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Abstract—Convergence of the value-iteration-based heuristic
dynamic programming (HDP) algorithm is proven in the case of
general nonlinear systems. That is, it is shown that HDP converges
to the optimal control and the optimal value function that solves
the Hamilton–Jacobi–Bellman equation appearing in infinite-
horizon discrete-time (DT) nonlinear optimal control. It is
assumed that, at each iteration, the value and action update
equations can be exactly solved. The following two standard neural
networks (NN) are used: a critic NN is used to approximate the
value function, whereas an action network is used to approximate
the optimal control policy. It is stressed that this approach allows
the implementation of HDP without knowing the internal dynam-
ics of the system. The exact solution assumption holds for some
classes of nonlinear systems and, specifically, in the specific case
of the DT linear quadratic regulator (LQR), where the action is
linear and the value quadratic in the states and NNs have zero
approximation error. It is stressed that, for the LQR, HDP may be
implemented without knowing the system A matrix by using two
NNs. This fact is not generally appreciated in the folklore of HDP
for the DT LQR, where only one critic NN is generally used.

Index Terms—Adaptive critics, approximate dynamic program-
ming (ADP), Hamilton Jacobi Bellman (HJB), policy iteration,
value iteration.

I. INTRODUCTION

THIS paper is concerned with the application of approx-
imate dynamic programming (ADP) techniques to solve

for the value function, and hence the optimal control policy, in
discrete-time (DT) nonlinear optimal control problems having
continuous state and action spaces. ADP is a reinforcement
learning approach [33] based on adaptive critics [5], [38] to
solve dynamic programming problems utilizing function ap-
proximation for the value function. ADP techniques can be
based on value iterations or policy iterations. In contrast with
value iterations, policy iterations require an initial stabilizing
control action [33]. Howard [16] proved convergence of policy
iteration for Markov decision processes (MDPs) with discrete
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state and action spaces. Lookup tables are used to store the
value function iterations at each state. Watkins [34] developed
Q-learning for discrete state and action MDPs, where a “Q
function” is stored for each state/action pair, and model dynam-
ics are not needed to compute the control action.

ADP was proposed by Werbos [35]–[37] for DT dynamical
systems having continuous state and action spaces as a way to
solve optimal control problems [21] forward in time. Bertsekas
and Tsitsiklis [6] provide a treatment of neurodynamic
programming, where neural networks (NNs) are used to
approximate the value function. Cao [39] presents a general
theory for learning and optimization.

Werbos [36] classified ADP approaches into the follow-
ing four main schemes: heuristic dynamic programming
(HDP), dual HDP (DHP), action-dependent HDP (ADHDP) (a
continuous-state-space generalization of Q-learning [34]), and
action-dependent dual HDP (ADDHP). NNs are used to ap-
proximate the value function (the critic NN) and the control (the
action NN), and backpropagation is used to tune the weights
until convergence at each iteration of the ADP algorithm. An
overview of ADP is given by Si et al. [31] (e.g., [10]) and
also Prokhorov and Wunsch [28], who deployed new ADP
schemes known as globalized DHP (GDHP) and action-
dependent GDHP.

ADP for linear systems has received ample attention. An
offline policy iteration scheme for DT systems with known
dynamics was given in [14] to solve the DT Riccati equation.
In [7], Bradtke et al. implemented an (online) Q-learning policy
iteration method for DT linear quadratic regulator (LQR) opti-
mal control problems. A convergence proof was given. Hagen
and Krose [12] discussed, for the LQR case, the relation be-
tween the Q-learning method and model-based adaptive control
with system identification. Landelius [20] applied HDP, DHP,
ADHDP, and ADDHP value iteration techniques, called greedy
policy iterations therein, to the DT LQR problem and verified
their convergence. It was shown that these iterations are, in
fact, equivalent to iterative solution of an underlying algebraic
Riccati equation, which is known to converge (e.g., [19]). Liu
and Balakrishnan [24] showed convergence of DHP for the
LQR case.

