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Abstract

The Hamilton—-Jacobi—-Bellman (HJB) equation corresponding to constrained control is formulated using a suitable nonquadratic func-

tional. It is shown that the constrained optimal control law has the largest region of asymptotic stability (RAS). The value fu

nction of

this HIB equation is solved for by solving for a sequence of cost functions satisfying a sequence of Lyapunov equations (LE). A neural
network is used to approximate the cost function associated with each LE using the method of least-squares on a well-defined region of
attraction of an initial stabilizing controller. As the order of the neural network is increased, the least-squares solution of the HIB equation

converges uniformly to the exact solution of the inherently nonlinear HIB equation associated with the saturating control inputs
is a nearly optimal constrained state feedback controller that has been tuned a priori off-line.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction nonlinear nature. For linear systems, the HIB becomes the

well-known Riccati equation which results in the lin
The control of systems with saturating actuators has quadratic regulator (LQR) controller. When the linear

ear
sys-

been the focus of many researchers for many years. Seviem is input constrained, then the closed loop dynamics

eral methods for deriving control laws considering the become nonlinear and the LQR is not optimal anymore.

saturation phenomena are found $aberi, Lin, and Teel The HJB equation generally cannot be solved. Ther
(1996) Sussmann, Sontag, and Yang (1984 Bernstein been a great deal of effort to solve this equation. App

e has
roxi-

(1995) However, most of these methods do not consider mate HJB solutions have been found using many techniques

optimal control laws for general nonlinear systems. In this such as those developed Byridis and Lee (1979Beard
paper, we study this problem through the framework of the Saridis, and Wen (1997, 199&eard (1995)Murray, Cox

’

Hamilton—Jacobi—Bellman (HJB) equation appearing in op- Lendaris, and Saeks (2002ge, Teo, Lee, and Wang (2001)

timal control theory Lewis & Syrmos, 199k The solution Huang, Wang, and Teo (20Q0Bertsekas and Tsitsik

of the HIB equation is challenging due to its inherently (1996) Munos, Baird, and Moore (1999Kim, Lewis, and

Dawson (200Q)Han and Balakrishnan (20Q@)iu and B4
akrishnan (200Q)Lyshevski and Meyer (1995) yshevsk
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well-known Kleinman (1968)iterative method for solving Q(x), W(u) are positive definite, i.edx £ 0 Q(x) >0 an
the Algebraic Riccati equation using Lyapunov matrix equa- x = 0 = Q(x) = 0. For unconstrained control inputs, a
tions. For nonlinear systems, it is unclear how to solve the common choice forW («) is W (u) = u' Ru, whereR ¢
LE. Therefore, successful application of the successive ap-R™*"”. Note that the controli must not only stabilize the
proximation method was limited until the novel work of system onQ, but guarantee that (2) is finite. Such controls
Beard et al. (1997, 1998yhere they used a Galerkin spec- are defined to badmissible(Beard et al., 1997
tral approximation method at each iteration to find approx-

imate solutions to the LE and this is called usually GHJB. Definition 1 (Admissible Controls A control u is defined
This requires however the computation of a large number of to be admissible with respect to (2) éh denoted by ¢
integrals and it is not obvious how to handle explicit con- ¥(Q), if uis continuous o2, u(0) = 0, u stabilizes (1) gn
straints on the controls, which is the interest of this paper. 2, andVxp € Q V(xp) is finite.

Lyshevski (1998proposed the use of nonquadratic func-
tionals to confront constraints on inputs. Using nonquadratic  Eq. (2) can be expanded as follows:
functionals, the HIB equation was formulated and its solu- T ~
tion refsu_lts in a smooth saturated controller. It remains hpw— V(xo) = / [Q(x) + W(u)]dt + / [Q(x) + W (u)] dt
ever difficult to actually solve for the value function of this 0 T
HJB equation.

In this paper, we use neural networks to obtain an approx-
imate solution to the value function of the HIB equation
that uses nonquadratic functionals. This in turn results ina  If V € C*, then Eq. (3) becomes
nearly optimal constrained input state feedback controller

T
= /0 [O(x) + W()]dr + V(x(T)). (3

1 T
suitable for saturated actuators. lim [V(x0)—V&x(T)]/T = lim —/ [Q(x)+W (u)]dt,
Neural networks applications to optimal control via the = =0T Jo
HJB equation, Adaptive Critics, were first proposed by Wer- y, _ VXT(f +gu) =—0x) — W). 4

bos inMiller, Sutton, and Werbos (1990parisini and Zop
poli (1998)used neural networks to derive optimal control ~ Eq. (4) is the infinitesimal version of Eq. (2) and is a|sort
laws for discrete-time stochastic nonlinear system. Success-0f a Lyapunov equation for nonlinear systems that we|refer
ful neural network controllers have been reportecCimen to as LE in this paper.

and Liu (1994) Lewis, Jagannathan, and Yesildirek (1999) AT

Polycarpou (1996)Rovithakis and Christodoulou (1994) LE(V,w)=Ve (f +gu) + Q+ W) =0, V() =0. (5
Sadegh (1993and Sanner and Slotine (1991l has been For unconstrained control input®; (u) = u Ru, the LE

shown that neural networks can effectively extend adaptive pecomes the well-known HIB equatioregvis & Syrmos,
control techniques to nonlinearly parameterized systems. 995 on substitution of the optimal control

