Proceedings of the American Control Conference
Chicago, lllinois * June 2000

CONVERGENCE ANALYSIS OF ADAPTIVE CRITIC
BASED OPTIMAL CONTROL

Xin Liu?, S. N. Balakrishnan?
Department of Mechanical and Aerospace Engineering and Engineering Mechanics
University of Missouri-Rolla
Rolla, MO 65409-0050
email:bala@umr.edu, xliu@umr.edu

Abstract

Adaptive critic based neural networks have been found
to be powerful tools in solving various optimal con-
trol problems. The adaptive critic approach consists
of two neural networks which output the control values
and the Lagrangian multipliers associated with optimal
control. These networks are trained successively and
when the outputs of the two networks are mutually
consistent and satisfy the differential constraints, the
controller network output produces optimal control. In
this paper, we analyze the mechanics of convergence of
the network solutions. We establish the necessary con-
ditions for the network solutions to converge and show
that the converged solution is optimal. - '

1 Introduction

The adaptive critic based optimal control methodol-
ogy comprises of successive adaptations of two neu-
ral networks, namely “action” and “critic” neural net-
work (which approximate the discrete Hamilton - Ja-
cobi Bellman (HJB) equation associated with opti-
mal control theory) until closed loop optimal control
is achieved. In our previous study we have used this
methodology to solve linear and even nonlinear prob-
lems [1][2][13](14], some other people have also con-
tributed to this research area[ll]. Although these
papers have shown impressive results, so far there
is no analysis on the mechanics of the method. In
other words, the conditions for the convergence of this
method (on which the success or the use of this method
depends) has not been established. In this study, we
establish the conditions for the convergence of infinite
time (regulator) problems. Similar efforts has been
done by S. J. Bradtke to find optimal policy based on
Q-learning [6]. The conditions for the convergence of
the individual networks during the iterative process are
derived. The conditions for the successive training pro-
cesses to reach optimal control is also derived. -
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2 Background

2.1 Adaptive Critic Based Optimal Control

Optimal controller designs seek to accomplish some de-
sired objectives by minimizing a pre-defined cost func-
tional, and simultaneously, satisfying some boundary
conditions and constraints. The cost or performance in-
dex is expressed by a mathematical expression in terms
of the system variables and controls. For the problems
discussed in this paper, the cost function is chosen to be
in a quadratic form which is used in most applications.

It is:
Iwo,uw) =Y [afQux +ulRu] (1)

where, z is the state vector, u is the control vector and
k is the time index. In Eq. (1), @ is a symmetric posi-
tive semi-definite matrix and R is a symmetric positive
definite matrix. The choice of these matrices is a de-
sign decision to give different degrees of importance to
the state trajectory and the control effort. The optimal
control problem can now be stated as - minimize the
cost function I given in Eq. (1) with the differential
constraints of the state equation:

)

when the initial state z(0) is given and final time
ty — 00. In our study this problem is solved through
approximate dynamic programming formulation.

Thy1 = f(zr, up)

2.2 Approximate
Method

Dynamic programming provides a computational tech-
nique to apply the principle of optimality to sequence
of decisions which define an optimal control policy. A
general mathematical description of the optimality con-
ditions obtained as a direct convergence of the “Prin-
ciple of Optimality” is the Hamilton-Jacobi Bellman
(HJB) equation[10]. The HIB equation for a discrete-
time system is given by:

J(zk) =$23){U(1k, w(zr)H < JJ(f(zr,u(ze))) >} (3)

Dynamic Programming

where, state at time step k is given by x4 and the con-
trol by u(zy), J(zx) represents the minimum cost asso-



ciated with going from k to final step N, U(zk, u(zi))
is the utility function denoting the cost incurred in go-
ing from k to k + 1 using control u(zy) and J(zg41) is
the minimum cost associated in going from state k + 1
to final state N. Now a co-state (or Lagrangian mul-
tiplier) A(zy) is defined as A(zg) = TJi’—'“Z then dif-
ferentiate Eq.(3) with respect to zy, (Note we also use
ug, = u(zg) and Ay = A(zx) in this paper):

OU(zx, u(zs)) | 9J(f(@x, u(zk)))

A (zx) =

6.’1);5 sz
U (zx, u(zx)) Bu(zk))T OU (zx, u(zx))
= +
Oxy, Oy, Oy,
OTrr1 . Opyr Oulz)\T
+( pet y e B0 Mawn) @)

It can be seen that the co-state equation develops back-
wards in time. The Bellman’s optimality equation is
given by:

6](.’Ek) _ 8U(zk,uk) 6J((Ek+1)

0= 6uk 8uk Buk

Dynamic programming requires the system model and
its derivatives in (4) and (5). These equations are used
iteratively to solve for a control policy.

