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Abstract

The Hamilton–Jacobi–Bellman (HJB) equation corresponding to constrained control is formulated using a suitable nonquadratic func-
tional. It is shown that the constrained optimal control law has the largest region of asymptotic stability (RAS). The value function of
this HJB equation is solved for by solving for a sequence of cost functions satisfying a sequence of Lyapunov equations (LE). A neural
network is used to approximate the cost function associated with each LE using the method of least-squares on a well-defined region of
attraction of an initial stabilizing controller. As the order of the neural network is increased, the least-squares solution of the HJB equation
converges uniformly to the exact solution of the inherently nonlinear HJB equation associated with the saturating control inputs. The result
is a nearly optimal constrained state feedback controller that has been tuned a priori off-line.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The control of systems with saturating actuators has
been the focus of many researchers for many years. Sev-
eral methods for deriving control laws considering the
saturation phenomena are found inSaberi, Lin, and Teel
(1996), Sussmann, Sontag, and Yang (1994)andBernstein
(1995). However, most of these methods do not consider
optimal control laws for general nonlinear systems. In this
paper, we study this problem through the framework of the
Hamilton–Jacobi–Bellman (HJB) equation appearing in op-
timal control theory (Lewis & Syrmos, 1995). The solution
of the HJB equation is challenging due to its inherently
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nonlinear nature. For linear systems, the HJB becomes the
well-known Riccati equation which results in the linear
quadratic regulator (LQR) controller. When the linear sys-
tem is input constrained, then the closed loop dynamics
become nonlinear and the LQR is not optimal anymore.
The HJB equation generally cannot be solved. There has

been a great deal of effort to solve this equation. Approxi-
mate HJB solutions have been found using many techniques
such as those developed bySaridis and Lee (1979), Beard,
Saridis, and Wen (1997, 1998), Beard (1995), Murray, Cox,
Lendaris, and Saeks (2002), Lee, Teo, Lee, andWang (2001),
Huang, Wang, and Teo (2000), Bertsekas and Tsitsiklis
(1996), Munos, Baird, and Moore (1999), Kim, Lewis, and
Dawson (2000), Han and Balakrishnan (2000), Liu and Bal
akrishnan (2000), Lyshevski and Meyer (1995), Lyshevski
(1996, 1998, 2001a,b)andHuang and Lin (1995)for HJI
equation which is closely related to the HJB equation.
In this paper, we focus on the HJB solution using a se-

quence of Lyapunov equations developed bySaridis and
Lee (1979). Saridis and Lee (1979)successively improve a
given initial stabilizing control. This method reduces to the
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well-known Kleinman (1968)iterative method for solving
the Algebraic Riccati equation using Lyapunov matrix equa-
tions. For nonlinear systems, it is unclear how to solve the
LE. Therefore, successful application of the successive ap-
proximation method was limited until the novel work of
Beard et al. (1997, 1998)where they used a Galerkin spec-
tral approximation method at each iteration to find approx-
imate solutions to the LE and this is called usually GHJB.
This requires however the computation of a large number of
integrals and it is not obvious how to handle explicit con-
straints on the controls, which is the interest of this paper.
Lyshevski (1998)proposed the use of nonquadratic func-

tionals to confront constraints on inputs. Using nonquadratic
functionals, the HJB equation was formulated and its solu-
tion results in a smooth saturated controller. It remains how-
ever difficult to actually solve for the value function of this
HJB equation.
In this paper, we use neural networks to obtain an approx-

imate solution to the value function of the HJB equation
that uses nonquadratic functionals. This in turn results in a
nearly optimal constrained input state feedback controller
suitable for saturated actuators.
Neural networks applications to optimal control via the

HJB equation, Adaptive Critics, were first proposed byWer-
bos inMiller, Sutton, and Werbos (1990). Parisini and Zop
poli (1998)used neural networks to derive optimal control
laws for discrete-time stochastic nonlinear system. Success-
ful neural network controllers have been reported inChen
and Liu (1994), Lewis, Jagannathan, and Yesildirek (1999),
Polycarpou (1996), Rovithakis and Christodoulou (1994),
Sadegh (1993)andSanner and Slotine (1991). It has been
shown that neural networks can effectively extend adaptive
control techniques to nonlinearly parameterized systems.
The status of neural network control as of 2001 appears in
Narendra and Lewis (2001).

2. Background in optimal control and constrained
input systems

Consider an affine in the control nonlinear dynamical sys-
tem of the form

ẋ = f (x)+ g(x)u(x), (1)

wherex ∈ Rn, f (x) ∈ Rn, g(x) ∈ Rn×m. And the input
u ∈ U, U = {u = (u1, . . . , um) ∈ Rm : �i�ui��i , i =
1, . . . , m}. where�i , �i are constants. Assume thatf + gu
is Lipschitz continuous on a set� ⊆ Rn containing the
origin, and that system (1) is stabilizable in the sense that
there exists a continuous control on� that asymptotically
stabilizes the system. It is desired to findu, which minimizes
a generalized nonquadratic functional

V (x0)=
∫ ∞

0
[Q(x)+W(u)]dt . (2)

Q(x),W(u) are positive definite, i.e.∀x �= 0 Q(x)>0 and
x = 0 ⇒ Q(x) = 0. For unconstrained control inputs, a
common choice forW(u) is W(u) = uTRu, whereR ∈
Rm×m. Note that the controlu must not only stabilize the
system on�, but guarantee that (2) is finite. Such controls
are defined to beadmissible(Beard et al., 1997).

Definition 1 (Admissible Controls). A control u is defined
to be admissible with respect to (2) on�, denoted byu ∈
�(�), if u is continuous on�, u(0)= 0, u stabilizes (1) on
�, and∀x0 ∈ � V (x0) is finite.