The status of neural network control as of 2001 appears in
Narendra and Lewis (2001) u*(x)=—3R gV 6

V*(x) is the value function of the optimal control problem

) . ) that solves the HIB equation
2. Background in optimal control and constrained

input systems HIBVH2VTf+ 0 — 1viTgR 2TVE =0,
V*(0) =0. (7

Consider an affine in the control nonlinear dynamical sys-
tem of the form y 4 Lyshevski and Meyer (199%howed that the value functjon
obtained from (7) serves as a Lyapunov functiontan
= f) + g(ux), 1) To confront bpunded controls_,yshevs_k| (1998)intro
duced a generalized nonquadratic functional

wherex € R", f(x) € R", g(x) € R"™™. And the input u

uelU U={u=1,...,un) € R" 1 o;<u; <P, i = Wu) = 2/ (d)_l(v))TRdU,

1,...,m}. wheres;, f; are constants. Assume that- gu 0

is Lipschitz continuous on a sé2 € R”" containing the  ¢(v) = [¢(v1) - - - P(v)],

origin, and that system (1) is stabilizable in the sense that o) = [¢—1(M1) L qﬁ_l(um)], 8
there exists a continuous control éhthat asymptotically

stabilizes the system. Itis desired to fmdvhich minimizes ~ Wherev € R™, ¢ € R, and¢(.) is a bounded one-to-one
a generalized nonquadratic functional function that belongs t@? (p >1) andL2(£2). Moreover, |t

is a monotonic odd function with its first derivative bounded
[ by a constani. An example is the hyperbolic tangeht:) =

V{xo) = /0 Q) + Waldr. () tanh(-). Ris positive definite and assumed to be symmetric
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for simplicity of analysis. Note tha¥ (i) is positive definite 3. Successive approximation of HIB for saturated
becausqb‘l(u) is monotonic odd an& is positive definite. controls
The LE when (8) is used becomes
The LE is linear inV (x), while the HJB is nonlinear

in

V*(x). Solving the LE forV(x) requires solving a linear

u
VxT(f +g-u)+ 0+ 2/ ¢_T(v)R dv =0, differential equation, while the HJB solution involves a non-
0 linear differential equation that may be impossible to splve.
V) =0. ©) This is the reason for introducing the successive approxima-
tion theory developed baridis and Lee (1979)
Note that the LE becomes the HIB equation upon substitut-  Successive approximation using the LE has not yet/been
ing the constrained optimal feedback control rigorously applied to bounded controls. In this section, we

show that the successive approximation theory can be ex-

sy _ gl el T tended to constrained input systems when nonquadratic per-
W) =—0z- Rg VO, (10) formance functionals are used.
The successive approximation technique is now applied
whereV*(x) solves the following HIB equation: to (9), (10). The following lemma shows how Eg. (10)|can
be used to improve the control law.
T 1 p-1.T . A
VIS —gdG-R7g V) + 0 Lemma 1. If u® € ¥(Q),and V® € Ccl(Q) satisfies the
—(5-RLTVY) . equation LE(V® @) = 0 with the boundary condition
+ 2/0 ¢ (v)Rdv =0, v®(0) = 0, then the new control derived as
V*(0) =0. 11 ; _ ;
0 (11) u(t+1)(x) — _¢(% ‘R lgTVx(t)) (12
Eqg. (11) is a nonlinear differential equation for which is an admissible control fo(1) on Q. Moreover if the
there may be many solutions. Existence and uniqueness obounding function¢(-) is monotone oddand V(+1
the value function has been showrlLiyshevski (1996)This is the unique positive-definite function satisfying equa-
HJB equation cannot generally be solved. There is currently tion LE(V@+D 4(@+D) = 0, with the boundary conditipn

no method for rigorously solving for the value function of V(@+D Q) =0, thenV*(x)<VITD(x)<vD(x) Vx € Q.
this constrained optimal control problem. Moreover, current

solutions are not well defined over a specific region of the Proof. To show the admissibility part, sinde® e c1(Q)
state space. the continuity assumption agimplies thatu 1 is contin

uous. Sincev ) is positive definite it attains a minimum at

Remark 1. Optimal control problems do not necessarily the origin, and thus, @) /dx must vanish there. This i
have smooth or even continuous value functioméang plies thatu+D (0) = 0. Taking the derivative of ) alon
et al., 2000; Bardi & Capuzzo-Dolcetta, 199EZio (2000) the systemf + gu+? trajectory we have

used the theory of viscosity solutions to show that for infi-

nite horizon optimal control problems with unbounded cost V@ (x, u@*D) = v©OT ¢ 4 yOT g, (+D (13
functionals, under certain continuity assumptions of the dy-
namics, the value function is continuous on some et u®