Morimoto et al. [25] developed differential dynamic pro-
gramming, a Q-learning method, to solve optimal zero-sum
game problems for nonlinear systems by taking the second-
order approximation to the Q-function. This effectively pro-
vides an exact Q-learning formulation for linear systems with
minimax value functions. In our previous work [3], [4], we
studied ADP value iteration techniques to solve the zero-sum
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game problem for linear DT dynamical systems using quadratic
minimax cost. HDP, DHP, ADHDP, and ADDHP formulations
were developed for zero-sum games, and convergence was
proven by showing the equivalence of these ADP methods
to iterative solution of an underlying game algebraic Riccati
equation, which is known to converge. Applications were made
to H∞ control.

For nonlinear systems with continuous state and action
spaces, solution methods for the dynamic programming prob-
lem are more sparse. Policy iteration methods for optimal
control for continuous-time systems with continuous state and
action spaces were given in [1] and [2], but complete knowledge
of the plant dynamics is required. The DT nonlinear optimal
control solution relies on solving the DT Hamilton–Jacobi–
Bellman (HJB) equation [21], exact solution of which is gen-
erally impossible for nonlinear systems. Solutions to the DT
HJB equation with known dynamics and continuous state and
action spaces were given in [17], where the coefficients of the
Taylor series expansion of the value function are systematically
computed. Chen and Jagannathan [8] show that, under certain
conditions, a second-order approximation of the DT HJB equa-
tion can be considered; under those conditions discussed in that
paper, the authors solve for the value function that satisfies
the second-order expansion of the DT HJB instead of solving
for the original DT HJB. The authors apply a policy iteration
scheme on this second-order DT HJB and require an initially
stable policy to start the iteration scheme. The authors also used
a single (critic) NN to approximate the value function of the
second-order DT HJB. These are all offline methods for solving
the HJB equations that require full knowledge of the system
dynamics.

Convergence proofs for the online value-iteration-based
ADP techniques for nonlinear DT systems are even more lim-
ited. Prokhorov and Wunsch [28] use NN to approximate both
the value (e.g., a critic NN) and the control action. Least mean
squares (LMS) is used to tune the critic NN weights and the
action NN weights. Stochastic approximation is used to show
that, at each iteration of the ADP algorithm, the critic weights
converge. Likewise, at each iteration, the action NN weights
converge, but the overall convergence of the ADP algorithm to
the optimal solution is not demonstrated. A similar approach
was used in [30].

In [13], a generalized or asynchronous version of ADP (in the
sense of Sutton and Barto [33]) was used, whereby the updates
of the critic NN and action NN are interleaved, with each
NN being updated at each time step. Tuning was performed
online. A Lyapunov approach was used to show that the method
yields uniform ultimate bounded stability and that the weight
estimation errors are bounded, although convergence to the
exact optimal value and control was not shown. The input
coupling function must be positive definite.

In this paper, we provide a full rigorous proof of conver-
gence of the value-iteration-based HDP algorithm to solve the
DT HJB equation of the optimal control problem for general
nonlinear DT systems. It is assumed that, at each iteration, the
value update and policy update equations can be exactly solved.
Note that this is true in the specific case of the LQR, where the
action is linear and the value quadratic in the states. For im-
plementation, two NNs are used—the critic NN to approximate
the value and the action NN to approximate the control. Full

knowledge of the system dynamics is not needed to implement
the HDP algorithm; in fact, the internal dynamics information
is not needed. As a value-iteration-based algorithm, of course,
an initial stabilizing policy is not needed for HDP.

The point is stressed that these results also hold for the spe-
cial LQR case of linear systems ẋ = Ax + Bu and quadratic
utility. In the general folklore of HDP for the LQR case, only
a single NN is used, namely, a critic NN, and the action is
updated by using a standard matrix equation derived from
the stationarity condition [21]. In the DT case, this equation
requires the use of both the plant matrix A, e.g., the internal
dynamics, and the control-input coupling matrix B. However,
by using a second action NN, the knowledge of the A matrix is
not needed. This important issue is clarified herein.

