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Abstract,  Theoretical procedures are developed for comparing the perfermance
of arbitrarily selected admissible feedback controls among themselves with the opti-
mzl solution of a nonlinear optimal stochastic coritrol problem. fterative design
schiemes are proposed for successively improving the performance of a controller
until o satisfactory design i¢ achieved. Specifically, the exact design procedure is
based on the generalized Hamilien-Jacebi-Bellman equation of the cost function of
ronlinear stochastic systems, and the approximate design procedure for the infinite-
time nenlinear stechastic regulator problem. is developed by using the vpper and
lower bounds of the tost functions. Stability of this problem is also cousidered. For
a given controller, both the upper and lower bounds to its cost function can be
obtained by solving a partial differential inequality. These hounds, constructed
withour actually knowing the opiinal controlier, are used as measure to evaluaie
the acceptability of suboptimai controllers. These results establish an ..p,:ruxmm
uon theory of oplunal stochastic sontrol and provide a practical proc
lecting effective practical contrals for nonlinear stochastic systems.
formulation of the Generalized Hamilton-Jacobi-Beliman equation :

Koy Words—Control systems synthesis, entropy, Hamilion-Jacobi-Beliman equa-
tion, infinite-time control, nonlinear stochastic systems, recursive design procedure,
suboptimal stochastic control, stability, stochastic regulator problem.

1. Introduction

The problem of controlling a stochastic dynamic system, such that its behav-
tor 15 optimal with respect to a performance cost, has received considerable at-
wention over the past two decades. From a theoretical as weil as pracrical point
of view, it is desirable to obtain a feedback salution to the opi:mal control prob-
lem. In situations of linear stochastic systems with additive white Gaussian
noise and quadratic performance indices {so-called LQG problems), the separa-
tion theorem is directly applicable. and the optimal control theory is well estab-
lished (Aoki, 1967; Wonham, 1970; Kwakernaak and Sivan, 1972, Sage and
White, 1977).

However, due to difficulties associated with the mathematics of stochastic
processes, only fragmentary results are available for the design of optimal con-
trol of nonlinear stochastic systems. On the other hand. there iz a need to design
optimal and suboptimal controls for practical implementation 1 engineering ap-
plications {Panossian, 1988).

The objective of this paper is to develop an approximation theory that may
be used to find feasible, pratm.dl mlulmm to the optimai control r)f nm\hnear
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stochastic systems. To this end. the problem of stochastic control is addressed
from an inverse point of view:

Given an arbitrary selected admissible feedback control, it is desirable to

compare it to other feedback controls, with respect to a given perfor-

mance cost, and to successively improve its design to converge to the
optimal.

Various direct approximations of the optimal control have been widely stud-
ied for nonlinear deterministic systems (Rekasius, 1964; Leake and Liu, 1967;
Saridis and Lee, 1979 Saridis and Balaram, 1986), and appeared to be mare
prouusing than the linearization type approximation methods that have met with
limited success (Al'brekht, 1961: Lukes, 1969; Nishikawa et al.. 1962). For sto-
chastic systems, a method of successive approximation to solve the Hamilton-
Jacobi-Bellman equation for a stochastic optimal control problem using
quasilinearization, was proposed in Ohsumi (1984), but systematic procedures for
the construction of suboptimal controllers were not establ ished.

This paper presents a theoretical procedure to develop suboptimal feedback
controllers for stochastic nonlinear systems (Wang and Saridis, 1992), as an ex-
tension of the Approximation Theory of Optimal Control developed by Saridis
and Lee (1979) for deterministic nonlinear systems. The results are organized as
follows. Section 2 gives the mathematical preliminaries of the stochastic optimal
control problem. Section 3 describes major theorems that can be used for the
construction of successively improved controllers. For the: infinite-time stochastic

regulator problem, a design theory using upper and lower bounds of the cost
~ function is given in Sec. 4. Stability considerations of this problem are discussed
m Sec. 5. Two proposed desigr: procedures are outlined in Sec. 6, and illustrated
with several examples. A reformulation of the problem using Entropy as a basic
concept is given in Sec. 7. Conclusions summarize the paper in Sec. 8.