. . 4 =
V*(x) € C(Q). Bardi and Capuzzo-Dolcetta (19%howed Vi T/ =-VTgu? -0 -2 A ¢ (vRdv. (14
that if the Hamiltonian is strictly convex and if the continu-

ous viscosity solution is semiconcave, théh(x) € C1(Q) Therefore Eq. (13) becomes

satisfying the HJB equation everywhere. For affine input

systems (1), the Hamiltonian is strictly convex if the system v© (x, ;@ +D) = — y 0T g, O 4 yOT4,+D _ g

dynamics gain matrix(x) is constant, there is no bilinear u®

terms of the state and the control, and if the integrand of -2 o T (V)R dv. (15
0

(2) does not involve cross terms of the states and the con-

trol. In this paper, all derivations are performed under the ) T T, 4D
assumption of smooth solutions to (9) and (11) with allwhat ~ SinceVy " g(x) = =2~ (") R, we get
this requires of necessary conditions. Séan(Der Schatft,

1992 Saridis & Lee, 1979 for similar framework of so- VO ity = — g 42 |:¢T(u(i+1))R(u(i) — ul+D)
lutions. If the smoothness assumption is released, then one ’

needs to use the theory of viscosity solutions to show that 4 -|

the continuous cost solutions of (9) converge to the contin- — o TwRdv (16

m_

uous value function of (11). Jo
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The second term in (16) is negative becagsand hence
gb‘l is monotone odd. To see this, note tiRais symmetric
positivedefinite, this means we can rewrite itRs= A2 A
where2 is a diagonal matrix with its values being the sin-
gular values oR and A is an orthogonal symmetric matrix.
Substituting forR in (16) we get

VO, 1)
=—Q0+2 |:¢T(u(i+1))AZA(u(i) — D)
u®

— o T(wAzA dvi| .
0

17)

Applying the coordinate change= A~z to (17)

VO (x, ui+D)
=0+ 20 T (A LD ATAATLD — 471D
2
-2 ¢ T UAIDAZAATAE
0

=—Q0+42¢p T (A LD A3 (D — +D)
0

Y A S
2/0 ¢ TU AT L

=—Q+2n" VD) zE® — 4D

Z(i)
2/
0

(O,
wheren! () = ¢~ 1A 1zD)T A.
Since X is a diagonal matrix, we can now decouple the
transformed input vector such that

(18)

VO (x, ui+D)
=—0+2r" D)3z — F(+D)

Z@

—2/ C A Ozd
0

=—Q+222kk

k=1

0
- / (o) dck] -
0

SinceR > 0, then we have the singular valuEg, being
all positive. Also, from the geometrical meaning of

|:7I(Z](([+1))(21(j) . Z]((H—l))

(19)

(i)

. . . 2
nz ) - ) - /0 n(C) dl,

this term is always negative if(z;) is monotone and odd.
Because¢*1(-) is monotone and odd one-to-one function,
and sincen (z) = ¢~ 1A 1:D)T 4, it follows that7(z)

is monotone and odd. This implies thef? (x, u+1) <0
and thatV ¥ (x) is a Lyapunov function fou“tD on Q.
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The second part of the lemma follows by considering that

along the trajectories of + gu*Y, Vxo we have

VI (xg) — VD (xg)

= / h { O (x(t, x0, u™Dy)
0

i+1)(x(z,x0,ul+D
u(1+ )()L(f xQ.u ))

+2/ (I)_T(U)R dvy dt

0

- / ” [Q(x(r, x0, u D))
0

u® (x (z,x0,u+D))
+2/ ¢ T()Rdv dr
0

B /00 d(V(i-‘rl) _ V(i))T
0

o f + guD]d.

(20

Because LEV (D @+Dy =0 LE(V®D, 4y =0
40

VOTp— _y@Tgd g2 i ¢ T(v)Rdv, (21

VDT p_ y DT 04D _

u(i+l)
/
0

¢ T(v)Rdv. (22
Substituting (21), (22) in (20) we get

V(o) — VP (xo)
_ _2/00 {¢—T(u("+1>)R(u("+1) 0N
0

2w+
/,40‘)

By decoupling Eq. (23) using® = A2 A, it can be shown
that V@D (xg) — V@ (x0) <O wheng(-) is monotone odd
function. Moreover, it can be shown by contradiction|that
V¥ (x0) <V (xg). O

¢ TR dv} dr. (23

The next theorem is a key result which justifies applying

the successive approximation theory to constrained |input
systems.
Definition 2 (Uniform Convergende A sequence pf

functions { f,,} converges uniformly tof on a setQ if
Ve>0, AN(e) : n>N = |fn(x) — f(x)|<e Vx € Q, or
equivalently sup_gl fn(x) — f(x)] <e.

Theorem 1. If u© e Y(Q), thenu® e ¥(Q), Vi>0
Moreover VO — v* 4@ — y* uniformly onQ.