Eq. (2) can be expanded as follows:

V (x0)=
∫ T

0
[Q(x)+W(u)]dt +

∫ ∞

T

[Q(x)+W(u)]dt

=
∫ T

0
[Q(x)+W(u)]dt + V (x(T )). (3)

If V ∈ C1, then Eq. (3) becomes

lim
T→0

[V (x0)−V (x(T ))]/T = lim
T→0

1

T

∫ T

0
[Q(x)+W(u)]dt ,

V̇ = V T
x (f + gu)= −Q(x)−W(u). (4)

Eq. (4) is the infinitesimal version of Eq. (2) and is a sort
of a Lyapunov equation for nonlinear systems that we refer
to as LE in this paper.

LE(V, u)�V T
x (f + gu)+Q+W(u)= 0, V (0)= 0. (5)

For unconstrained control inputs,W(u)= uTRu, the LE
becomes the well-known HJB equation (Lewis & Syrmos,
1995) on substitution of the optimal control

u∗(x)= −1
2R

−1gTV ∗
x (6)

V ∗(x) is the value function of the optimal control problem
that solves the HJB equation

HJB(V ∗)�V ∗T
x f +Q− 1

4V
∗T
x gR−1gTV ∗

x = 0,

V ∗(0)= 0. (7)

Lyshevski and Meyer (1995)showed that the value function
obtained from (7) serves as a Lyapunov function on�.
To confront bounded controls,Lyshevski (1998)intro-

duced a generalized nonquadratic functional

W(u)= 2
∫ u

0
(�−1(v))TR dv,

�(v)= [�(v1) · · ·�(vm)]T,
�−1(u)= [�−1(u1) · · ·�−1(um)], (8)

wherev ∈ Rm, � ∈ Rm, and�(·) is a bounded one-to-one
function that belongs toCp (p�1) andL2(�). Moreover, it
is a monotonic odd function with its first derivative bounded
by a constantM. An example is the hyperbolic tangent�(·)=
tanh(·). R is positive definite and assumed to be symmetric
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for simplicity of analysis. Note thatW(u) is positive definite
because�−1(u) is monotonic odd andR is positive definite.
The LE when (8) is used becomes

V T
x (f + g · u)+Q+ 2

∫ u

0
�−T(v)R dv = 0,

V (0)= 0. (9)

Note that the LE becomes the HJB equation upon substitut-
ing the constrained optimal feedback control

u∗(x)= −�(12 · R−1gTV ∗
x ), (10)

whereV ∗(x) solves the following HJB equation:

V ∗T
x (f − g�(12 · R−1gTV ∗

x ))+Q

+ 2
∫ −�(12 ·R−1gTV ∗

x )

0
�−T(v)R dv = 0,

V ∗(0)= 0. (11)

Eq. (11) is a nonlinear differential equation for which
there may be many solutions. Existence and uniqueness of
the value function has been shown inLyshevski (1996). This
HJB equation cannot generally be solved. There is currently
no method for rigorously solving for the value function of
this constrained optimal control problem. Moreover, current
solutions are not well defined over a specific region of the
state space.

Remark 1. Optimal control problems do not necessarily
have smooth or even continuous value functions, (Huang
et al., 2000; Bardi & Capuzzo-Dolcetta, 1997). Lio (2000)
used the theory of viscosity solutions to show that for infi-
nite horizon optimal control problems with unbounded cost
functionals, under certain continuity assumptions of the dy-
namics, the value function is continuous on some set�,
V ∗(x) ∈ C(�). Bardi and Capuzzo-Dolcetta (1997)showed
that if the Hamiltonian is strictly convex and if the continu-
ous viscosity solution is semiconcave, thenV ∗(x) ∈ C1(�)
satisfying the HJB equation everywhere. For affine input
systems (1), the Hamiltonian is strictly convex if the system
dynamics gain matrixg(x) is constant, there is no bilinear
terms of the state and the control, and if the integrand of
(2) does not involve cross terms of the states and the con-
trol. In this paper, all derivations are performed under the
assumption of smooth solutions to (9) and (11) with all what
this requires of necessary conditions. See (Van Der Schaft,
1992; Saridis & Lee, 1979) for similar framework of so-
lutions. If the smoothness assumption is released, then one
needs to use the theory of viscosity solutions to show that
the continuous cost solutions of (9) converge to the contin-
uous value function of (11).

3. Successive approximation of HJB for saturated
controls

The LE is linear inV (x), while the HJB is nonlinear in
V ∗(x). Solving the LE forV (x) requires solving a linear
differential equation, while the HJB solution involves a non-
linear differential equation that may be impossible to solve.
This is the reason for introducing the successive approxima-
tion theory developed bySaridis and Lee (1979).
Successive approximation using the LE has not yet been

rigorously applied to bounded controls. In this section, we
show that the successive approximation theory can be ex-
tended to constrained input systems when nonquadratic per-
formance functionals are used.
The successive approximation technique is now applied

to (9), (10). The following lemma shows how Eq. (10) can
be used to improve the control law.

Lemma 1. If u(i) ∈ �(�), andV (i) ∈ C1(�) satisfies the
equationLE(V (i), u(i)) = 0 with the boundary condition
V (i)(0)= 0, then the new control derived as

u(i+1)(x)= −�(12 · R−1gTV (i)x ) (12)

is an admissible control for(1) on �. Moreover, if the
bounding function�(·) is monotone odd, and V (i+1)

is the unique positive-definite function satisfying equa-
tion LE(V (i+1), u(i+1)) = 0, with the boundary condition
V (i+1)(0)= 0, thenV ∗(x)�V (i+1)(x)�V (i)(x) ∀x ∈ �.