2.3 Adaptive Critic and General Training Pro-
cedure

Adaptive critic methodology has been proposed by
Werbos[9] as a new optimization tool combining to-
gether concepts of reinforcement learning and approxi-
mate dynamic programming. Adaptive critic approach
consists of two neural networks: one outputs the con-
trol ux and the other outputs Lagrangian multiplier Ag.
Input to both are the states, zj, at time k. The adap-
tive critic technique finds the control which minimizes
the cost in (1) by solving Eq. (2) and Eq. (4) with
the use of the optimality Eq. (5) and the known initial
state.

The training procedure consists of two training cycles:
critic’s and action’s. The action neural network out-
puts the control u(zy) for the state input z5. The out-
put of the plant z; serve as input to the critic neural
network which is trained to estimate the cost function
J, or the Hamiltonian H, or their derivatives (we use
derivatives in this paper) and so on. Thus the critic
neural network contains information about the function
to be minimized. The optimal control can be obtained
by training action neural network and critic neural net-
work successively.

3 Mathematical Analysis of the Convergence
Conditions

There are a few papers in the literature that show the
effectiveness of this approach to solve different optimal

(5)

control problems({1]{2][11][13][14]. However, they have
not dealt with the operational mechanics of the net-
works. Do the action neural network and critic neural
network converge in each training cycle? If they do,
what are the conditions? Does such a training proce-
dure eventually find the optimal control sequence? In
order to find the answers to these questions, mathe-
matical analysis of the convergence conditions is neces-
sary. We develop such a procedure here with respect to
a linear problem. The linear time-invariant, discrete,
multi-variable system is given by the state equations:

Trt1 = f(zk,ux) = Azp + Buy (6)

Where initial state z(0) = zo, zx € Q C RP, ui €
R™ k =1,2,3,---, A € RP*P, B € RP*™. The cost
functional is defined to be functional (1). Utility in Eq.
(3) is defined to be:

L T Qur + u(@) T Ru(z)  (7)

Ulzg,u(zr)) = 2(

3.1 Convergence of )\; Iterations

If we define A} = Qé%l (Lagrangian multiplier), then
with the definition of the system model and utility co-
state Eq. (4) can be rewritten as:

T
A = sz+(ag(;:)> Rug+ (A + Bau(xk)) Ar+1 (8)

Let A\, = g(zx), A; = g*(xx) and consider Ayi; =
g9(Zk+1) in infinite horizon, Eq. (8) can be written as:

T
o'@) = Qu+ (Z0) pu,
T

(A+B a(””:’) o) )

Now assume g(zx) = gn(2z1), 9" (T&) = gn+1(2k) to get
a more explicit iterative form of Eq. (9):

T
Gn+1(zr) = Qi + (al(;iik)> Ruy,

+ (44 82%2)) gnarn) (0)

Where z511 = Azy + Bug
Claim: The convergent condition for the sequence
gn(zk) is:

Ou(zy)

<1, Vo, eQC® (1)
Ozy,

[+ 5%

Proof: From Eq. (10), we can obtain (with n = n —
1):

T
gn(zTr) = Qg + (-—agik)) Ruy,

T
+ (A +Ba%fk—k—)-) In—1(zr+1) (12)
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The subtraction of Eq. (12) from Eq. (10) leads to:
Au(zy)

gn+1(Zk) — gnlzi) = (A+ B e Oy >

%(gn(Tk+1) —gn-1(zr+1)) (13)

We can go on expanding Eq.
n=n—-1n-2,---,1 to get:

(13) in this way, with

)T
Ou(Tg+n-1)
ailflc«{-n—l

Int+1(zk) = gn(Tr) = (A Bag(:ik)

)T... <A+B

X(91(Tk+n—1) ~ 90(Th4n-1))

Ou(Tr+1)

x{A+ B
( Ozt

)T
(14)
Let the maximum norm of matrix 4 + BQ%%Q (G =
k,k+1,---,k+n—1) be M then:

llgn+1(zx) = gn )l < M"||g1(Ths4n-1) — 90(Ik+n~1z|| )
15

Hence, if M < 1 and both g1 (Z¢+n-1) and go(zx4n—-1)
are bounded, then sequence g, (zx) will converge. Since
the condition that both g¢;(zg4n—1) and go(Tr4n—1)
are bounded can always be guaranteed from the ini-
tial guess, the condition for the convergence is thus

1A+ BM’—” < 1. This completes the proof.