Proof. From Lemma 1, it can be shown by induction that
uD e Y(Q), Vi>0. Furthermore, Lemma 1 shows that
v® is a monotonically decreasing sequence and bounded

From Definition 1,4¢*7 is admissible orf.

below by V*(x). Hence,V @ converges pointwise t& ().
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Because2 is compact, then uniform convergence follows (Lewis et al., 1998 Since the analysis is restricted to

immediately from Dini’s theoremApostol, 1974. Due to
the unigueness of the value functidre(vis & Syrmos, 1995;
Lyshevski, 199§ it follows that V() = v*. Controllers

u® are admissible, therefore they are continuous and have
unigue trajectories due to the locally Lipschitz continuity as-
sumption on the dynamics. Since (2) converges uniformly to

V*, this implies that the system trajectories converge €
Q. Thereforeu® — 4 uniformly on Q. If dV® /dx —
dVv*/dx uniformly, we conclude that®>=y*. To prove that
dv®/dx — dv*/dx uniformly on Q, note that & /dx

RAS of some initial stabilizing controller, neural netwg
are natural for this application. Therefore, to success
solve (9) and (10)y @ is approximated by
Vi@ =Y w0 =w; VoL (x) (24
j=1
which is a neural network with the activation functi
gj(x) e cl@Q), 0;(0) =0. The neural network weights
w;’). L is the number of hidden-layer neurons, (x) =

converges uniformly to some continuous functibrSince
v@® — v* uniformly and o) /dx existsVi, it follows
that the sequenceWd”) /dx is term-by-term differentiable
(Apostol, 1974, andJ =dV*/dx. O

[01(x) o2(x) --- ‘O'L(x)]T is the vector activation functig
w? = [w wy ... w7 is the vector weight. T
weights are tuned to minimize the residual error in a |
squares sense over a set of points sampled from a cg
setQ inside the RAS of the initial stabilizing control.

Beard (1995)as shown that improving the control law For LE(V,u) = 0, the solutionV is replaced withV,
does not reduce the RAS for the case of unconstrained con+aying a residual error

trols. Similarly, we show that this is the case for systems
with constrained controls.

L
LE VL(x):ij(fj(x),u =er(x).
j=1

(25

Corollary 1. If Q* denotes the RAS of the constrained op-
timal control u*, then Q* is the largest RAS of any other
admissible control law

To find the least-squares solution, the method of wei
residuals is used{nlayson, 197p The weightsw; , are de
termined by projecting the residual error ontg dx)/dw/]

Proof. The proof is by contradiction. Lemma 1 shows that and setting the result to zekx € Q using the inner pro

the saturated contral* is asymptotically stable o®@©

uct, i.e.
where Q© is the stability region of the saturated control g
u©. Assume thati argestis an admissible controller with the <eL (x) e (x)> =0, (26
largest RASQ argest Then, there iso € QLargest *o ¢ 2. dw,,

From Theorem 1y € Q* which completes the proof.(] where(f, g) = [,, fgdx is a Lebesgue integral. One ha

Note that there may be stabilizing saturated controls that (VoL (f + gu), VoL (f + gu))wr

have larger stability regions thast, but are not admissible 2/” 1 TR dv. v -0
with respect toQ (x) and the systenif, g). + <Q + 0 ((I) (v)) v, VoL(f +guw)) =0
(27

4. Neural network least-squares approximate HJB The following technical results are needed.

solution Lemma 2. If the set{c;}} is linearly independent and ¢

¥ (£2), then the set
(Vol(f + gu)f

is also linearly independent

Although Eq. (9) is a linear differential equation, when
substituting (10) into (9), it is still difficult to solve for the
cost functionV @ (x). In this section, neural networks are
used along with the theory of successive approximation, to
solve for the value function of (11) ov€&, by approximating
the solution for the cost functioti ) (x) at each successive
iterationi in a least-squares sense. Moreover, to approximate Because of Lemma 2Ve . (f +gu), Vo (f +gu)) is o

(28

Proof. See Beard et al., 1997 O

the
orks
sively

ons
are

n,

he
east-
mpact

ghted

A

d-

f

integration, a mesh is introduced ¢h This yields an ef- full rank, and thus is invertible. Therefore, a unique solution
ficient, practical, and computationally tractable solution al- for w; exists and is computed as
gorithm to find nearly optimal state feedback controllers of 1
constrained input nonlinear systems. wr = —(VeL(f +gu), VoL(f +gu)) "+
u

o 2 “LnTRdv, vV ou) ). 29

4.1. Neural network approximation &f(x) <Q+ /0 @) o 6L(f+‘gu)> (
. Havin I forwy, the impr ntrol is given
It is well known that neural networks can be used to aving solved fow,, the improved control is given by

approximate smooth functions on prescribed compact setsu = —¢(3 R *g" (x)Vo wy ). (30)
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Egs. (29) and (30) are successively solved at each iterationLemma 4. Given N linearly independent set of functjons

(i) until convergence. {fx}- Then for the Fourier serieszIT\,fN, it follows that
ek fv 112y — 04> llaw |2, — O.

4.2. Convergence of the method of least squares
Proof. To show the sufficiency part, note that |the

In what follows, we show convergence results of the Gram matrix,G = (fy. fv), is positive definite. Hence,
method of least squares when neural networks are UlsedeGNocN>)L(GN)||OCN||1221 MGN)>O0VN. If afGyoy —
to solvg for the cost fun(;tlon of the LE.. Note t!‘]a..t. (24) is O,then||ocN||,2 _ OCITVGNOCN/)L(GN) — 0 becausé.(Gy) >
a Fourier series expansion. The following definitions are 0 VN 2
required.

o ) To show the necessity part, note that
Definition 3 (Convergence in the mepnA sequence of X . ) 5
functions {f,} that is Lebesgue integrable on a s@f lon 17,2 = 2oy Nz, + 1IN 7,0
L»(), is said to converge in the mean t6 on Q if _ . 2

: = llony — fNllT, )
Ve>0, AN(e) :n> N = || fu(x) — f(X)|l L, <é& Where

2 I r o7

11 ) = (1) 2Ny V1120 = low 17 ,0) + 1IN 1 0
2

The convergence proofs of the least-squares method = llon = N7 )
are done in the Sobolev function space settiddafms & .