Section II starts by introducing the nonlinear DT optimal
control problem. Section III demonstrates how to set up the
HDP algorithm to solve for the nonlinear DT optimal control
problem. In Section IV, we prove the convergence of HDP
value iterations to the solution of the DT HJB equation. In
Section V, we introduce two NN parametric structures to ap-
proximate the optimal value function and policy. As it is known,
this provides a procedure for implementing the HDP algorithm.
We also discuss in that section how we implement the algorithm
without having to know the plant internal dynamics.

II. DT HJB EQUATION

Consider an affine in input nonlinear dynamical system of
the form

xk+1 = f(xk) + g(xk)u(xk) (1)

where x∈R
n, f(x)∈R

n, g(x)∈R
n×m, and the input u∈R

m.
Suppose that the system is drift free and, without loss of
generality, that x = 0 is an equilibrium state, e.g., f(0) = 0,
and g(0) = 0. Assume that the system (1) is stabilizable on a
prescribed compact set Ω ∈ R

n.
Definition 1: Stabilizable System: A nonlinear dynamical

system is defined to be stabilizable on a compact set Ω ∈ R
n

if there exists a control input u ∈ R
m such that, for all initial

conditions x0 ∈ Ω, the state xk → 0 as k → ∞.
It is desired to find the control action u(xk) which minimizes

the infinite-horizon cost function given as

V (xk) =
∞∑

n=k

Q(xn) + uT (xn)Ru(xn) (2)

for all xk, where Q(x) > 0 and R > 0 ∈ R
m×m. The class of

controllers needs to be stable and also to guarantee that (2) is
finite, i.e., the control must be admissible [1].
Definition 2: Admissible Control: A control u(xk) is defined

to be admissible with respect to (2) on Ω if u(xk) is continuous
on a compact set Ω ∈ R

n, u(0) = 0, u stabilizes (1) on Ω, and
∀x0 ∈ Ω, V (x0) is finite.

Equation (2) can be written as

V (xk) = xT
k Qxk + uT

kRuk +
∞∑

n=k+1

xT
nQxn + uT

nRun

= xT
k Qxk + uT

k Ruk + V (xk+1) (3)

where we require the boundary condition V (x = 0) = 0 so
that V (xk) serves as a Lyapunov function. From Bellman’s
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optimality principle [21], it is known that, for the infinite-
horizon optimization case, the value function V ∗(xk) is time
invariant and satisfies the DT HJB equation

V ∗(xk) = min
uk

(
xT

k Qxk + uT
k Ruk + V ∗(xk+1)

)
. (4)

Note that the DT HJB equation develops backward in time.
The optimal control u∗ satisfies the first-order necessary

condition, which is given by the gradient of the right-hand side
of (4) with respect to u as

∂
(
xT

k Qxk + uT
k Ruk

)
∂uk

+
∂xk+1

∂uk

T ∂V ∗(xk+1)
∂xk+1

= 0 (5)

and therefore

u∗(xk) =
1
2
R−1g(xk)T ∂V ∗(xk+1)

∂xk+1
. (6)

By substituting (6) in (4), the DT HJB becomes

V ∗(xk) = xT
k Qxk +

1
4

∂V ∗T (xk+1)
∂xk+1

g(xk)R−1g(xk)T

× ∂V ∗(xk+1)
∂xk+1

+ V ∗(xk+1) (7)

where V ∗(xk) is the value function corresponding to the opti-
mal control policy u∗(xk). This equation reduces to the Riccati
equation in the LQR case, which can be efficiently solved. In
the general nonlinear case, the HJB cannot be solved exactly.

In the next sections, we apply the HDP algorithm to solve
for the value function V ∗ of the HJB equation (7) and present a
convergence proof.

