online learning, it can be ap-
plied to complex systems such as helicopters without the need to
decouple the control system into simpler subsystems. As such, it
can learn to take advantage of any of the system cross coupling
characteristics when generating its control solution, including
coupling benefits that may not be apparent to a control systems
design engineer. NDP methods can deal with both explicitly and
implicitly defined system performance measures which are usu-
ally a function of the system states and control actions. NDP
methods avoid the “curse of dimensionality” that dynamic pro-
gramming methods suffer from by providing approximate solu-
tions. This, however, may also be considered as the down side
of the NDP when true “optimality” is demanded.

From a flight control perspective, there have been numerous
control methodologies successfully applied to many flight con-
trol problems. In fact, there have already been many examples
of neural networks in flight controls. Much of the neural-net-
work research has either been limited to simulation studies of
simple (usually scalar) control subsystems [10], [11] or has de-
coupled sophisticated systems into smaller subsystems guided
by the designer’s expertise [12]–[14]. Further, most of these pa-
pers use neural networks to either approximate or improve on
the approximation of an aircraft inverse dynamics. Caliseet al.
have contributed a large body of work that uses neural networks
to improve on an underlying dynamic model inversion control
methodology [12]–[14]. The neural networks compensate for
any model inversion error that exists by augmenting a control
adjustment to the nominal proportional-derivative control term.

Only a handful of research has been done in the area of re-
inforcement learning for flight control. Ha [15] uses neural net-
works as a direct form of control, though the study is limited
to lateral-directional control for a linear model. Balakrishnan is
one of the first to use a form of reinforcement learning (adap-
tive critic-based networks) for aircraft flight controls [16]. How-
ever, the research limits itself to the longitudinal axis and as
a result the system only has a single control. Prokhorovet al.
[17] have demonstrated their adaptive critic designs (ACDs)
in an auto-lander application, which takes in altitude, vertical
speed, and horizontal position (three states total), and in some
cases pitch and horizontal speed (for five states total), and com-
putes the required pitch command (one output total). Thus, their
demonstration is limited to scalar control. Their system was
tested on a linearized 2-D model of a commercial aircraft. Note
that the above reinforcement learning papers take a model-based
approach, as opposed to the model free approach that can be
used by DNDP.

The purpose of this paper is not to compare our methods to
any of the existing methods, be they reinforcement learning-

Fig. 1. Schematic diagram for implementation of the DNDP. The solid lines
represent signal flow, while the dashed lines are the paths for parameter tuning.

based, neural-network-based, or otherwise. The purpose is to
demonstrate the power of DNDP as an approximate dynamic
programming control methodology on a challenging controls
problem that other approximate dynamic programming algo-
rithms may not be able to handle. We provide a number of cases
to show the ability of the learning control system to perform
aircraft maneuvers. Statistical results showing DNDP’s ability
to learn acceleration maneuvers from hover to 50 ft/s at various
accelerations, up to the aircraft upper limits of 0.25 g (8 ),
are provided. Results are also shown for deceleration maneuvers
from 100 to 50 ft/s at various decelerations. Simulations are per-
formed in both clear air and in the presence of turbulence and
step gusts using an industrial Dryden model. Plots of the typ-
ical and statistical tracking performance are also shown for two
representative cases. Unlike many results which are based on
linearized models and corresponding assumptions, our DNDP
designs and simulations are conducted using the FLYRT model.
Thus, we are dealing with a very realistic system with nonlin-
earities, actuator dynamics, etc.

This paper is organized as follows. Section II provides a com-
prehensive description of the DNDP mechanism. Section III
briefly describes the helicopter model used for evaluating the
NDP designs. Section IV applies the DNDP methodology de-
veloped in Section II to the helicopter flight control tracking
problem. Section V focuses on developing a trim network, a crit-
ical element required for successful DNDP designs. Section VI
defines the design objectives and provides simulation results.
Section VII then provides some conclusions.