Fournier, 200R This allows defining functions that are YSing the Parallelogram Law
L2(£2) with their partial derivatives. oy — fN||%2(Q) + oy + fN”%z(Q)
Definition 4. Sobolev spaced" 7 (): Let 2 be an open = 2||“N||i2(g) + 2||f1v||%2(9),
set inR" and letu € C™(Q). Define a norm om by
asN — oo

1/p 5 2

lallmp = D </ ID“u(x)I”dx) . 1<p<oo. lloy = Fnllz ) + llon + Il
0< || <m -0
e e

This is the Sobolev norm in which the integration is  =2|ay %, +2ll /v,
Lebesgue. The completion af € C™(Q) : |lulln,, <00 2 2 2

; ) . = - ,
with respect to| |, , is the Sobolev spac&”?(Q). For o ) INlTa@ = WV NLy) o8+ TNy
p = 2, the Sobolev space is a Hilbert space. = /NI,

: : : ! —0

The LE can be erttfg using the linear operatodefined , > ,
on the Hilbert space/™“(€2) 2llon fvll7 ) = llow 117 50 HIWIIZ, 0

AV P =1l 0

—— — ——
v =—Q—Wu).
X (f +gu) 0 (u) — |loy — fNHig(Q) - 0.

In Mikhlin (1964), it is shown that if the setaj}f is heref 2 2
complete, and the operatérand its inverse are bounded, ~ 'hereforellonli; — 0= llay fyll7, ) — 0. U
then AV — AV”Lz(Q) — 0 and VL — V”LZ(Q) — 0. ) ) ]

For the LE however, it can be shown that these sufficiency ~ The following assumptions are required.
conditions are violated.

Neural networks based on power series have an impor_Assumption 1. The LE solution is positive definite. This is
tant property that they are differentiable. This means that guaranteed for stabilizable dynamics and when the perfor-
they can approximate uniform|y a continuous function with mance functional satisfies zero-state observability defined in
all its partial derivatives up to orden using the same poly-  (Van Der Schaft, 1992
nomial, by differentiating the series termwise. This type of ) _
series ism-uniformly dense as shown in Lemma 3. Other Assumption 2. The system dynamics and the performance
m-uniformly dense neural networks, not necessarily basedintegrandsQ(x) + W (u(x)) are such that the solution of the
on power series, are studiedkornik et al. (1990) LE is continuous and differentiable. Therefore, belongs to

the Sobolev spac¥ € H12(Q).
Lemma 3. High-order Weierstrass approximation theorem.
Let f(x) € C™(Q), then there exists a polynomjaP (x), Assumption 3. We can choose a complete coordinate ele-
such that it converges uniformly tg(x) € C™(Q), and ments{c;}5° € H1?(Q) such that the solutiol € H>2(Q
such that all its partial derivatives up to order m converges and{oV/0xi,..., 0V /0x,} can be uniformly approximated

uniformly (Finlayson, 197, Hornik et al. (1990) by the infinite series built fronfo;}9°.
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Assumption 4. The sequencéy); = Ag; is linearly inde-
pendent and complete.

Completeness follows from Lemma 3 andofnik et al.,
1990,

VYV, edL,wy "|Vp — V| <e, VildVy /dx; —dV/dx;| < e.
This implies that ad. — oo

SUp|AV, —AV| - 0= ||[AV, — AV ye — O,
xeQ

and therefore completeness of the gef} is established.

The next theorem uses these assumptions to conclude con- =[P(ar 1 (X)) — P(a1(x)) - - - PO 1.(x))
vergence results of the least-squares method which is placed . ¢(Ex N] ’
m .

in the Sobolev spac82(Q).

Theorem 2. If Assumptiond—4hold, then approximate so-

lutions exist for the LE using the method of least squares b)) — (o) < M(aj.1 (x) — o (x)). Therefore

and are unique for each L. In addition

(RL) ILE(VL(x)) = LE(V ()|l — O,
(R2) Ve, = Vil — O,
(R3) [lur(x) —u(x) |z, — O.

Proof. Existenceof a least-squares solution for the LE can
be easily shown. The least-squares solutignis nothing
but the solution of the minimization problem

IAVL — P = min [[AV — P2 =min|w . — P>,
VeSS, w
whereS; is the span ofo1,...,0.}.

Uniquenessfollows from the linear independence of
{1, ..., ¥} (R1) follows from thecompletenessf {i;}.