III. HDP ALGORITHM

The HDP value iteration algorithm [35] is a method to solve
the DT HJB online. In this section, a proof of convergence
of the HDP algorithm in the general nonlinear DT setting is
presented.

A. HDP Algorithm

In the HDP algorithm, one starts with an initial value, e.g.,
V0(x) = 0, and then solves for u0 as follows:

uo(xk) = arg min
u

(
xT

k Qxk + uTRu + V0(xk+1)
)
. (8)

Once the policy u0 is determined, iteration on the value is
performed by computing

V1(xk)= xT
kQxk+ uT

0(xk)Ru0(xk)+ V0(f(xk)+ g(xk)u0(xk))

=xT
k Qxk + uT

0 (xk)Ru0(xk) + V0(xk+1). (9)

The HDP value iteration scheme, therefore, is a form of in-
cremental optimization that requires iterating between a se-
quence of action policies ui(x) determined by the greedy update

ui(xk) = arg min
u

(
xT

k Qxk + uTRu + Vi(xk+1)
)

= arg min
u

(
xT

k Qxk + uTRu + Vi (f(xk) + g(xk)u)
)

=
1
2
R−1g(xk)T ∂Vi(xk+1)

∂xk+1
(10)

and a sequence Vi(x) ≥ 0 where

Vi+1(xk)= min
u

(
xT
k Qxk+ uTRu+ Vi(xk+1)

)
=xT

k Qxk+ uT
i (xk)Rui(xk)+ Vi(f(xk)+ g(xk)ui(xk))

(11)

with initial condition V0(xk) = 0.
Note that, as a value iteration algorithm, HDP does not re-

quire an initial stabilizing gain. This is important, as stabilizing
gains are difficult to find for general nonlinear systems.

Note that i is the value iterations index, whereas k is the
time index. The HDP algorithm results in an incremental opti-
mization that is implemented forward in time and online. Note
that, unlike the case for policy iterations in [14], the sequence
Vi(xk) is not a sequence of cost functions and is therefore
not a sequence of Lyapunov functions for the corresponding
policies ui(xk) which are, in turn, not necessarily stabilizing.
In Section IV, it is shown that Vi(xk) and ui(xk) converge to
the value function of the optimal control problem and to the
corresponding optimal control policy, respectively.

B. Special Case of Linear Systems

Note that, for the special case of linear systems, it can be
shown that the HDP algorithm is one way to solve the DT
algebraic Riccati equation (DARE) (e.g., [20]). Particularly, for
the DT linear system

xk+1 = Axk + Buk (12)

the DT HJB equation (7) becomes the DARE

P = ATPA + Q − ATPB(R + BTPB)−1BTPA (13)

with V ∗(xk) = xT
k Pxk.

In the linear case, the policy update (10) is

ui(xk) = −
(
R + BTPiB

)−1
BTPiAxk. (14)

By substituting this into (11), one sees that the HDP algo-
rithm (10), (11) is equivalent to

Pi+1 = ATPiA + Q − ATPiB
(
R + BTPiB

)−1
BTPiA

P0 = 0. (15)

It should be noted that the HDP algorithm (15) solves the
DARE forward in time, whereas the dynamic programming
recursion appearing in finite-horizon optimal control [21] de-
velops backward in time

Pk=ATPk+1A+ Q −ATPk+1B
(
R+BTPk+1B

)−1
BTPk+1A

PN= 0 (16)

where N represents the terminal time. Both (15) and (16) will
produce the same sequence of Pi and Pk, respectively. It has
been shown in [19] and [21] that this sequence converges to the
solution of the DARE after enough iterations.

It is very important to point out the difference between (14)
and (15) resulting from HDP value iterations and the following
iterations:

ui(xk) = −
(
R + BTPiB

)−1
BTPiA︸ ︷︷ ︸

Ki

xk (17)

(A+ BKi)TPi+1(A + BKi) − Pi+1 = −Q − KT
i RKi (18)
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resulting from policy iterations as those in [14] initialized
by a stable K0. Unlike Pi in (15), the sequence Pi in (18)
corresponds to a sequence of Lyapunov functions. Similarly,
the sequence of control policies in (17) is stabilizing unlike the
sequence in (14).