3.2 Convergence of u; Iterations
Considering the optimality condition, we can rewrite
Eqg. (5) as following:

aU(fIIk,’uk) 6J(zk+1)

0= —u Dux

= Rui + BT g(zx+1)

(16)

Hence, we can get uy and M (we will use its ex-

pression (18) later) if we can solve the following two
equations:

up = —R'BTg(zr41), Tear a7
Ou” (zx) _ _R“BT( ) (A + Bau(“)) (18)

= Az, + Buy

O0g(zr+1)

Oz, Orr41

It is easy to see that both Eq. (17) and Eq. (18) should
also be solved iteratively. If we define fo(zx) = u(zi),
Faa(zr) = u(@x), falo) = P52 and £, (@) =
a—“‘;—éf—"), then explicit iterative forms of Eq. (17) and
Eq. (18) are:

frv1(zr) =

fri1(@) = —R7'BTg (zk+1)(A + Bfy(ax))

Let’s consider Eq. (19) first.
Claim: The convergence condition for the sequence

fa(zy) is:

—R7'BTg(Azy, + Bfn(xx)) (19)

(20)

IR7'BTg (z441)B]| < 1 (21)
Proof: From Eq. (19):
fa(zk) = —R7'BTg(Azi + Bfu_a(zr))  (22)
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Subtracting Eq. (22) from Eq. (19), we get:

fn+1($k) - fn(zk) = _R_IBT(g(Azk + Bfn(xk)))

— 9(Azk + Bfn-1(zx))  (23)
By using mean value theorem:
9(Az + Bfn(zk)) — g(Azk + Bfn-1(ar)) =
9'©)B(fn(@r) — fa-1(zk)) (24)

Where £ € [p-1(k + 1),z,(k + 1)]. Now, we have:

fatr(zi) — Fol(ak) ~R7'BTg'(€)B(fn(x)

— fa-1(zx)) (25)
The convergence condition for " Eq.(25) is
IR-!BTg'(€)B|| < 1 . Since ¢ € [zp_1(k +

1),zn(k + 1)], we can use ¢g’(zx4+1) to represent g'(§),
i.e. the convergence condition for sequence f,(zx) is
|IR"BTg'(zk+1)B]| < 1. This completes the proof.

3.3 Discussion on Relaxation of Convergence
Condition

The inequality in Eq. (21) maybe very restrictive, be-
cause in many cases we can not guarantee g'(z;) to be
small enough to satisfy this condition. Therefore, we
need to find some way to relax this condition without
affecting the convergence of the algorithm. For this
purpose, consider Eq. (3), the gradient of J(zx) over
ug can be explained as:

Vur U(T,ur) + Vi, J(Tgt1)
Rui + BT My

VI (zk)

(26)

Multiply both sides of Eq. (26) by the inverse of matrix
R, we get:

R_lvukJ(IL‘k) = Up +R‘1BT/\k+1 (27)
and

RBTM\pp1 = —we + RV, J(zx)  (28)

Eq. (28) can be used to substitute the right hand side
of Eq. (17) to obtain:

up = ug — R_lvuk J(zx) (29)
We can assume u} = un41, Ur = Uy, in the above equa-
tion to get an explicit iterative form. For our problem,

a learning rate o can be added to the last term in Eq.
(29):

Unt1 = Up — @RIV, J(zk) (30)
Substitute V, J(z) in Eq. (30) with Eq. (26):
Upn+1 = Up — aR"'l(Run + BT/\]H..I)
= (1-a)un, —aR BT Ay
= (1 - )up — au”, up =ua(zx) (31)



If we differentiate both sides of Eq. (31), we get:
frii(@y) = —aR'BT g (z441)4 — (1 — )

— aR7' BT (zx)B) filzk)  (32)

Now, the condition for series f},(zx) to converge is:
11— )l —aR™'BTg'(@x1)Bl <1 (33)

where I € R™*™ is an identity matrix. This condition
also guarantees the convergence of sequence f,(z).
Hence, if a is properly chosen, the convergence con-
dition can be relaxed.

3.4 Guaranteed Convergence of the Successive
Iteration Towards Optimality

We have derived the convergence conditions for A, and
ug. Now we will consider the convergence of the suc-
cessive iteration procedure. To solve both Eq. (10) and
Eq. (19), we need to differentiate Eq. (10) first:

, _ 0*u(xy) T Ou(zy) T Juzxi)
Gnt1(ze) = Q@+ (-8—2 Ruy, + s R B

(A + Ba“(”’) g (@har) (A + p2zs) )

+ (Z2e0) 5 o) (549
T

For linear problem, we can always assume an initial
control which is a linear function of z, then the second
derivative of ux in Eq. (34) is zero for this given initial
condition, and Eq. (34) reduces to:

st =+ (%22) n (%522)
(A + Bau(x:)) gn($k+1)

6u(zk)
(A+B B ) (35)

Eq. (35) can be solved iteratively, given the initial
guess of the controller u(z;) and the initial condition
of co-state function g(zy).

Claim: The convergence of the Eq. (35) is guaranteed
given condition (11).