To show the second result (R2), write the LE in terms of
its series expansion a2 with coefficientsc;

=0

N 00
LE (VL = Z w,‘Ji) — LE <V = Z C,'O'l') =er (x),
i=1

i=1

Wz — ) Ve (f + gu)
er(x)

> dO’,‘
=er(x) + Z Ci—x(f+gbt)-

i=L+1 d

Note thate; (x) converges uniformly to zero due to

Lemma 3, and hence converges in the mean. On the other—2¢_T(u<i+1))R(u(LiJrl) —u Dy 2/ b T (V)R dv.

handey (x) converges in the mean due to (R1). Therefore,

lwr = c) VoL (f + gw)l7 0 = leL () + e ()7 0

g(x) is continuous and therefore bounded@nHence

Because/o (f+gu) is linearly independent, using Lemma
4, we conclude thatw; — cL||122 — 0. Furthermore, the set
{do; /dx} is linearly independent, and hence from Lemma 4

The first three assumptions are standard in optimal con- it follows that ||(w; — CL)TVO'L”iz(Q — 0. Because t
trol and neural network control literature. Lemma 2 assures infinite series withc; converges uniformly. It follows th
the linear independence required in the fourth assumption.asL — oo, ||dV; /dx — dV /dx|1,@ — O.

ne

at

Finally, (R3) follows from (R2) and from the fact that

=3 R " (Ve, = VOlZ 0
< - :_ZL . R_lgTHiz(Q)”(VxL - VX)Hiz(Q) — 0.

Denoteo; 1 (x) = —% -gJTVxL, oj(x) = —% 'gJTVx

up —u=¢(—3-g" V) — (=3 -8 Vo),

Becausep(-) is smooth, and under the assumption
its first derivative is bounded by a constaihtthen we ha

floj, 2 (x) — oj () | Lp) — O
= (o)) — Pl — 0,

and (R3) follows. O

Corollary 2. If the results of Theorer hold, then
sup|Vy, — Vx| = 0, sup|V, —V|— 0,

xeQ xeQ

supluy —u| — 0.

xeQ

Proof. This follows by noticing thafiw;, —c. |2, — 0 and
the series withc; is uniformly convergent, andHprnik e
al.,, 1999. O

Next, the admissibility of; (x) is shown.
Corollary 3. Admissibility ofuy (x):
ALo: L>Lo, up € V().
Proof. Consider the following LE

V@O (x, u(LH'l)) =-0
<0

u®
—2 ¢ TR +2¢ T T RUD — u+D)

w(i+D
w+D

@i+

that
e

Since u; is guaranteed to be within a tube araqund

sily

<2lle (17 0, + 2ller ()12, — O.

w4 5 (4D yniformly. Therefore one can ea

see that (31) witho > 0 is satisfiedvx € Q NQ1(e(L))
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whereQ1(e(L)) € Q containing the origin.

O T@ ) RUHY > 1. T (D) Ry D
u+D

+ /0 ¢~ TR dv. (31)

Hence, V@ (x, u{ ™) <0 vx € Q nQy(s(L)). Given that
u™P(0) = 0, from the continuity ofu{*?, there exists
Qo(e(L)) € Q1(e(L)) containing the origin for which

VO (x, ug“)) <0. As L increasesQ1(e(L)) gets smaller
while Q2(¢(L)) gets larger and (31) is satisfistk € Q.

Therefore,3Lg : L>Lo, V@ (x,u{ V) <0Vx € @ and
henceu; € V(). O

Corollary 4. It can be shown thagup, g lur (x) —u(x)| —
0 implies that sup.col/(x) — V(x)| — 0, where
LE(J,u;)=0,LE(V,u)=0.

4.3. Convergence of the method of least-squares to the
solution of the HJB equation

In this section, we would like to have a theorem analo-
gous to Theorem 1 that guarantees that the successive leas
squares solution converge to the value function of the HIB
equation (11).

Theorem 3. Under the assumptions of Theoréythe fol-
lowing is satisfiedvi > 0:

(i) supcolV” —v®| -0,
(i) SUp,eqlu!™ —ul+D| - 0,
(iiiy 3Lo:L>Lo, ul™ € P(Q).

Proof. The proof is by induction.
Basis step

Using Corollaries 2 and 3, it follows that for amy® e
¥ (), one has

() supcqlV,” — VO] -0,
(1) sup,colV;Y = v®| =0,
() 3Lo: L>Lo, u'! € P(Q).

Inductive step

Assume that

(8) supeqlVy "~ — VIV -0,
(b) SUchQ“{(i) —u -0,
(€) Lo : L>Lo, u\ € P(Q).
If 7@ is such that LEJ®, u(Li)) = 0. Then from Corol-
lary 2, 7@ can be uniformly approximated by,”. More-
over from assumption (b) and Corollary 4, it follows that as

') — u® uniformly thenJ® — v uniformly. There-

BecauseV,” — V@ uniformly, «{*? — 4@+ uni
formly by Corollary 2. From Corollary 3L : L > Lo =
TARER ()}

Hence the proof by induction is completel]

The next theorem is an important result upon which the

algorithm proposed in Section 4.4 of this paper is just
Theorem 4. Ve >0, Jig, Lo : i >ig, L > Lo one has

(A) sugCEQWL(” - Vil <e,
(B) ngeg|ug) —u*|<e,
©) ul e Y.

Proof. This follows directly from Theorems 1 and 3]

fied.