IV. CONVERGENCE OF THE HDP ALGORITHM

In this section, we present a proof of convergence for non-
linear HDP. That is, we prove convergence of iterations (10)
and (11) to the optimal value, i.e., Vi → V ∗ and ui → u∗, as
i → ∞. The linear quadratic case has been proven by Lancaster
and Rodman [19] for the case of known system dynamics.
Lemma 1: Let µi be any arbitrary sequence of control poli-

cies, and let Λi be defined by

Λi+1(xk) = Q(xk) + µT
i Rµi + Λi(f(xk) + g(xk)µi(xk)︸ ︷︷ ︸

xk+1

).

(19)

Let ui and Vi be the sequences defined by (10) and (11), re-
spectively. If V0(xk) = Λ0(xk) = 0, then Vi(xk) ≤ Λi(xk) ∀i.

Proof: Because ui(xk) minimizes the right-hand side of
(11) with respect to the control u, and because V0(xk) =
Λ0(xk) = 0, then by induction it follows that Vi(xk) ≤
Λi(xk) ∀i. �
Lemma 2: Let the sequence Vi be defined as in (11). If the

system is controllable, then the following conditions hold.

1) There exists an upper bound Y (xk) such that 0 ≤
Vi(xk) ≤ Y (xk) ∀i.

2) If the optimal control problem (4) is solvable, then there
exists a least upper bound V ∗(xk)≤Y (xk), where V ∗(xk)
solves (7) and that ∀i : 0 ≤ Vi(xk) ≤ V ∗(xk) ≤ Y (xk).

Proof: Let η(xk) be any stabilizing and admissible control
policy, and let V0(xk) = Z0(xk) = 0, where Zi is updated as

Zi+1(xk) =Q(xk) + ηT (xk)Rη(xk) + Zi(xk+1)
xk+1 = f(xk) + g(xk)η(xk). (20)

It follows that the difference

Zi+1(xk) − Zi(xk) =Zi(xk+1) − Zi−1(xk+1)

=Zi−1(xk+2) − Zi−2(xk+2)

=Zi−2(xk+3) − Zi−3(xk+3)

...

=Z1(xk+i) − Z0(xk+i). (21)

Because Z0(xk) = 0, it then follows that

Zi+1(xk)= Z1(xk+i)+Zi(xk)

=Z1(xk+i)+Z1(xk+i−1)+Zi−1(xk)

=Z1(xk+i)+Z1(xk+i−1)+Z1(xk+i−1)+Zi−2(xk)

=Z1(xk+i)+Z1(xk+i−1)

+Z1(xk+i−2)+· · ·+Z1(xk) (22)

and (22) can be written as

Zi+1(xk) =
i∑

n=0

Z1(xk+n)

=
i∑

n=0

(
Q(xk+n) + ηT (xk+n)Rη(xk+n)

)

≤
∞∑

n=0

(
Q(xk+n) + ηT (xk+n)Rη(xk+n)

)
. (23)

Because η(xk) is an admissible stabilizing controller,
xk+n → 0, as n → ∞, and

∀i : Zi+1(xk) ≤
∞∑

i=0

Z1(xk+i) = Y (xk).