II. DNDP MECHANISM

Fig. 1 is a schematic diagram of the original approximate dy-
namic programming control scheme [8]. The binary reinforce-
ment signal is provided from the external environment and,
typically, is either a “0” or a “ 1” corresponding to “success”
or “failure,” respectively.

In our on-line learning control design, the controller is
“naive” when it just starts to control, namely the action network
and the critic network are both randomly initialized in their
weights/parameters. Once a system state is observed, an action
will be subsequently produced based on the parameters in the
action network. A “better” control value under the specific
system state will lead to a more balanced equation of the
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Fig. 2. DNDP-based helicopter controller integrating three cascaded artificial neural networks in one action network, a trim network, and a critic network. Also
allows for an explicit cost function to be used.

principle of optimality. This set of system operations will be
reinforced through memory or association between states and
control output in the action network. Otherwise, the control
value will be adjusted through tuning the weights in the action
network in order to make the equation of the principle of
optimality more balanced.

More specifically, consider the critic network in Fig. 1. The
output of the critic element (the function) approximates the
discounted total reward-to-go. Specifically, it approximates

at time given by

(1)

where is the future accumulative reward-to-go value at
time , is a discount factor for the infinite-horizon problem
( ), and is the external reinforcement value at
time .

A. Critic Network

The critic network is trained to approximate the “value
function” by minimizing the objective function, which
represents the balance of the principle of optimality

(2)

where

(3)

The weights of the critic network are updated according to a
gradient-descent algorithm

(4)

(5)

where is the learning rate of the critic network at time,
which usually decreases with time to a small value

(6)

and is a function of the critic network structure
[8].

B. Action Network

The principle in adapting the action network is to backprop-
agate the error between the desired ultimate objective, denoted
by , and the cost function . Either the actual cost func-
tion , or an approximation to it , is used depending on
whether an explicit cost function or a critic network is avail-
able. In the latter case backpropagation is done through the
critic network as shown in Fig. 1 and later Fig. 2. For notational
simplicity represents either the actual or approximate cost
function, depending on which is being used.

The weight updating in the action network adjusts the action
network weights to minimize the following objective function:

(7)

where

(8)

The weights in the action network are then updated similarly to
the critic network according to

(9)

(10)

where

(11)
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where is obtained by backpropagation through the
critic network, and is a function of the action
network structure [8].

In every time frame the weight equations are updated until
either the error has been sufficiently reduced ( ) or the
internal update cycles ( ) of the weights have been reached.
The action and the critic networks are updated alternately. Fur-
ther details of the learning algorithm can be found in [8].

III. H ELICOPTERMODEL

A helicopter is a sophisticated system with multiple inputs
used to control a significant number of states. There exists a
large amount of cross coupling between control inputs and
states. Further, the system is highly nonlinear and changes
significantly as a function of operating condition. For these
reasons the helicopter serves as an excellent and challenging
platform for testing approximate dynamic programming
systems.

The helicopter’s states are controlled by a main rotor and
a tail rotor. There are three main rotor actuators whose posi-
tions, and , control the position and orientation of
a swash plate which in turn controls the main rotor’s blade an-
gles as a function of rotational azimuth. There is a single tail
rotor actuator position ( ) which controls the tail rotor’s blade
angles. The aircraft states are numerous. For flight control pur-
poses, the rates of interest are limited to the aircraft translational
( ) and rotational ( ) velocities and the aircraft orien-
tation ( ) for a total of nine states. The helicopter’s lon-
gitudinal ( ), lateral ( ), and vertical velocities () are in feet
per second. The helicopter’s roll rate (), pitch rate ( ), and yaw
rate ( ) are in degrees per second. The helicopter’s Euler angles,
pitch ( ), roll ( ), and yaw ( ) are in degrees. The states can be
written in vector form as . The con-
trols can be written in vector form as .