2. Problem Formulation

For the purpose of obtaining explicit expressions, and without loss of gener-
ality since the results are immediately generalizable, consider a nonlinear sto-

chastic control system described by the following stochastic differential equa-
tion:

dx = f(t, x)dt + b(l, x)udf + glt. x)dw, tel=|t, T), (1)

where x€ R” is a vector of state of the stochastic system, ¥€ €2, CR"™ is a con-
trol vector, €, is a specified compact set of admissible controls, and we R* is a
separable Wiener process. f: IXR"—R", b: IXR"— R"*" and g: [XR"—
R"“* are measurable system functions. Equation (1) was studied first by Itd
(1951), and later, under less restrictive conditions, by Doob (1953), Dynkin (1953),
Skorokhod (1965) and Kushner (1971). It is assumed that the feedback control
law u (¢, x)€ Q, satisfies the following conditions:

1) Linear Growth Condition,

WSt )+ bt x)ull, x) ||+ llg(t, 0) | < a(1+]jx])).

it) Uniform Lipschitz Condition,
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U = bu) (b, )= (f = bu) (L, 9| + Nl g(t, x)— g(t, »)il < alix— y|l,

where (£, x), (¢, YJEIXR”, ||-|| is Euclidian norm operator. and « is some con-
stant.

For a given initial state x(ty)=x, (deterministic) and feedback control
u(t, x), the performance cost of the system (1) i1s defined as

r
Jlu; by, xo) = E[j. [L(t, x)+|luj|*)dt+ o(T, x(T}J/.‘({{.«_]=x“} (2)
in

with nonnegative functions L: / XR"5 R and ¢: I XR"> R J is also called the
Cust Function of system (1).

The infinitesimal generator of the stochastic process specified by (1) is de-
fined to be,

L = Lurlglt, Vgt 0T ¥,) + YT O+ b0t o], (3)
where ¥: I XR"— R! has compact support and is continuous up to all its second

order derivatives (Dynkin, 1953), and (-)” and tr(-) are transpose and trace
oparators, respectively. The differential operators are defined as

(=29 290 =_<?_(a(v)‘\"
e T O o | )

A pre-Hamiltoniasn function of ihe system with respect o the given performance
cost (2) and a control law u (¢, x) is defined as

H{x, Ve, Ve, w0, ) = L(t x) + Jlu))® + 2. (4)

The optimal control problem of stochastic systems can be stated now, as follows:
Optimal Stochastic Control Problem: For a given initial condition
(to, x9) € IXR™, and the performance cost (2), find 1* € Q,,, such that

VE(to, x0) = J(u*; to, xo) = inf J(u; £y, x,). (35)
uen,

li it is assumed that the optimal control law, «(x, #)*, exists and if the corre-
sponding value function, V*(¢, x), is sufficiently smooth, then «* and V* may

be found by solving the well-known Hamilton-Jacobi-Bellman equation (Bellman,
1956), )

Vi + mind 7Z,V*+ Lt 1)+ ufl®) = 0)

i. (6)
VT, =(T)) = ¢, x(T)

Unfortunately, except in the case of linear quadratic Gaussian controls, where
the problem has been solved (Wonham, 1970), a closed-loop form solution of the
Hamilton-Jacobi-Bellman for solving the optimal stochastic control problem can-
not be obtained in general when the system of Eq. (1) is nonlinear.

) Instead, one may consider the optimal control problem relaxed to that of find-
g an admissible feedback control law, « (x, t), thai has an acceptable, but not
Necessarily optimal, cost function. This gives rise to a stochastic suboptimal
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control solution that could conceivably be solved with less difficulty than the
original optimal stochastic control problem. The exact conditions for acceptabil-
ity of a given cost function should be determined from practical considerations
for the specific problem. The solution of the stochastic suboptimal control prob-
lem that converges successively to the optimal, is discussed in more detail in the
next two sections.