By using Lemma 1 with µi(xk) = η(xk) and Λi(xk) =
Zi(xk), it follows that ∀i : Vi(xk) ≤ Zi(xk) ≤ Y (xk), which
proves part 1). Moreover, if η(xk) = u∗(xk), then
∞∑

n=0

(
Q(xk+n) + u∗T (xk+n)Ru∗(xk+n)

)
︸ ︷︷ ︸

V ∗(xk)

≤
∞∑

n=0

(
Q(xk+n) + ηT (xk+n)Rη(xk+n)

)
︸ ︷︷ ︸

Y (xk)

and hence, V ∗(xk) ≤ Y (xk), which proves part 1) and shows
that ∀i : 0 ≤ Vi(xk) ≤ V ∗(xk) ≤ Y (xk) for any Y (xk) deter-
mined by an admissible stabilizing policy η(xk). �

We now present our main result.
Theorem 1: Consider sequences Vi and ui defined by (10)

and (11), respectively. If V0(xk) = 0, then it follows that Vi is
a nondecreasing sequence ∀i : Vi+1(xk) ≥ Vi(xk). Moreover,
as i → ∞, Vi → V ∗, ui → u∗, and hence, the sequence Vi

converges to the solution of the DT HJB (7).
Proof: From Lemma 1, let µi be any arbitrary sequence of

control policies, and let Λi be defined by

Λi+1(xk) = Q(xk) + µT
i Rµi + Λi(f(xk) + g(xk)µi(xk)︸ ︷︷ ︸

xk+1

).

If V0(xk) = Λ0(xk) = 0, then it follows that Vi(xk) ≤
Λi(xk) ∀i. Now, assume that µi(xk) = ui+1(xk) such that

Λi+1(xk)= Q(xk)+ µT
i Rµi+ Λi(f(xk)+ g(xk)µi(xk))

=Q(xk)+ uT
i+1Rui+1+ Λi(f(xk)+ g(xk)ui+1(xk))

(24)

and consider

Vi+1(xk)= Q(xk)+ uT
i Rui+ Vi(f(xk)+ g(xk)ui(xk)). (25)

It will next be proven by induction that if V0(xk) =
Λ0(xk) = 0, then Λi(xk) ≤ Vi+1(xk). Induction is initialized
by letting V0(xk) = Λ0(xk) = 0 and hence

V1(xk) − Λ0(xk) = Q(xk) ≥ 0

V1(xk) ≥Λ0(xk).
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Now, assume that Vi(xk) ≥ Λi−1(xk). Then, by subtracting
(24) from (25), it follows that

Vi+1(xk) − Λi(xk) = Vi(xk+1) − Λi−1(xk+1) ≥ 0

and this completes the proof that Λi(xk) ≤ Vi+1(xk).
From Λi(xk) ≤ Vi+1(xk) and Vi(xk) ≤ Λi(xk), it then fol-

lows that ∀i : Vi(xk) ≤ Vi+1(xk).
From part 1) in Lemma 2 and the fact that Vi is a nondecreas-

ing sequence, it follows that Vi → V∞, as i → ∞. From part 2)
of Lemma 2, it also follows that V∞(xk) ≤ V ∗(xk).

It now remains to show that, in fact, V∞ is V ∗. To see this,
note that, from (11), it follows that

V∞(xk) = xT
k Qxk + uT

∞(xk)Ru∞(xk)
+V∞ (f(xk) + g(xk)u∞(xk))

and hence

V∞ (f(xk) + g(xk)u∞(xk)) − V∞(xk)

= −xT
k Qxk − uT

∞(xk)Ru∞(xk)

and therefore, V∞(xk) is a Lyapunov function for a stabilizing
and admissible policy u∞(xk) = η(xk). By using part 2) of
Lemma 2, it follows that V∞(xk) = Y (xk) ≥ V ∗(xk). This im-
plies that V ∗(xk) ≤ V∞(xk) ≤ V ∗(xk) and, hence, V∞(xk) =
V ∗(xk), u∞(xk) = u∗(xk). �

V. NN APPROXIMATION FOR VALUE AND ACTION

We have just proven that the nonlinear HDP algorithm
converges to the value function of the DT HJB equation that
appears in the nonlinear DT optimal control. It was assumed
that the action and value update equations (10) and (11) can
be exactly solved at each iteration. In fact, these equations are
difficult to solve for general nonlinear systems. Therefore, for
implementation purposes, one needs to approximate ui and Vi

at each iteration. This allows the approximate solutions of (10)
and (11).