Proof. To show the admissibility part, sinceV (i) ∈ C1(�),
the continuity assumption ong implies thatu(i+1) is contin-
uous. SinceV (i) is positive definite it attains a minimum at
the origin, and thus, dV (i)/dx must vanish there. This im-
plies thatu(i+1)(0)= 0. Taking the derivative ofV (i) along
the systemf + gu(i+1) trajectory we have

V̇ (i)(x, u(i+1))= V (i)Tx f + V (i)Tx gu(i+1), (13)

V (i)Tx f = −V (i)Tx gu(i) −Q− 2
∫ u(i)

0
�−T(v)R dv. (14)

Therefore Eq. (13) becomes

V̇ (i)(x, u(i+1))= − V (i)Tx gu(i) + V (i)Tx gu(i+1) −Q

− 2
∫ u(i)

0
�−T (v)R dv. (15)

SinceV (i)Tx g(x)= −2�−T(u(i+1))R, we get

V̇ (i)(x, u(i+1))= −Q+ 2

[
�−T(u(i+1))R(u(i) − u(i+1))

−
∫ u(i)

0
�−T(v)R dv

]
. (16)
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The second term in (16) is negative because� and hence
�−1 is monotone odd. To see this, note thatR is symmetric
positivedefinite, this means we can rewrite it asR = ���
where� is a diagonal matrix with its values being the sin-
gular values ofRand� is an orthogonal symmetric matrix.
Substituting forR in (16) we get

V̇ (i)(x, u(i+1))

= −Q+ 2

[
�−T(u(i+1))���(u(i) − u(i+1))

−
∫ u(i)

0
�−T(v)���dv

]
. (17)

Applying the coordinate changeu= �−1z to (17)

V̇ (i)(x, u(i+1))

= −Q+ 2�−T(�−1z(i+1))���(�−1z(i) − �−1z(i+1))

− 2
∫ z(i)

0
�−T(�−1�)����−1 d�

= −Q+ 2�−T(�−1z(i+1))��(z(i) − z(i+1))

− 2
∫ z(i)

0
�−T(�−1�)��d�

= −Q+ 2�T(z(i+1))�(z(i) − z(i+1))

− 2
∫ z(i)

0
	T(�)�d�, (18)

where�T(z(i))= �−1(�−1z(i))T�.
Since� is a diagonal matrix, we can now decouple the

transformed input vector such that

V̇ (i)(x, u(i+1))

= −Q+ 2�T(z(i+1))�(z(i) − z(i+1))

− 2
∫ z

(i)
k

0
�T(�)�d�

= −Q+ 2
m∑
k=1

�kk

[
	(z(i+1)

k )(z
(i)
k − z

(i+1)
k )

−
∫ z

(i)
k

0
	(�k)d�k

]
. (19)

SinceR>0, then we have the singular values�kk being
all positive. Also, from the geometrical meaning of

	(z(i+1)
k )(z

(i)
k − z

(i+1)
k )−

∫ z
(i)
k

0
	(�k)d�k,

this term is always negative if	(zk) is monotone and odd.
Because�−1(·) is monotone and odd one-to-one function,
and since�T(z(i))= �−1(�−1z(i))T�, it follows that	(zk)
is monotone and odd. This implies thatV (i)(x, u(i+1)) <0
and thatV (i)(x) is a Lyapunov function foru(i+1) on �.
From Definition 1,u(i+1) is admissible on�.

The second part of the lemma follows by considering that
along the trajectories off + gu(i+1), ∀x0 we have

V (i+1)(x0)− V (i)(x0)

=
∫ ∞

0

{
Q(x(
, x0, u(i+1)))

+2
∫ u

(i+1)
(
x(
,x0,u

(i+1))
)

0
�−T(v)R dv


 d


−
∫ ∞

0

{
Q(x(
, x0, u(i+1)))

+2
∫ u(i)

(
x(
,x0,u(i+1))

)
0

�−T(v)R dv

}
d


= −
∫ ∞

0

d(V (i+1) − V (i))T

dx
[f + g u(i+1)]d
. (20)

Because LE(V (i+1), u(i+1))= 0, LE(V (i), u(i))= 0

V (i)Tx f = − V (i)
T

x gu(i) −Q− 2
∫ u(i)

0
�−T(v)R dv, (21)

V (i+1)T
x f = − V (i+1)T

x gu(i+1) −Q

− 2
∫ u(i+1)

0
�−T(v)R dv. (22)

Substituting (21), (22) in (20) we get

V (i+1)(x0)− V (i)(x0)

= −2
∫ ∞

0

{
�−T(u(i+1))R(u(i+1) − u(i))

−
∫ u(i+1)

u(i)
�−T(v)R dv

}
d
. (23)

By decoupling Eq. (23) usingR = ���, it can be shown
thatV (i+1)(x0) − V (i)(x0)�0 when�(·) is monotone odd
function. Moreover, it can be shown by contradiction that
V ∗(x0)�V (i+1)(x0). �

The next theorem is a key result which justifies applying
the successive approximation theory to constrained input
systems.

Definition 2 (Uniform Convergence). A sequence of
functions {fn} converges uniformly tof on a set� if
∀�>0, ∃N(�) : n>N ⇒ |fn(x) − f (x)|< � ∀x ∈ �, or
equivalently supx∈�|fn(x)− f (x)|< �.

Theorem 1. If u(0) ∈ �(�), then u(i) ∈ �(�), ∀i�0.
Moreover, V (i) → V ∗, u(i) → u∗ uniformly on�.