4.4, Algorithm for nearly optimal neurocontrol design with

saturated controls: introducing a mesh [&f'

Solving the integration in (29) is expensive computa
ally. The integrals can be well approximated by discre
tion. A mesh of points over the integration region can b
troduced or2 of sizeAx. The terms of (29) can be rewrit
as follows:

X =|Vor(f+gu)lx - Ve (f +gwly,)T, (32

Y = LQ+2[M¢T(U)Rdv
0

X1

T
J : (33
Xp

wherep in x, represents the number of points of the m
Reducing the mesh size, we have

+2 / ' ¢ T(vRdv
0

(VoL (f +gu), Vor(f + gu)) = | AIian 0<XTX> - Ax,

<Q + 2/u ¢ T(W)Rdv, Vo (f + gu)>
0

= lim (X'Y)-Ax. (34
|Ax||—0

This implies that we can calculave; as
wr, =—X"X)1(xTy). (35

Various ways to efficiently approximate integrals ex
Monte Carlo integration techniques can be used. He
mesh points are sampled stochastically instead of bei
lected in a deterministic fashioreyans & Swartz, 200\
In any case however, the numerical algorithm at the e
quires solving (35) which is a least-squares computati
the neural network weights.

Numerically stable routines that compute equations
(35) do exists in several software packages like MAT

fore V"’ — V@ uniformly.

which is used the next section.

tion-
tiza-
e in-
ten

esh.

ists.

e the
ng se-
)
nd re-
on of

5 like
LAB
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Initialization:
: Number of neurons, “Activation Functions.”
: Number of mesh points, p=>L .
: Initial stabilizing admissible control.
: Number of Successive iterations.

~

0)

s

: The neural network region of approximation.
: States related performance criteria.
: Controls related performance criteria.

TR0

X g(x) O ()

Fig. 1. Neural-network-based nearly optimal saturated control law.

The neurocontrol law structure is shownHig. 1 Itis a
neural network with activation functions given lsy multi-
plied by a function of the state variables.

A flowchart of the computational algorithm presented in
this paper is shown iRig. 2 This is an offline algorithm run
a priori to obtain a neural network constrained state feedback '
controller that is nearly optimal. Y ={Q+2I(¢l(v))T Rdv

X={V6L(f+gu)| ------ VoL(f+gu)|prT

x1

------ Q+2uj(<|r' ) Rav

x1

T
xPJ

=—(x"x)" (XY
5. Numerical examples Wi, ==(X7x) (x77)

i=i+l
We now show the power of our neural network control u=—¢GR*‘g’(x)VoLTwLJ,)
technique of finding nearly optimal controllers for affine in
input dynamical systems. Two examples are presented.
5.1. Multi input canonical form linear system with
Finish

constrained inputs
Fig. 2. Successive approximation algorithm for nearly optimal saturated
We start by applying the algorithm obtained above for the neurocontrol.

linear system and henceV»1(0) = 0. This is a power series neural net-

work with 21 activation functions containing powers of the
state variable of the system up to the fourth order. Canver-
It is desired to control the system with input constraints gence was not observed that for neurons with second-order
lu1] <3, lu2| <20. This system is null controllable. There- power of the states. The number of neurons required is cho-
fore global asymptotic stabilization cannot be achieved sen to guarantee the uniform convergence of the algorithm.
(Sussmann et al., 1994 The activation functions selected in this example satisfy the
To find a nearly optimal constrained state feedback con- properties of activation functions discussed in Section 4 of
troller, the following smooth function is used to approximate this paper, and iewis et al. (1999)

X1=2x1+x2+x3, Xp=x1—x2+up, X3=x3+uj.

the value function of the system: To initialize the algorithm, an LQR controller is derived
5 5 ) assuming no input constraints. Then the control signal is
Vai(x1, x2, x3) = wix] + wax5 + w3x3 + waxix2 passed through a saturation block. Note that the closed loop
+ wsx1x3 + Wex2x3 + wﬂf + w8x§ + ngg dynamics is not optimal anymore. The following controller

is then found and its performance is showrFig. 3.

u1=—8.31xy — 2.28xp — 4.66x3, |u1|<3,
up = —8.57x1 — 2.27xp — 2.28x3, |uz|<20.
In order to model the saturation of actuators, a |non-

The selection of the neural network is usually a natural quadratic cost performance term (8) is used. To show
choice guided by engineering experience and intuition. This how to do this for the general case of| <A, we use

2.2 2.2 2.2 2
+ wiox1Xy + wW11X1X3 + W12X5X3 + W13X]X2X3
2 2 3 3
+ W14X1X5X3 + W15X1X2X3 + W1eX X2 + W17X1X3
3 3 3 3
+ wi1gx1Xx5; + wW19xX1X3 + W20X2X3 + W21X5X3.

is a neural network with polynomial activation functions, A* tanh(1/A ----) for ¢(---). Hence the nonquadratic cost
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State Trajectory for LQR Control Law with Bounds The Initial Stabilizing Control:LQR Control Signal with Bounds
5~
—x1 — ul
x| — u2
x3
» g
2z =1
= 5 51
[} o
o =
o
Q =
@ € -10r
> o
%) o
3t
151
4
5 1 1 L L L L L L | 20 L 1 L L L L L L L |
0 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)

Fig. 3. LQR control with actuator saturation.