In this section, we review how to implement the HDP value
iteration algorithm with two parametric structures such as NNs
[22], [37]. The important point is stressed that the use of two
NNs, a critic for value function approximation and an action
NN for the control, allows the implementation of HDP in
the LQR case without knowing the system internal dynamics
matrix A.

A. NN Approximation for Implementation of the HDP
Algorithm for Nonlinear Systems

It is well known that NNs can be used to approximate smooth
functions on prescribed compact sets [15]. Therefore, to solve
(10) and (11), Vi(x) is approximated at each step by a critic NN

V̂i(x) =
L∑

j=1

wj
viφj(x) = WT

V iφ(x) (26)

and ui(x) by an action NN

ûi(x) =
M∑

j=1

wj
uiσj(x) = WT

uiσ(x) (27)

where the activation functions are φj(x), σj(x) ∈ C1(Ω), re-
spectively. Because it is required that Vi(0) = 0 and ui(0) = 0,
we select activation functions with φj(0) = 0 and σj(0) = 0.
Moreover, because it is known that V ∗ is a Lyapunov function
and that Lyapunov proofs are convenient if the Lyapunov
function is symmetric and positive definite, it is convenient to
also require that the activation functions for the critic NN be
symmetric, i.e., φj(x) = φj(−x).

The NN weights in the critic NN (26) are wj
vi. L is

the number of hidden-layer neurons. The vector φ(x) ≡
[φ1(x) φ2(x) · · · φL(x)]T is the vector activation function,
and WV i ≡ [w1

vi w2
vi · · · wL

vi]
T is the weight vector at

iteration i. Similarly, the weights of the NN in (27) are
wj

ui. M is the number of hidden-layer neurons. σ(x) ≡
[σ1(x) σ2(x) · · · σL(x)]T is the vector activation function, and
Wui ≡ [w1

ui w2
ui · · · wL

ui]
T is the vector weight.

According to (11), the critic weights are tuned at each
iteration of HDP to minimize the residual error between
V̂i+1(xk) and the target function defined in (28) in a least
squares sense for a set of states xk sampled from a compact
set Ω ⊂ R

n

d(xk,xk+1,WV i,Wui)= xT
k Qxk+ûT

i (xk)Rûi(xk)+V̂i(xk+1)
=xT

k Qxk+ûT
i (xk)Rûi(xk)

+ WT
V iφ(xk+1). (28)

The residual error (cf. temporal difference error) becomes(
WT

V i+1φ(xk) − d(xk, xk+1,WV i,Wui)
)

= eL(x). (29)

Note that the residual error in (29) is explicit, in fact linear,
in the tuning parameters WV i+1. Therefore, to find the least
squares solution, the method of weighted residuals may be used
[11]. The weights WV i+1 are determined by projecting the
residual error onto (deL(x)/dWV i+1) and setting the result to
zero ∀x ∈ Ω using the inner product, i.e.,〈

deL(x)
dWV i+1

, eL(x)
〉

= 0 (30)

where 〈f, g〉 =
∫
Ω fgT dx is a Lebesgue integral. One has

0=
∫
Ω

φ(xk)
(
φT (xk)WV i+1−dT (xk, xk+1,WV i,Wui)

)
dxk.