3. An Approximation Theory of Stochastic Optimal Control

This section contains the main results of the appoximation theory for the so-
lution of nonlinear stochastic control problems. Two theorems, one for the evalu-
ation of performance of control laws and the other for the construction of lower
and upper bounds of value functions, are established first. Then theoretical pro-
cedures which can lead to the iterative design of suboptimal controls are devel-
oped based on those two theorems.

Theorem 1. (Performance evaluation of a control law) Assume V:IXR"
— R be an arbitrary function with continuous V, V;. ¥, and V,, and satisfy the
condition

VI WV + =Vl + NP Vg < 8O+ [ix]]2), (7)
where & ig,a suitable constant. Then the necessary and sufficient conditions for
F(t. x) to be the value function of an admissible fixed feedback control law
u(t, x)EQ,, ie,

V(t, x)= E{ J._‘[L(r, x)+||ull*1dt+¢(T, x(T))/ x(t)=x } tel (8)
are
Vo + 2V + Lt x) + jlul)® = 0, (9)
VT, x(T)) = ¢[T, x(T]. (10)
Proof.  From (7), using [t6’s integration formula (16, 1951), it follows that:
Vit x)

T
= E{V{T, *(T)) —_[ [ 22V (z, x(0)+ Vi (1, x(2))|dt/x(t)=x }
I3

tel
Therefore,

J@: t, x) = V(¢, x)
T
- E{mr. D)=V 5T+ [ (2,0 (e, x(0)
t
+Vi(r, x(7))+ L(z, )+ |lu(z, 0)1*Jdr/x(t)=x }, te I

'I"he sufficient condition results from the above equation. For the necessary con-
_ dition, assume that V (¢, x)=J(«; t, x). Then, from the above equation, and for
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=T,
V(T, x(T)) = ¢(T, x(T)).
‘1‘}:crcfure_,
F{ Jﬂl SV 2(0)+ Velr, 2(1)+ Lz, x)+ ||ulz, Ol 1de/x(H)=xb = 0
has 10 l:e true for all (z, x)E1XR*; hence,
Vit LV + Lt x) + lull* = 0,

which proves the necessary condition.

Remark 1: For a feedback controller that makes system (1) unstable, the asso-
ciated V(f, x) does not satisfy the assumptions of Theorem 1, particularly, con-
dition Eq. (7).

Remark 2: The relation in Eqgs. (9) and (10), called the Generalized Hamilton-
Jacobi-Bellman equation for the stochastic control system (1), is reduced to the
Hamilton-Jacobi-Bellman partial. differential equation (6), when the control
u(x, t) is replaced by the optimal control u*(x. ¢).

Remark 3. The exact cost function for a given control law u(x, t) is found by
solving the gencralized Hamilton-Jacobi-Bellmar partial differential equation.
This equation, though simpler and more general than the Hamilton-Jacobi-
Bellman equation, is difficult to soive in a closed form.

Remark 4 For more general stochastic processes defined by the stochastic dif-
ferential equation dx= £ (¢, x, u)dt+ &(t, x)dw and the general form of perfor-
mance cost, one can show that Theorem 1 is still true.

Since it is generally difficult to find the exact cost functions satisfying Eqs.
) and {10) of Theorem 1. the following theorem introduces a method of con-
“ucting the lower and upper bounds of the cost functions. This method can be
used for the design of simpler suboptimal controllers based only on the upper
bounds to value functions.