Proof. From Lemma 1, it can be shown by induction that
u(i) ∈ �(�), ∀i�0. Furthermore, Lemma 1 shows that
V (i) is a monotonically decreasing sequence and bounded
below byV ∗(x). Hence,V (i) converges pointwise toV (∞).
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Because� is compact, then uniform convergence follows
immediately from Dini’s theorem (Apostol, 1974). Due to
the uniqueness of the value function (Lewis & Syrmos, 1995;
Lyshevski, 1996), it follows that V (∞) = V ∗. Controllers
u(i) are admissible, therefore they are continuous and have
unique trajectories due to the locally Lipschitz continuity as-
sumption on the dynamics. Since (2) converges uniformly to
V ∗, this implies that the system trajectories converge∀x0 ∈
�. Thereforeu(i) → u(∞) uniformly on�. If dV (i)/dx →
dV ∗/dx uniformly, we conclude thatu(∞)=u∗. To prove that
dV (i)/dx → dV ∗/dx uniformly on�, note that dV (i)/dx
converges uniformly to some continuous functionJ. Since
V (i) → V ∗ uniformly and dV (i)/dx exists∀i, it follows
that the sequence dV (i)/dx is term-by-term differentiable
(Apostol, 1974), andJ = dV ∗/dx. �

Beard (1995)has shown that improving the control law
does not reduce the RAS for the case of unconstrained con-
trols. Similarly, we show that this is the case for systems
with constrained controls.

Corollary 1. If �∗ denotes the RAS of the constrained op-
timal control u∗, then�∗ is the largest RAS of any other
admissible control law.

Proof. The proof is by contradiction. Lemma 1 shows that
the saturated controlu∗ is asymptotically stable on�(0),
where�(0) is the stability region of the saturated control
u(0). Assume thatuLargestis an admissible controller with the
largest RAS�Largest. Then, there isx0 ∈ �Largest, x0 /∈�∗.
From Theorem 1,x0 ∈ �∗ which completes the proof.�

Note that there may be stabilizing saturated controls that
have larger stability regions thanu∗, but are not admissible
with respect toQ(x) and the system(f, g).

4. Neural network least-squares approximate HJB
solution

Although Eq. (9) is a linear differential equation, when
substituting (10) into (9), it is still difficult to solve for the
cost functionV (i)(x). In this section, neural networks are
used along with the theory of successive approximation, to
solve for the value function of (11) over�, by approximating
the solution for the cost functionV (i)(x) at each successive
iterationi in a least-squares sense. Moreover, to approximate
integration, a mesh is introduced on�. This yields an ef-
ficient, practical, and computationally tractable solution al-
gorithm to find nearly optimal state feedback controllers of
constrained input nonlinear systems.

4.1. Neural network approximation ofV (x)

It is well known that neural networks can be used to
approximate smooth functions on prescribed compact sets

(Lewis et al., 1999). Since the analysis is restricted to the
RAS of some initial stabilizing controller, neural networks
are natural for this application. Therefore, to successively
solve (9) and (10),V (i) is approximated by

V
(i)
L (x)=

L∑
j=1

w
(i)
j �j (x)= wT (i)L �L(x) (24)

which is a neural network with the activation functions
�j (x) ∈ C1(�), �j (0)= 0. The neural network weights are

w
(i)
j . L is the number of hidden-layer neurons.�L(x) ≡

[�1(x) �2(x) · · · �L(x)]T is the vector activation function,
w(i)L ≡ [w(i)1 w

(i)
2 · · · w(i)L ]T is the vector weight. The

weights are tuned to minimize the residual error in a least-
squares sense over a set of points sampled from a compact
set� inside the RAS of the initial stabilizing control.
For LE(V , u) = 0, the solutionV is replaced withVL

having a residual error

LE


VL(x)= L∑

j=1

wj�j (x), u


= eL(x). (25)

To find the least-squares solution, the method of weighted
residuals is used (Finlayson, 1972). The weights,wL, are de-
termined by projecting the residual error onto deL(x)/dwL
and setting the result to zero∀x ∈ � using the inner prod-
uct, i.e.〈
deL(x)

dwL
, eL(x)

〉
= 0, (26)

where〈f, g〉 = ∫� fg dx is a Lebesgue integral. One has

〈∇�L(f + gu),∇�L(f + gu)〉wL
+
〈
Q+ 2

∫ u

0

(
�−1(v)

)T
R dv,∇�L(f + gu)

〉
= 0.

(27)

The following technical results are needed.

Lemma 2. If the set{�j }L1 is linearly independent andu ∈
�(�), then the set

{∇�Tj (f + gu)}L1 (28)

is also linearly independent.

Proof. See (Beard et al., 1997). �

Because of Lemma 2,〈∇�L(f +gu),∇�L(f +gu)〉 is of
full rank, and thus is invertible. Therefore, a unique solution
for wL exists and is computed as

wL = −〈∇�L(f + gu),∇�L(f + gu)〉−1Q〈
Q+ 2

∫ u

0
(�−1(v))TR dv, ∇�L(f + gu)

〉
. (29)

Having solved forwL, the improved control is given by

u= −�(12 R
−1gT(x)∇�TLwL). (30)
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Eqs. (29) and (30) are successively solved at each iteration
(i) until convergence.

4.2. Convergence of the method of least squares

In what follows, we show convergence results of the
method of least squares when neural networks are used
to solve for the cost function of the LE. Note that (24) is
a Fourier series expansion. The following definitions are
required.

Definition 3 (Convergence in the mean). A sequence of
functions {fn} that is Lebesgue integrable on a set�,
L2(�), is said to converge in the mean tof on � if
∀�>0, ∃N(�) : n>N ⇒ ‖fn(x)− f (x)‖L2(�) < �, where
‖f ‖2

L2(�)
= 〈f, f 〉.