associated with controls in the optimization functional is tial conditions for which the state trajectory remains w
given as the training set.

u
W(u) = 2/ (Atanh t(v/A)"R dv _ _ _ o
0 5.2. Nonlinear oscillator with constrained input

=2ARutanh t(u/A) + A’RIn(1 — u?/A?).
) ) i . We consider next the following nonlinear oscillator:
This nonquadratic cost performance is then used in

the algorithm to calculate the optimal constrained con-
troller. The algorithm ofFig. 2 is executed for the region iy = xq + x — xl(xf + x%),
—12<x1<1.2, —1.2<x2<1.2, —1.2<x3< 1.2 with the
design parameter® = .2, Q = I3,3. This region falls
within the RAS of the initial stabilizing controller. Methods 2 = —x1 + x2 — x2(x§ + x2) + u.
to estimate the RAS are discussedinalil (2003).

After 20 successive iterations, the algorithm converges to

the following nearly optimal saturated control It is desired to control the system with control limits

lu] < 1. The following neural network is used:

u1 = — 3 tanh
7.7x1 + 2.44x5 + 4.8x3 5 ) 4 A
1 | +2453 + 2.27xfxp + 3. Tx1x0x3 V24(x1, x2) = wixy + waxy + wax1xz + waxy + wsx;
< |3 +O.7lx1x§ + 5.8xfx3 + 4.8x1x§ ) + w6xf’x2 + w7xfx§ + nglxg + ng‘f

3 2 2 3
+0.08x5 + 0.6x5x3 + 1.6xox5 + 1.4x3 + woxd

5 4.2 3.3
+ w11x7X2 + W12X1X5 + W13XTX5

up = — 20tanh + w2 + wisrixd
9.8x1 + 2.94xp + 2.44x3 Rz .
—0.2x3 — 0.02x%x7 + 1.42x1x0x3 T W1eX] + W17Xp + W1g X2 + W19XgX)
y 1 +0.12x1x§ + 2.3x:12x3 + 1.9x1x:,2 + wzoxir’xg’
T 3 2
20 1—822% + 0.23r5x3 + 0.57x2x3 + lexitxg + wzzxfxg + wzgxfxg
-02x3

7
+ w24x1X;.

This is a state feedback control law based on neural net-

thin

5 Of

works as shown ifrig. 1L The suitable performance of this This is a power series neural network with 24 activ.

tion

saturated control law is revealedhig. 4. Note that the con-  functions containing powers of the state variable of the sys-
troller works fine even when the state trajectory exits the tem up to the 8th power. Note that the order of the neurons,
state space region for which training happened. In general8th, required to guarantee convergence was higher than the

however, the algorithm is guaranteed to work for those ini- one in the previous example.
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State Trajectory for the Nearly Optimal Control Law

Nearly Optimal Control Signal with Input Constraints

789

3 —x1 5r —ul
e X2 u2
- x3
g
= st
>
Q.
£
©
S -0t
c
o
@]
-15
_6 1 1 L L 1 L 1 1 1 1 _20 1 1 1 1 L 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)
Fig. 4. Nearly optimal nonlinear neural control law considering actuator saturation.
State Trajectory for Initial Stabilizing Control Control Signal for The Initial Stabilizing Control
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Fig. 5. Performance of the initial stabilizing control when saturated.
State Trajectory for the Nearly Optimal Control Law Nearly Optimal Control Signal with Input Constraints
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Fig. 6. Nearly optimal nonlinear control law considering actuator saturation.
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Fig. 5 shows the performance of the bounded controller
u= satfi(—le — 3x2) for x1(0) =0, x2(0) = 1. The al-
gorithm is run over the regioRr-1<x1 <1, —1<xp <1,

R =1, Q= I»». After 20 successive iterations, one has

2.6x1 + 4 2xp + 0.4x3 — 4.0x3 - 8. 7xfxz

—8.9x1x3 1) — 5.5x3 T 2.26x7 + 5.8x7x2
u = —tanh +llx1x2 + 2.6xlx + 2. 00)(1)52 + 2. lx2
—0. 5x1 1. 7x§3x2 2.71Dx3 — 2190 x3

-0. 8x1x2 + 1. 8x1x2 + 0. 9x1x2

This is the control law in terms of a neural network fol-
lowing the structure shown ifig. 1. Performance of this
saturated control law is revealed Kig. 6. Note that the
states and the saturated inputHig. 6 have fewer oscilla-
tions when compared to those Big. 5.

6. Conclusion

A rigorous computationally effective algorithm to find

nearly optimal constrained control state feedback laws for
general nonlinear systems with saturating actuators is pre-
sented. The control is given as the output of a neural net-

work. This is an extension of the novel work $aridis and
Lee (1979)Beard (1995nndLyshevski (2001)Conditions

under which the theory of successive approximation applies

were shown. Two numerical examples were presented.
Although it was not the focus of this paper, we believe that

the results of this paper can be extended to handle constralntsLIu
on states. Moreover, an issue of interest is how to increase pased optimal controlProceedings of American control confera

RAS of an initial stabilizing controller. Finally, it would be

M. Abu-Khalaf, F.L. Lewis / Automatica 41 (2005) 779-791
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