(31)

Therefore, a unique solution for WV i+1 exists and is com-
puted as

WV i+1 =


∫

Ω

φ(xk)φ(xk)T dx




−1

×
∫
Ω

φ(xk)dT (φ(xk),WV i,Wui) dx. (32)

To use this solution, it is required that the outer product
integral be positive definite. This is known as a persistence of
excitation condition in system theory. The next assumption is
standard in selecting the NN activation functions as a basis set.
Assumption 1: The selected activation functions {φj(x)}L

are linearly independent on the compact set Ω ⊂ R
n.
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Assumption 1 guarantees that the excitation condition is
satisfied, and hence,

∫
Ω φ(xk)φ(xk)T dx is of full rank and

invertible, and a unique solution for (32) exists.
The action NN weights are tuned to solve (10) at each

iteration. The use of ûi(xk,Wui) from (27) allows the rewriting
of (10) as

Wui = arg min
w

(
xT

kQxk+ ûT
i (xk, w)Rûi(xk, w)+ V̂i

(
xi
k+1

))∣∣∣
Ω

(33)

where xi
k+1 = f(xk) + g(xk)ûi(xk, w), and the notation

means minimization for a set of points xk selected from the
compact set Ω ∈ R

n.
Note that the control weights Wui appear in (33) in an

implicit fashion, i.e., it is difficult to solve explicitly for the
weights because the current control weights determine xk+1.
Therefore, one can use an LMS algorithm on a training set
constructed from Ω. The weight update is therefore (34),
shown at the bottom of the page, where α is a positive step
size and m is the iteration number for the LMS algorithm.
By a stochastic-approximation-type argument, the weights
Wui|m ⇒ Wui, as m ⇒ ∞, and satisfy (33). Note that one can
use alternative tuning methods, such as Newton’s method and
the Levenberg–Marquardt method, in order to solve (33).

In Fig. 1, the flowchart of the HDP iteration is shown. Note
that because of the NN used to approximate the control policy,
the internal dynamics, i.e., f(xk), is not needed. That is, the
internal dynamics can be unknown.
Remark: Neither f(x) nor g(x) is needed to update the

critic NN weights using (32). Only the input coupling term
g(x) is needed to update the action NN weights using (34).
Therefore, the proposed algorithm works for a system with
partially unknown dynamics—no knowledge of the internal
feedback structure f(x) is needed.

B. HDP for Linear Systems Without Knowledge of
Internal Dynamics

The general practice in the HDP folklore for linear quadratic
systems is to use a critic NN (to approximate the value) and
update the critic weights using a method such as the batch
update (32) or a recursive update method such as LMS. In fact,
the critic weights are nothing, but the elements of the Riccati
matrix and the activation functions are quadratic polynomials
in terms of the states. Then, the policy is updated by using

ui(xk) = −
(
R + BTPiB

)−1
BTPiAxk. (35)

Note that this equation requires the full knowledge of both
the internal dynamics matrix A and the control weighting
matrix B. However, we have just seen (see the previous remark)

Fig. 1. Flowchart of the proposed algorithm.

that the knowledge of the A matrix can be avoided by using,
instead of the action update (35), a second NN for the action
ûi(x) = WT

uiσ(x).
In fact, the action NN approximates the effects of A and B

given in (35) and so effectively learns the A matrix.
That is, using two NNs even in the LQR case avoids the

need to know the internal dynamics matrix A. Only the input
coupling matrix B is needed for the HDP algorithm, which
nevertheless converges to the correct LQR Riccati solution
matrix P .

VI. CONCLUSION

We have proven convergence of the HDP algorithm to the
value function solution of the HJB equation for nonlinear
dynamical systems, assuming exact solution of the value update
and the action update at each iteration.

Wui|m+1 = Wui|m − α
∂(xT

k Qxk + ûT
i (xk,Wui|m) R ûi(xk,Wui|m) + V̂i(xk+1)

∂Wui

∣∣∣∣∣
Wui|m

= Wui|m − ασ(xk)
(

2Rûi(xk,Wui|m) + g(xk)T ∂φ(xk+1)
∂xk+1

WV i

)T

(34)
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NNs are used as parametric structures to approximate at each
iteration the value (i.e., critic NN) and the control action. It
is stressed that the use of the second NN to approximate the
control policy, the internal dynamics, i.e., f(xk), is not needed
to implement HDP. This holds as well for the special LQR case,
where the use of two NNs avoids the need to know the system
internal dynamics matrix A.
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