The convergence proofs of the least-squares method
are done in the Sobolev function space setting (Adams &
Fournier, 2003). This allows defining functions that are
L2(�) with their partial derivatives.

Definition 4. Sobolev spaceHm,p(�): Let � be an open
set inRn and letu ∈ Cm(�). Define a norm onu by

‖u‖m,p =
∑

0� |�|�m

(∫
�

|D�u(x)|p dx
)1/p

, 1�p<∞.

This is the Sobolev norm in which the integration is
Lebesgue. The completion ofu ∈ Cm(�) : ‖u‖m,p <∞
with respect to‖‖m,p is the Sobolev spaceHm,p(�). For
p = 2, the Sobolev space is a Hilbert space.

The LE can be written using the linear operatorA defined
on the Hilbert spaceH 1,2(�)

AV︷ ︸︸ ︷
V T
x (f + gu)=

P︷ ︸︸ ︷
−Q−W(u) .

In Mikhlin (1964), it is shown that if the set{�j }L1 is
complete, and the operatorA and its inverse are bounded,
then ‖AV L − AV ‖L2(�) → 0 and‖VL − V ‖L2(�) → 0.
For the LE however, it can be shown that these sufficiency
conditions are violated.
Neural networks based on power series have an impor-

tant property that they are differentiable. This means that
they can approximate uniformly a continuous function with
all its partial derivatives up to ordermusing the same poly-
nomial, by differentiating the series termwise. This type of
series ism-uniformly dense as shown in Lemma 3. Other
m-uniformly dense neural networks, not necessarily based
on power series, are studied inHornik et al. (1990).

Lemma 3. High-order Weierstrass approximation theorem.
Let f (x) ∈ Cm(�), then there exists a polynomial, P(x),
such that it converges uniformly tof (x) ∈ Cm(�), and
such that all its partial derivatives up to order m converges
uniformly (Finlayson, 1972), Hornik et al. (1990).

Lemma 4. Given N linearly independent set of functions
{fn}. Then for the Fourier series�TNfN , it follows that
‖�TNfN‖2

L2(�)
→ 0 ⇔ ‖�N‖2l2 → 0.

Proof. To show the sufficiency part, note that the
Gram matrix,G = 〈fN, fN 〉, is positive definite. Hence,
�TNGN�N �
(GN)‖�N‖2l2, 
(GN)>0 ∀N . If �TNGN�N →
0,then‖�N‖2l2 = �TNGN�N/
(GN) → 0 because
(GN)>
0 ∀N .
To show the necessity part, note that

‖�N‖2L2(�) − 2‖�TNfN‖2L2(�) + ‖fN‖2L2(�)
= ‖�N − fN‖2L2(�),

2‖�TNfN‖2L2(�) = ‖�N‖2L2(�) + ‖fN‖2L2(�)
− ‖�N − fN‖2L2(�).

Using the Parallelogram Law

‖�N − fN‖2L2(�) + ‖�N + fN‖2L2(�)
= 2‖�N‖2L2(�) + 2‖fN‖2L2(�),

asN → ∞
‖�N − fN‖2L2(�) + ‖�N + fN‖2L2(�)

=
→0︷ ︸︸ ︷

2‖�N‖2L2(�)+2‖fN‖2L2(�),
⇒ ‖�N − fN‖2L2(�) → ‖fN‖2L2(�), ‖�N + fN‖2L2(�)
→ ‖fN‖2L2(�),

2‖�NfN‖2L2(�) =
→0︷ ︸︸ ︷

‖�N‖2L2(�)+‖fN‖2L2(�)

−
→‖fN‖2

L2(�)︷ ︸︸ ︷
‖�N − fN‖2L2(�) → 0.

Therefore,‖�N‖2l2 → 0 ⇒ ‖�NfN‖2
L2(�)

→ 0. �

The following assumptions are required.

Assumption 1. The LE solution is positive definite. This is
guaranteed for stabilizable dynamics and when the perfor-
mance functional satisfies zero-state observability defined in
(Van Der Schaft, 1992).

Assumption 2. The system dynamics and the performance
integrandsQ(x)+W(u(x)) are such that the solution of the
LE is continuous and differentiable. Therefore, belongs to
the Sobolev spaceV ∈ H 1,2(�).

Assumption 3. We can choose a complete coordinate ele-
ments{�j }∞1 ∈ H 1,2(�) such that the solutionV ∈ H 1,2(�)
and{�V/�x1, . . . , �V/�xn} can be uniformly approximated
by the infinite series built from{�j }∞1 .
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Assumption 4. The sequence{�j = A�j is linearly inde-
pendent and complete.

The first three assumptions are standard in optimal con-
trol and neural network control literature. Lemma 2 assures
the linear independence required in the fourth assumption.
Completeness follows from Lemma 3 and (Hornik et al.,
1990),

∀V, �∃L,wL ∵|VL − V |< �,∀i|dVL/dxi − dV/dxi |< �.

This implies that asL → ∞
sup
x∈�

|AV L − AV | → 0 ⇒ ‖AV L − AV ‖L2(�) → 0,

and therefore completeness of the set{�j } is established.
The next theorem uses these assumptions to conclude con-

vergence results of the least-squares method which is placed
in the Sobolev spaceH 1,2(�).

Theorem 2. If Assumptions1–4hold, then approximate so-
lutions exist for the LE using the method of least squares
and are unique for each L. In addition

(R1) ‖LE(VL(x))− LE(V (x))‖L2(�) → 0,
(R2) ‖VxL − Vx‖L2(�) → 0,
(R3) ‖uL(x)− u(x)‖L2(�) → 0.