For simulation purposes, we use a detailed helicopter model
run at 50 Hz for evaluating our NDP controller’s performance.
The model, named FLYRT, is a sophisticated nonlinear flight
simulation model of the Apache helicopter developed by Boeing
over the past two decades [26].

FLYRT models all the forces and moments acting on the he-
licopter. The rotor is modeled using a blade element model.
FLYRT dynamically couples the six-degrees-of-freedom rigid
body of the helicopter to the main rotor through Euler equa-
tions. The drive train is represented as a single degree of freedom
model and is coupled to the main rotor, tail rotor, and engine.
The engine is modeled in sufficient detail to cover performance
over all phases of flight, including ground modes. The landing
gear is modeled as three independent units interfacing with a
rigid airframe. Quaternions are used during state integration to
accommodate large attitude maneuvers.

FLYRT also models the mechanical geometry between the
actuators and the helicopter blades as well as the dynamics of
the actuators. Each actuator is modeled as a first-order lag with
time constant , reflective of a typical actuator. Actuator
rate and position limits are also modeled.

The operating conditions for which our simulation studies are
performed are shown in Table I. The center of gravity (C.G.) is
listed in the standard Apache FS/WL/BL coordinate frame [26].

TABLE I
HELICOPTEROPERATING CONDITIONS

IV. DNDP MECHANISM APPLIED TOHELICOPTERCONTROL

We now turn our attention toward applying the DNDP frame-
work to the tracking control of an Apache helicopter. The ob-
jective is to learn to create appropriate control actions solely by
observing the helicopter states, evaluating the controller perfor-
mance and adjusting the neural networks accordingly.

Fig. 2 outlines the DNDP control structure applied to heli-
copter tracking control. It consists of a structured cascade of
neural networks forming the action network, the critic network,
and the trim network. The action network provides the controls
required to drive the helicopter to the desired system state. The
critic network approximates the cost function if an explicit cost
function does not exist. The trim network provides nominal trim
control positions as a function of the system desired operating
condition.

In this paper, we introduce the concept of a structured cas-
cade of artificial neural networks (ANNs) as the action net-
work. The explicit structure embedded in this ANN, lacking in
earlier DNDP designs [8], allows the NDP controller to more
easily learn and take advantage of the physical relationships
and dependencies of the system. To perform command tracking
a vector as a function of time is to be specified first. For
helicopters, it is well established that four of the states in the
state vector are explicitly controllable. In this experiment,
we desire to control the velocities, , and and the air-
craft’s yaw . The rotational velocities and remaining Euler
angles (pitch and roll) will be determined by NDP to achieve
the specified tracking goal. We denote this new desired tracking
vector : a subset of the original desired state
vector .

Such structure in the action network is similar to classic con-
trollers for helicopters, providing for inner loop body rate con-
trol, attitude control and outer loop velocity control. In this way,
the explicit relationships between body angular rates, attitudes
and translational velocities are taken advantage of. The potential
advantage of the structured ANN over classic design method-
ologies is that it permits full cross-axes control coupling that
many single-input–single-output (SISO) proportional integral
derivative (PID) controller designs do not. However, the struc-
tured ANN does introduce a level of human knowledge/exper-
tise to its implementation that is not transparent to nonexperts.

It is possible, but rather cumbersome, to show that a classic
proportional controller can be equated to one instance (one set
of weights) of our structured ANN if the network nonlinearities
are removed (or linearized about the network operating point).
Such a relationship between the two designs can be used to pro-
vide a good first guess of the action network weights should one
want to apply this “expert” knowledge to the learning system.
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However, all results shown in this paper were obtained while
the learning system was trained from scratch without using any
expert knowledge.