Proof: According to the given initial condition, %;T"l
is a constant. Then we can substitute —"(;T’“l in Eq.

(35) with a constant C (scalar or vector, depends on
the system formulation). Let A+ BC = Sc, Then Eq.
(35) can be reduced to:

Gny1(zr) = Q4+ CTRC + ST gl (wr41)S: (36)
The equation for the previous time step is:
9n(Tks1) = Q + CTRC + ST gh—1 (Th42)Se (37)
Substitute g} (zx+1) in Eq. (36) with Eq. (37), we get:
(Q+CTRC) + ST[Q + CTRC
+ Sch;z(l'kH)SC]Sc
= (Q + CTRC) + ST(Q + CTRC)S,
+(ST)” gror(@hs2) 82 (38)

9;1+1($k) =

We can go on expanding in this way in order to obtain
an expression as:

ghir (k) = (Q + CTRC) + ST(Q + CTRC)S. +
+ (ST g (@hnsr)SIH! (39)

The last term in Eq. (39) goes to zero as n — oo
under the condition ||S;|| < 1. Therefore, g;,,1(zx) will
converge to g'(zx) eventually, and it is easy to prove
that ¢'(z) is determined by equation :

J(or) = (A+Ba1;(zik))Tg'(:ck) (4+p222)
o ()R

Where C' = %:T"-)- . This completes the proof.

It is easy to see that Eq. (40) is a discrete algebraic
Lyapunov equation and can be solved with different
methods [7]. Therefore, g’'(z;) doesn’t change with z,
i.e. g(z) is a linear function of z and the next control
calculated from Eq. (17) is also a linear function of
Tk, since R and B are constants. Hence, the second
derivative of u; in Eq. (34) is zero during the whole
training procedure and Eq. (35) holds all the time.
Now, we can go back to discuss Eq. (20). Expand Eq.
(20) to get the following form:

frlz+1(zk) = —R_IBTgl(zkH)A
— R'BTg (zky1)Bfi(zi)  (41)

Then if g'(zg41) is known, the sequence of f] (zx)
will converge to f'(zy) under the condition that
|IR™*BTg'(xx41)B]| < 1. Let f!, (zk) be the output of
the mt® iteration of Eq. (41) and g/, ;(zk+1) be the
output of the (m — 1)** iteration of Eq. (35), then

fr(@k) = —=(R+ B  gpn_1(z441)B) "' BT g1 (ze41) A
(42)
Rewrite Eq. (40) in term of f], (zx) :

gm(@k) = (A+ Bf} (zx))  gh(ze)(A + Bf)(zx))
+ Q + fm(rk)TRfm(mk) (43)

(Note: index m here represents different iterative pro-
cedure from that of index n, it represents the iteration
between (41) and (35), not inside each of Eq. (41) and
Eq. (35) ) Now we can combine Eq. (42) and Eq. (43)
together and solve them iteratively to find g'(xx) and
f'(zr) . Since ¢'(zx) and f'(zx) do not change with
zr and zx = 0 is the equilibrium point of the system
model, we can find v} and A} from Eq. (8) and Eq.
(17).

Now the question here is whether the iteration algo-
rithm (defined by Eq. (42) and Eq. (43)) converges
to the optimal solution we want or not. The answer
is yes. In fact this algorithm is nothing else but an
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iterative method to solve the discrete algebraic Riccati
equation:

P=ATPA—- ATPB(R+ BTPB)"'BTPA +Q (44)

and the algorithm presented here converges in a neigh-
borhood of the steady state at a rate that is quadratic.
The convergence of this algorithm under the condition

that HA + Bm&f—k)u < 1, i.e. choose the initial con-

dition such that the feedback control system is stable,
is proved by Gary A. Hewer [3] and David L. Klein-
man [4]. Gary A. Hewer also showed in his paper[3]
that the control derived from every iteration of the al-

gorithm satisfies the condition ”A + B ‘Bué"z: =l <1

m > 0, given a stable initial control. Hence, The con-
dition for the convergence of Eq. (10) is automatically
satisfied if a stable initial control is set, and the only
condition which need to be satisfied so as for Eq. (19)
and for the iterative algorithm to converge is condition
(33). In practice, we can obtain the optimal control in
the form of: ’

ug = —R7'BTg"(z141) (45)

4 Conclusions

By analyzing the performance of the critic neural
network and action neural network, we find that
the training of critic neural network (which outputs
the Lagrangian multiplier) is to follow an iterative
procedure which is bound to converge based on certain
condition that can be easily satisfied. Similarly, we
have established the condition for the convergence of
action (controller) neural network. We have provided
a reformulation to relax convergence condition for
action (controller) neural network too, this is more
useful in practice. Furthermore, we have proved that
the successive adaptation of these neural networks will
converge to produce optimal control.
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