Proof. Existenceof a least-squares solution for the LE can
be easily shown. The least-squares solutionVL is nothing
but the solution of the minimization problem

‖AV L − P ‖2 = min
Ṽ∈SL

‖AṼ − P ‖2 =min
w

‖wT
L�L − P ‖2,

whereSL is the span of{�1, . . . ,�L}.
Uniquenessfollows from the linear independence of

{�1, . . . ,�L}. (R1) follows from thecompletenessof {�j }.
To show the second result (R2), write the LE in terms of

its series expansion on� with coefficientscj

LE

(
VL =

N∑
i=1

wi�i

)
−

=0︷ ︸︸ ︷
LE

(
V =

∞∑
i=1

ci�i

)
=�L(x),

(wL − cL)T∇�L(f + gu)

= �L(x)+

eL(x)︷ ︸︸ ︷
∞∑

i=L+1

ci
d�i
dx
(f + gu) .

Note that eL(x) converges uniformly to zero due to
Lemma 3, and hence converges in the mean. On the other
hand�L(x) converges in the mean due to (R1). Therefore,

‖(wL − cL)T∇�L(f + gu)‖2L2(�) = ‖�L(x)+ eL(x)‖2L2(�)
�2‖�L(x)‖2L2(�) + 2‖eL(x)‖2L2(�) → 0.

Because∇�L(f+gu) is linearly independent, using Lemma
4, we conclude that‖wL− cL‖2l2 → 0. Furthermore, the set
{d�i/dx} is linearly independent, and hence from Lemma 4
it follows that ‖(wL − cL)T∇�L‖2

L2(�)
→ 0. Because the

infinite series withcj converges uniformly. It follows that
asL → ∞, ‖dVL/dx − dV/dx‖L2(�) → 0.
Finally, (R3) follows from (R2) and from the fact that

g(x) is continuous and therefore bounded on�. Hence

‖ − 1
2 · R−1gT(VxL − Vx)‖2L2(�)

�‖ − 1
2 · R−1gT‖2L2(�)‖(VxL − Vx)‖2L2(�) → 0.

Denote�j,L(x)= −1
2 · gTj VxL , �j (x)= −1

2 · gTj Vx

uL − u= �(−1
2 · gTVxL)− �(−1

2 · gTVx),
= [�(�1,L(x))− �(�1(x)) · · ·�(�m,L(x))

− �(�m(x))].
Because�(·) is smooth, and under the assumption that

its first derivative is bounded by a constantM, then we have
�(�j,L)− �(�j )�M(�j,L(x)− �j (x)). Therefore

‖�j,L(x)− �j (x)‖L2(�) → 0

⇒ ‖�(�j,L)− �(�j )‖L2(�) → 0,

and (R3) follows. �

Corollary 2. If the results of Theorem2 hold, then

sup
x∈�

|VxL − Vx | → 0, sup
x∈�

|VL − V | → 0,

sup
x∈�

|uL − u| → 0.

Proof. This follows by noticing that‖wL−cL‖2l2 → 0 and,
the series withcj is uniformly convergent, and (Hornik et
al., 1990). �

Next, the admissibility ofuL(x) is shown.

Corollary 3. Admissibility ofuL(x):

∃L0 : L�L0, uL ∈ �(�).

Proof. Consider the following LE

V̇ (i)(x, u
(i+1)
L )= −Q

�0︷ ︸︸ ︷
−2
∫ u(i)

u(i+1)
�−T(v)R dv + 2�−T(u(i+1))R(u(i) − u(i+1))

−2�−T(u(i+1))R(u
(i+1)
L − u(i+1))− 2

∫ u(i+1)

0 �−T(v)R dv.

Since u(i+1)
L is guaranteed to be within a tube around

u(i+1) u
(i+1)
L → u(i+1) uniformly. Therefore one can easily

see that (31) with�>0 is satisfied∀x ∈ � ∩/ �1(�(L))



786 M. Abu-Khalaf, F.L. Lewis / Automatica 41 (2005) 779–791

where�1(�(L)) ⊆ � containing the origin.

�−T(u(i+1))Ru
(i+1)
L � 1

2 · �−T(u(i+1))Ru(i+1)

+ �
∫ u(i+1)

0
�−TR dv. (31)

Hence,V̇ (i)(x, u(i+1)
L )<0 ∀x ∈ � ∩/ �1(�(L)). Given that

u
(i+1)
L (0) = 0, from the continuity ofu(i+1)

L , there exists
�2(�(L)) ⊆ �1(�(L)) containing the origin for which
V̇ (i)(x, u

(i+1)
L )<0. As L increases,�1(�(L)) gets smaller

while �2(�(L)) gets larger and (31) is satisfied∀x ∈ �.
Therefore,∃L0 : L�L0, V̇ (i)(x, u(i+1)

L )<0 ∀x ∈ � and
henceuL ∈ �(�). �

Corollary 4. It can be shown thatsupx∈� |uL(x)−u(x)| →
0 implies that supx∈�|J (x) − V (x)| → 0, where
LE(J, uL)= 0, LE(V, u)= 0.

4.3. Convergence of the method of least-squares to the
solution of the HJB equation

In this section, we would like to have a theorem analo-
gous to Theorem 1 that guarantees that the successive least-
squares solution converge to the value function of the HJB
equation (11).

Theorem 3. Under the assumptions of Theorem2, the fol-
lowing is satisfied∀i�0:

(i) supx∈�|V (i)L − V (i)| → 0,

(ii) supx∈�|u(i+1)
L − u(i+1)| → 0,

(iii) ∃L0 : L�L0, u(i+1)
L ∈ �(�).