Refer to Fig. 2, the inputs to the first ANN are the longitudinal
and lateral velocity errors and , re-
spectively. The first ANN outputs are the resulting desired pitch
and roll of the helicopter and . The inputs to the second
ANN are the errors in the aircraft attitudes ,

, and . The second ANN
outputs are the desired roll, pitch, and yaw rates ( ) of
the helicopter, as a function of the attitude errors. These are then
summed with the actual angular rates to obtain the angular rate
errors, , and . The
angular rate errors and the vertical velocity error
then form the inputs to the third ANN. The third ANN then
computes the controls as
a function of the angular rate and vertical velocity errors. The re-
sulting , which is normalized because of the ANN structure,
is then scaled by the controller scaling gain and summed
with the nominal trim control from the trim network. That is,

.
As described in Section IV, the objective of the NDP con-

troller is to create a series of control actions to optimize a dis-
counted total reward-to-go, which is rewritten as follows:

(12)

Typically, NDP has been applied to systems where explicit
feedback, or instantaneous cost evaluation, is not available at
each time step. In such cases, the reinforcement signaltakes
a simple binary form with when the final event is suc-
cessful (an objective is met), or if the final event is a
failure (the objective is not met). For many real-world tracking
problems however, explicit feedback is continually available
and so we can define a more informative quadratic reinforce-
ment signal

(13)

where, in our application, , is the th state variable of
, is the desired state, and

is a normalization term.
The critic and action networks are then trained per Section IV.

The equations governing the training of the action network are
significantly more complex than prior work since backpropaga-
tion must be performed through ANNs 2 and 3 for the training
of ANN 1. In essence, it is equivalent to training a six-layer net-
work if we assume that each ANN has two layers of weights.

The objective is to train the controller to perform the specified
maneuver regardless of the operating conditions or the vehicle
initial conditions. The states of interest are the aircraft transla-
tional ( ) and rotational ( ) velocities and the aircraft
Euler angles pitch (), roll ( ), and yaw ( ). Failure criteria are
used to bound allowed error for each state. The allowed errors,
shown in Table II, are initially large and decrease as a function
of time to an acceptable minimum.

TABLE II
FAILURE CRITERION FORHELICOPTERSTABILIZATION

These failure criteria were chosen judiciously but no claims
are made to their optimality. The results show that these criteria
create a control system that can control the helicopter both
in nominal conditions and when subjected to disturbances.
Heuristic failure criteria is one of the advantages of NDP if one
does not have an accurate account of the performance measure.
This is also one characteristic of the NDP design that differs
from other neural control designs. The critic network plays the
role of working out a more precise account of the performance
measure for credit/blame assignment derived from the heuristic
criteria. If the networks have converged, an explicitly desired
state has been achieved which is reflected in theterm in the
NDP structure.

The trim network is a neural network, or lookup table, that
is trained, or programmed, to schedule the aircraft’s nominal
actuator position and aircraft orientation as a function of oper-
ating conditions. It is a critical element in nonlinear flight con-
trol system design. In the following, we show what trim is and
how to integrate this trim design seamlessly into the DNDP con-
trol design.

V. TRIMMING THE HELICOPTER

Controlling the helicopter is a nonlinear control system de-
sign problem. An important part of practical helicopter control
is the ability to determine the trim states for the helicopter over
all flight conditions. For nonlinear systems, the trim states are
those that lead to steady-state flight conditions. More specifi-
cally, they are the positions of the controls and the dependent
states associated with achieving a desired steady-state condi-
tion. For example, with an aircraft, one tries to adjust (trim)
the controls to balance the aerodynamic, inertial, and gravita-
tional forces and moments in all axes at all times. The aircraft
is trimmed when the desired balance is achieved or the aircraft
enters a desired steady state. In the case of a helicopter, the
controls to be trimmed are the four actuators and the depen-
dent states to be trimmed are the pitch, roll, and yaw, i.e., seven
trim state variables in total. These states are trimmed for the
desired specified steady-state translational velocities (, , )
and angular rates (, , ), i.e., six variables representing de-
sired steady states. When flying a conventional mechanically
controlled helicopter, a pilot continually trims the helicopter via
his closed-loop control. Similarly, traditional PID-based control
techniques inherently trim the helicopter, the integrators serve
as the trim component.