Proof. The proof is by induction.
Basis step:

Using Corollaries 2 and 3, it follows that for anyu(0) ∈
�(�), one has

(I) supx∈�|V (0)L − V (0)| → 0,

(II) supx∈�|V (1)L − V (1)| → 0,

(III) ∃L0 : L�L0, u(1)L ∈ �(�).

Inductive step:

Assume that

(a) supx∈�|V (i−1)
L − V (i−1)| → 0,

(b) supx∈�|u(i)L − u(i)| → 0,

(c) ∃L0 : L�L0, u(i)L ∈ �(�).

If J (i) is such that LE(J (i), u(i)L )= 0. Then from Corol-

lary 2, J (i) can be uniformly approximated byV (i)L . More-
over from assumption (b) and Corollary 4, it follows that as
u
(i)
L → u(i) uniformly thenJ (i) → V (i) uniformly. There-

fore V (i)L → V (i) uniformly.

BecauseV (i)L → V (i) uniformly, u(i+1)
L → u(i+1) uni-

formly by Corollary 2. From Corollary 3,∃L0 : L�L0 ⇒
u
(i+1)
L ∈ �(�).
Hence the proof by induction is complete.�

The next theorem is an important result upon which the
algorithm proposed in Section 4.4 of this paper is justified.

Theorem 4. ∀�>0, ∃i0, L0 : i� i0, L�L0 one has

(A) supx∈�|V (i)L − V ∗|< �,

(B) supx∈�|u(i)L − u∗|< �,

(C) u(i)L ∈ �(�).

Proof. This follows directly from Theorems 1 and 3.�

4.4. Algorithm for nearly optimal neurocontrol design with
saturated controls: introducing a mesh inRn

Solving the integration in (29) is expensive computation-
ally. The integrals can be well approximated by discretiza-
tion. A mesh of points over the integration region can be in-
troduced on� of size�x. The terms of (29) can be rewritten
as follows:

X = �∇�L(f + gu)|x1 · · · · · · ∇�L(f + gu)|xp�T, (32)

Y =
⌊
Q+ 2

∫ u

0
�−T(v)R dv

∣∣∣∣
x1

· · · · · ·Q

+2
∫ u

0
�−T(v)R dv

∣∣∣∣
xp

⌋T
, (33)

wherep in xp represents the number of points of the mesh.
Reducing the mesh size, we have

〈∇�L(f + gu),∇�L(f + gu)〉 = lim
‖�x‖→0

(XTX) · �x,
〈
Q+ 2

∫ u

0
�−T(v)R dv,∇�L(f + gu)

〉
= lim

‖�x‖→0
(XTY ) · �x. (34)

This implies that we can calculatewL as

wL,p = −(XTX)−1(XTY ). (35)

Various ways to efficiently approximate integrals exists.
Monte Carlo integration techniques can be used. Here the
mesh points are sampled stochastically instead of being se-
lected in a deterministic fashion (Evans & Swartz, 2000).
In any case however, the numerical algorithm at the end re-
quires solving (35) which is a least-squares computation of
the neural network weights.
Numerically stable routines that compute equations like

(35) do exists in several software packages like MATLAB
which is used the next section.
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Fig. 1. Neural-network-based nearly optimal saturated control law.

The neurocontrol law structure is shown inFig. 1. It is a
neural network with activation functions given by�, multi-
plied by a function of the state variables.
A flowchart of the computational algorithm presented in

this paper is shown inFig. 2. This is an offline algorithm run
a priori to obtain a neural network constrained state feedback
controller that is nearly optimal.

5. Numerical examples

We now show the power of our neural network control
technique of finding nearly optimal controllers for affine in
input dynamical systems. Two examples are presented.

5.1. Multi input canonical form linear system with
constrained inputs

We start by applying the algorithm obtained above for the
linear system

ẋ1 = 2x1 + x2 + x3, ẋ2 = x1 − x2 + u2, ẋ3 = x3 + u1.

It is desired to control the system with input constraints
|u1|�3, |u2|�20. This system is null controllable. There-
fore global asymptotic stabilization cannot be achieved
(Sussmann et al., 1994).
To find a nearly optimal constrained state feedback con-

troller, the following smooth function is used to approximate
the value function of the system:

V21(x1, x2, x3)= w1x
2
1 + w2x

2
2 + w3x

2
3 + w4x1x2

+ w5x1x3 + w6x2x3 + w7x
4
1 + w8x

4
2 + w9x

4
3

+ w10x
2
1x

2
2 + w11x

2
1x

2
3 + w12x

2
2x

2
3 + w13x

2
1x2x3

+ w14x1x
2
2x3 + w15x1x2x

2
3 + w16x

3
1x2 + w17x

3
1x3

+ w18x1x
3
2 + w19x1x

3
3 + w20x2x

3
3 + w21x

3
2x3.

The selection of the neural network is usually a natural
choice guided by engineering experience and intuition. This
is a neural network with polynomial activation functions,

Fig. 2. Successive approximation algorithm for nearly optimal saturated
neurocontrol.

and henceV21(0) = 0. This is a power series neural net-
work with 21 activation functions containing powers of the
state variable of the system up to the fourth order. Conver-
gence was not observed that for neurons with second-order
power of the states. The number of neurons required is cho-
sen to guarantee the uniform convergence of the algorithm.
The activation functions selected in this example satisfy the
properties of activation functions discussed in Section 4 of
this paper, and inLewis et al. (1999).
To initialize the algorithm, an LQR controller is derived

assuming no input constraints. Then the control signal is
passed through a saturation block. Note that the closed loop
dynamics is not optimal anymore. The following controller
is then found and its performance is shown inFig. 3.

u1 = −8.31x1 − 2.28x2 − 4.66x3, |u1|�3,
u2 = −8.57x1 − 2.27x2 − 2.28x3, |u2|�20.