The concept of trim can also be applied to physical systems
other than aircraft. In such a case, one tries to balance the system
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Fig. 3. Neural-network structure for determining trim. The objective is to mininimize the specified cost functionJ (t).

so that the change in state derivative (e.g., acceleration) is either
zero or minimized.

The ability to use NDP to trim the helicopter is paramount to
successfully applying DNDP to the tracking control problem.
Previous NDP control designs were successful because the sys-
tems that were tested (e.g., the inverted pendulum) had a zero
trim requirement [8]. Similarly, many flight control papers have
assumed linear models, in which case, there is also a zero trim
requirement since the model is linearized about a trim condi-
tion. However, in general trim requirements cannot be ignored
for controllers of nonlinear systems, including those for aircraft.

Trim capability is also useful for facilitating realistic simula-
tions. Often one wants to start a simulation at an arbitrary initial
condition rather than performing the task of flying the helicopter
to that particular state (which in certain cases may be hard to do
precisely). Existing trim methods such as that used by FLYRT
are limited to performing trim for only a limited set of initial
conditions. Thus, a method of trimming the helicopter at an ar-
bitrary specified initial condition is desired.

This paper develops a neural-network-based method for trim-
ming the helicopter that addresses the above issues. The re-
sulting trim network schedules the nominal control trim position
as a function of aircraft state and environmental/flight parame-
ters (such as aircraft weight, air density, etc.). This trim method,
though applied to helicopters here, can be applied to any general
physical control system.

A. Existing Trim Methods

Several techniques have been developed to trim helicopters
[18], [19]. Two methods that are commonly used are shooting
methods, typically using (damped) Newton’s method, and fi-
nite element methods [20], [21]. Both are iterative numerical
techniques that can be implemented in either a serial or par-
allel scheme. In the serial scheme, during each iteration the con-
trol input trim positions are updated first and then the estimates
of the trimmed initial conditions are updated. In the parallel
scheme, both control input and initial trim values are updated
simultaneously. The claim is that the parallel scheme generally
finds the solutions faster but with a higher risk of solution di-
vergence. A third trim method is the auto-pilot trim procedure
[22], [23]. Often, this method is augmented with one of the two
other methods [24]. A comprehensive review of trimming is-
sues, theory and techniques is provided in [25].

The major difference between existing papers and this re-
search is that the existing papers describe how to trim the he-
licopter from an aeromechanical viewpoint rather than a control
systems viewpoint. That is, the states that are trimmed in these
papers (blade flapping angles, lag angles, and controls) are dif-

ferent than what we need to trim (body orientation and controls).
Further, most of the existing work assumes knowledge of the
equations governing the system (i.e., model-based approaches).
In our approach, no such assumption is made. Instead a strictly
numerical approach is taken. Further research may be warranted
to determine if the proposed approach is also applicable to the
aero-mechanical trim problem.

B. Neural-Network-Based Trim Method

This paper proposes a neural-network approach for trimming
a helicopter. The method uses the existing DNDP neural-net-
work framework and, hence, can be seamlessly integrated with
the NDP controller for a very simple and efficient implementa-
tion.

Trimming requires determining the seven trim state vari-
ables to include four control positions and three body angles
(later defined to be ) for a given flight condition. For this
reason, we divide the original state vectorinto two parts

and , where represents
the desired steady state variables for which we want to deter-
mine the seven trim positions.

Fig. 3 shows the neural-network structure used to determine
the seven aircraft trim positions and for any desired
trim steady-state . To make use of the existing NDP pro-
gramming structure for seamless integration, it is natural to use
the action network as the trim network. However now the trim
network is a one layer weight feedforward network with seven
biases ( ) that corresponding to the seven trim states. The net-
work has a nonlinear sigmoid function fanning out the outputs.
In using the action network for trim, the inputs to the trim net-
work are zeroed and there are seven outputs from the network
including four controls and three body angles.