In order to model the saturation of actuators, a non-
quadratic cost performance term (8) is used. To show
how to do this for the general case of|u|�A, we use
A∗ tanh(1/A · · · ·) for �(· · ·). Hence the nonquadratic cost
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Fig. 3. LQR control with actuator saturation.

associated with controls in the optimization functional is
given as

W(u)= 2
∫ u

0
(A tanh−1(v/A))TR dv

= 2ARu tanh−1(u/A)+ A2R ln(1− u2/A2).

This nonquadratic cost performance is then used in
the algorithm to calculate the optimal constrained con-
troller. The algorithm ofFig. 2 is executed for the region
−1.2�x1�1.2, −1.2�x2�1.2, −1.2�x3�1.2 with the
design parametersR = I2x2, Q = I3x3. This region falls
within the RAS of the initial stabilizing controller. Methods
to estimate the RAS are discussed inKhalil (2003).
After 20 successive iterations, the algorithm converges to

the following nearly optimal saturated control,

u1 = − 3 tanh

×


1

3



7.7x1 + 2.44x2 + 4.8x3
+2.45x31 + 2.27x21x2 + 3.7x1x2x3
+0.71x1x22 + 5.8x21x3 + 4.8x1x23+0.08x32 + 0.6x22x3 + 1.6x2x23 + 1.4x33





 ,

u2 = − 20 tanh

×




1

20




9.8x1 + 2.94x2 + 2.44x3
−0.2x31 − 0.02x21x2 + 1.42x1x2x3
+0.12x1x22 + 2.3x21x3 + 1.9x1x23+0.02x32 + 0.23x22x3 + 0.57x2x23+0.52x33







This is a state feedback control law based on neural net-
works as shown inFig. 1. The suitable performance of this
saturated control law is revealed inFig. 4. Note that the con-
troller works fine even when the state trajectory exits the
state space region for which training happened. In general
however, the algorithm is guaranteed to work for those ini-

tial conditions for which the state trajectory remains within
the training set.

5.2. Nonlinear oscillator with constrained input

We consider next the following nonlinear oscillator:

ẋ1 = x1 + x2 − x1(x
2
1 + x22),

ẋ2 = −x1 + x2 − x2(x
2
1 + x22)+ u.

It is desired to control the system with control limits of
|u|�1. The following neural network is used:

V24(x1, x2)= w1x
2
1 + w2x

2
2 + w3x1x2 + w4x

4
1 + w5x

4
2

+ w6x
3
1x2 + w7x

2
1x

2
2 + w8x1x

3
2 + w9x

6
1

+ w10x
6
2

+ w11x
5
1x2 + w12x

4
1x

2
2 + w13x

3
1x

3
2

+ w14x
2
1x

4
2 + w15x1x

5
2

+ w16x
8
1 + w17x

8
2 + w18x

7
1x2 + w19x

6
1x

2
2

+ w20x
5
1x

3
2

+ w21x
4
1x

4
2 + w22x

3
1x

5
2 + w23x

2
1x

6
2

+ w24x1x
7
2.

This is a power series neural network with 24 activation
functions containing powers of the state variable of the sys-
tem up to the 8th power. Note that the order of the neurons,
8th, required to guarantee convergence was higher than the
one in the previous example.
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Fig. 4. Nearly optimal nonlinear neural control law considering actuator saturation.
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Fig. 5. Performance of the initial stabilizing control when saturated.

0 5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)
0 5 10 15 20 25 30 35 40

Time (s)

S
ys

te
m

s 
S

ta
te

s

State Trajectory for the Nearly Optimal Control Law

x1
x2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 In
pu

t u
(x

)

Nearly Optimal Control Signal with Input Constraints

Fig. 6. Nearly optimal nonlinear control law considering actuator saturation.
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Fig. 5 shows the performance of the bounded controller
u = sat+1

−1(−5x1 − 3x2) for x1(0) = 0, x2(0) = 1. The al-
gorithm is run over the region−1�x1�1, −1�x2�1,
R = 1, Q= I2x2. After 20 successive iterations, one has

u= − tanh



2.6x1 + 4.2x2 + 0.4x32 − 4.0x31 − 8.7x21x2
−8.9x1x22 − 5.5x52 + 2.26x51 + 5.8x41x2+11x31x

2
2 + 2.6x21x

3
2 + 2.00x1x42 + 2.1x72

−0.5x71 − 1.7x61x2 − 2.71x51x
2
2 − 2.19x41x

3
2

−0.8x31x
4
2 + 1.8x21x

5
2 + 0.9x1x62


 .

This is the control law in terms of a neural network fol-
lowing the structure shown inFig. 1. Performance of this
saturated control law is revealed inFig. 6. Note that the
states and the saturated input inFig. 6 have fewer oscilla-
tions when compared to those ofFig. 5.

6. Conclusion

A rigorous computationally effective algorithm to find
nearly optimal constrained control state feedback laws for
general nonlinear systems with saturating actuators is pre-
sented. The control is given as the output of a neural net-
work. This is an extension of the novel work inSaridis and
Lee (1979), Beard (1995)andLyshevski (2001). Conditions
under which the theory of successive approximation applies
were shown. Two numerical examples were presented.
Although it was not the focus of this paper, we believe that

the results of this paper can be extended to handle constraints
on states. Moreover, an issue of interest is how to increase
RAS of an initial stabilizing controller. Finally, it would be
interesting to show how one can solve for the HJB equation
when the system dynamicsf, g are unknown as discussed
in Murray et al. (2002).
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