State equations associated with Fig. 3 are as follows.

(14)

where

(15)

(16)

The cost function used is , where
, .

The basic technique for determining the trim positions is to
train a network, whose inputs are zeroed and that has biases,
to minimize an objective (cost function). After training is com-
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plete, the resulting biases then provide the aircraft trim posi-
tions. The weights in this network are of no importance other
than the bias vector. This trim network is trained over a number
of epochs where in each epochthe FLYRT model is initial-
ized, the plant dynamics are evolved for a specified time, and
backpropagation is performed to adjust the trim network biases
to minimize the objective at time for that epoch . In gen-
eral, we denote the variableat time for epoch as .
For example, the objective function at time for epoch is
denoted .

The network biases, , are trained using the same gradient
descent training method described for NDP. That is

(17)

(18)

For the four biases corresponding to the trim controls

(19)

For the three biases corresponding to the trim body angles

(20)

In both cases the first partial is evaluated in the manner de-
scribed earlier in the DNDP mechanism. For the trim angles bias
updates, the partials and
can be calculated numerically via perturbations to the system.
Alternatively, the partial can be approxi-
mated analytically at hover from simple physics (rotate the
gravity vector into the body frame and use appropriate small
angle approximations). We computed the partials at hover only
and used them for all flight conditions to generate our results.

Once training is complete the trim positions are then deter-
mined from the network biases via the sigmoid function. Note
that the trim network is trained off-line first, independent of the
action and the critic networks in the DNDP controller.

C. Neural-Network-Based Trim Algorithm Implementation

An implementation procedure of the trim algorithm can be
summarized as follows.

Step 1) Specify the desired steady state to be trimmed as
.

Step 2) Initialize the trim network biases .
Loop to , where is the total number of

epochs for determining trim.
Step 3) Set the FLYRT initial conditions and initial controls to

the trim values

(21)

(22)

Step 4) Let the plant dynamics evolve for time (e.g.,
500 ms).

TABLE III
NEURAL-NETWORK PARAMETER VALUES FORDETERMINING TRIM

Step 5) Measure the states of interest

(23)

(24)

Step 6) Evaluate the objective function .
Step 7) Update the network biases per the update (17)–(20).

End loop
Step 8) Compute the trim positions from the network biases per

(14).
The number of epochs was chosen to be by ex-

perience. The learning rate was set to decrease as a function of
epoch number, . For the results presented
in this paper, the network biases were initialized to zero. How-
ever, one could use system knowledge to make a good initial
guess of the trim positions and then calculate the corresponding
biases and initialize the biases with these values. The model run
time is chosen to be large enough to have some measurable
response but small enough so that linearity properties about that
operating point holds during the run time.

Note that we desire to trim the aircraft for a specified ground
speed (i.e., in the earth reference frame), rather than for body
frame velocities (as implied by existing trim papers interested in
aero-mechanical issues). A problem is that our model initializa-
tion and cost function are specified in terms of body frame ve-
locities rather than earth frame reference frame velocities. The
two reference frames are related by the still to be determined
trim body angles. The solution to this problem is to use the cur-
rent body angle trim estimates to resolve the two frames.

D. Trim Results

The neural-network-based trim method is tested for a variety
of flight conditions for the Apache helicopter. Since there are an
infinite number of trim solutions at a given operating condition
(infinite combinations of and ), a unique solution
was found by constraining to zero. The neural-network
parameters used for determining the trim positions are presented
in Table III.

This neural trim method has proven to be efficient for Apache
helicopter through numerous simulation studies. Fig. 4 com-
pares the NDP generated trim positions to those generated by
FLYRT over the range of 0 to 150 kn forward speed. The results
appear to be identical except for roll which has a worst case
difference of less than 0.15. Fig. 4 is typical for other flight
conditions when compared to the FLYRT.

VI. DNDP–BASED TRACKING CONTROL RESULTS

This section presents results showing the performance of the
DNDP controlling the Apache helicopter for a variety of maneu-
vers. This is a complex MIMO nonlinear control system design
problem. It provides a realistic test bed for how well an approx-
imate dynamic programming algorithm can generalize.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 02,2010 at 23:40:37 EST from IEEE Xplore.  Restrictions apply. 



936 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

Fig. 4. Trim positions as a function of airspeed for neural and FLYRT methods.

TABLE IV
LEARNING STATISTICS FORHOVER TO 50 FT/S MANEUVER AT VARIOUS ACCELERATIONS FORTHREE WIND CONDITIONS

Characteristic to prior NDP research, the performance of the
DNDP is summarized statistically in tables. Fourteen maneu-
vers are considered: seven accelerations from hover to 50 ft/s
at various accelerations and seven decelerations from 100 ft/s
to 50 ft/s at various decelerations. Each maneuver is tested in
three wind conditions: case A) no wind, case B) 10 ft/s step gust
for 5 s, and case C) turbulence simulated using a Dryden model
with a spatial turbulence intensity of ft/s and a turbulence
scale length of ft. In addition to the tabular statis-
tics provided, both statistical and typical time history plots of
the aircraft states are provided for two cases, a hover to 50 ft/s
at 5 ft/s maneuver with turbulence and a 100 ft/s to 50 ft/s at

4 ft/s maneuver with a step gust.
The statistical success of the DNDP to learn to control

the helicopter is evaluated for the five flight conditions. For
each flight condition, 100 runs were performed to evaluate the
DNDP performance, where for each run initial weights in each
network were set randomly. Each run consists of up to 5000

attempts (trials) to learn to successfully control the system.
An attempt is deemed successful if the helicopter stays within
the failure criteria bounds described in Table II for the entire
flight duration (50 s). After each failed trial, the system is
restarted with the same initial state as the previous trial but
with the network weights at the previous trial’s termination.
If the controller successfully controls the helicopter within
5000 trials, the run is considered successful; if not, the run
is considered a failure.

Table IV statistically summarizes the learning ability of the
DNDP controller to perform a hover to 50 ft/s maneuver at a
number of different accelerations. Results for 100 to 50 ft/s de-
celerations at a number of deceleration rates are provided in
Table V. In both cases results are provided for the three wind
conditions cited above. The success percentage reflects the per-
centage of runs for which the DNDP system successfully learns
to control the helicopter. The average number of trials is what it
takes the DNDP system to learn to control the helicopter. Stan-
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TABLE V
LEARNING STATISTICS FOR100TO 50 FT/S MANEUVER AT VARIOUS DECELERATIONS FORTHREE WIND CONDITIONS

Fig. 5. Statistical and typical state and control trajectories of the helicopter for a hover to 50 ft/s maneuver at 5 ft/sacceleration in turbulence. Turbulence is
simulated using a Dryden model with a spatial turbulence intensity of� = 5 ft/s and a turbulence scale length ofL = 1750 ft.

dard deviations from successful runs for various maneuvers are
also used to demonstrate the (in)consistency of the learning con-
trol performance.

Fig.5showsboth thestatisticalaveragestateerroranderrorde-
viation over all successful runs and a typical plot of the controller
performanceforahoverto50ft/smaneuveratanaggressive5ft/s
acceleration in the presence of turbulence. Fig. 6 shows both the
statistical averagestateerroranderrordeviationanda typicalplot
of the controller performance for a 100 ft/s to 50 ft/s maneuver at
4 ft/s deceleration in the presence of a step gust. Helicopter and
control dynamics are similar for the other maneuvers once the
learning controller becomes stabilized in learning.

The neural-network parameters used during training are pro-
vided in Table VI. The learning rates for the action network
and critic network are scheduled to decrease linearly with time
(typically over a few seconds). In every time frame, the weight
equations are updated until either the error has sufficiently con-
verged ( ) or the internal update cycles ( ) of the
weights have been reached. is the number of hidden nodes
in the neural networks.

It is worth mentioning that a comprehensive analysis on the
convergence performance of an entire NDP system in general
does not exist, and neither does an analytical framework on
the relationship between the performance of the NDP learning
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Fig. 6. Statistical and typical state and control trajectories of the helicopter for a 100 to 50 ft/s maneuver at�4 ft/s acceleration in a step gust. The step gust is
10 ft/s in magnitude and has a 5-s duration.

TABLE VI
NEURAL-NETWORK PARAMETER VALUES FORTRAINING

controller versus the learning parameters. It has been argued
[8] that updating individual networks alone, action or critic for
example, may be viewed as a stochastic approximation problem
and therefore, conditions similar to the Robbins–Monro al-
gorithm may be used as guidelines in scheduling the learning
parameters. Quantitatively, we have observed that the DNDP
learning parameters do impact the learning ability of the
learning controller. For example, the learning rate for action
networks can be tuned to perform different maneuvers with
different system outcomes. This is illustrated by Table VII,
which shows the DNDP system performance for learning
rates ( ) of 0.2 and 0.02 for both more aggressive and less
aggressive accelerations. Lower learning rates improve the suc-
cess for more aggressive maneuvers but decrease the learning
ability (increase the number of trials) required to learn for less
aggressive maneuvers.

Interesting to note is that despite what one may expect, overall
the DNDP controller more reliably and more quickly learns to
control thehelicopter in thepresenceof turbulence.This isclearly
evident in Tables IV and V. The learning performance improve-
ment can be attributed to the sustained larger excitation, due to
turbulence, to both the neural-networks inputs and the cost func-

TABLE VII
LEARNING STATISTICS FORHOVER TO 50 FT/S MANEUVERS AS A

FUNCTION OF LEARNING RATE

tion evaluation when there is turbulence. As a result, the network
weights change more in (10) and, thus, the learning system ex-
plores more of the solution space and is less likely to become
trapped in local minima that do not provide an adequate control
solution. This suggests that in applications where turbulence or
other excitation is not natural, it may be prudent to create an arti-
ficial equivalent in order to improve learning performance.
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Also note that, as with previous NDP designs, a large number
of trials must occur to successfully learn to perform the ma-
neuver. Further, the more aggressive the maneuver (the higher
the acceleration), the more trials that are required. This is not
surprising for a learning system that is learning from experience
without any a priori system knowledge. The ramification is that
this training is done offline (i.e., not in a real helicopter), where
failures can be afforded, until the controller is successfully
trained. Once trained, the neural-network weights are frozen
and the controller structure shown in Fig. 2 can be implemented
in a helicopter. Limited authority on-line training can then be
performed to improve system performance.

VII. CONCLUSION

This paper has advanced neural dynamic programming con-
trol research by introducing the DNDP control structure to a
sophisticated tracking control problem, contrasting to earlier re-
lated works that have been limited to stabilization only [9]. Para-
mount to this was the development of a DNDP-based method
for trimming the helicopter system and a structured approach
to implementing the action network. A sophisticated nonlinear
validated model of the Apache helicopter was used to test the
controller and its ability to learn to perform a number of diffi-
cult maneuvers. Our research has shown that the DNDP is able
to successfully control the Apache helicopter for a wide range of
realistic maneuvers and over a wide range of flight conditions,
a few examples of which were used to illustrate the results in
this paper. Thus, it appears that NDP is a viable candidate for
controlling complex MIMO systems and is suited particularly
well for on-line and complex multiaxes coupling control appli-
cations. Our results have demonstrated the generalization capa-
bility of a learning control system, namely DNDP, to a large
continuous-state problem. The same principle can also be di-
rectly applied to large discrete-state/action problems.
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