'l_'heorem 2. (Lower and upper bounds of cost functions) For an admissible
hxgd feedback control law « (¢, x)€ £2,, and a continuous function s(¢. r), with
15(. ¥)| < oo for all (t, x)EIX R™ If the function V(¢, x) satisfies Eq. (7) with
“ontinuous V, ¥, V, and V. and

V, + ANV AL )+ )=V = s, x)= 0. (=s(t4, x)=00, (11)

V(T. x(T)) = ¢(T, x(T)), (=¢(T, x(T))), (12)

then

Thay (. x) is an upper (or a lower) bound of the cost function of system (1).
at g

V(LX) = J(uit, x) (= J(u; b, x)). Y(t, 1) € [ X R™ (13)

n L .
roof . By a procedure similar to the proof of Theorem 1. it can be shown that
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Jlu: t, x) = V(¢ x)

T
= E{ (T, x(T))—WV(T, x{T)]+I [V (z, x(1))
t
+ V(. x(0) + L(x, x)+||u(t, I)IF]JUJ’(!)::}

T
= E{ ¢(T, x(T))- V(T, x{T}]+I VVi(z, x(1))dt/x(t)=x }
!
Therefore, from Egs. (11), (12), it follows that,
J(u; t, x) = V4, x)

= (=) E{ J'Vl’{r, x(1))dz/x(t)= x}
1

=(=)E

T
J Vs(t, x(t))df!x(t}=x}, Y(t,x)e I x R".
!

This completes the proof.

Remark 1. In general, the function s(, x) in this theorem does not need to be
calculated. However, stating the inequality as in (11) gives an additional degree
of flexibility that enables the determination of an upper (or a lower) bound to the
cost function J(u; ¢, x). '

Remark 2:  The function ¥ (¢, x) in this theorem is the exact cost function for
a system with a performance cost augmented by — s(¢, x)=0,

I(u; ty, x4)

f T .
- r“ (Lt x)+ [l = s(f, 0)dt+ (T, (T x(ty)=xo . (14)
ia .

where ¢ (-, -) is a terminal cost function such that o (T, x(T))= (=
(T, x(T)).

Having established the two theorems for the evaluation of performance of a
given feedback control law. it is necessary to develop algorithms to improve the
control law. The followings Theorems 3-5 provide a theoretical procedure for
designing the suboptimal feedback controllers based on the Theorem 1, while
Theorem 6 presents a method for constructing upper and lower bounds to the
optimal cost function, which can be used to evaluate the acceptahility of subopti-
mal controllers.

Theorem 3. Given the admissible controls «,€ £, and 4, € £2,, with

V. (¢, x) and V¥, (4, x) be the corresponding cost functions satisfying Eqs. (7) and

(8) for u, and u,, respectively, define the Hamiltonian functions for i =1 and 2,
Himin = H(x, Vi;, Viee, uy, £y =L, x) + 1'““2+ ZurVi, (15)

where

Wit x) = —%bu, T Vi (2, 2. (16)
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It is shown that

V=V, (17)
when
Vie + Hymin = Vo + Hopp. (18)
Proof.  Let
AV =V, =V, AV, =V, -V,
AV, = Vay = Vg, AV = Vo, = Vi,
then,
Var + Homin = Vie + AV, + L(t, 1) + %tr[g(t, x)glt. x) Vil
+ —;—tr{g{t, x)glt, 5) AV,) + VI F(t, x) + AVI /(1. x)
- IBTAVAE - LV 6b7aV,
=V + Hyqn + AV, + «é—tr{g(f. x)g(t, x)'av,,)
- aVIF(t x) = S ibTav, i - Vl’xb(%b"'d}’,)
= Vi + Himn = 08V, 17 + 4V, + V.
Therefore,

AV, + L2 AV
, 1 , .
= (Vo +Homin) = (Vy + Hyan) + -Z-ﬂbBVxUJ‘ (19)

which, from assumption (18), implies that
AV, + FpaV == 0,
In addition, from Eq. (10) of Theorem 1,
AV(T, x(T)) = Vo (T, x(T)) = V\(T, x(T)) = 0.

However, applying Itd’s integration formula to AV(¢, x(T)) along the trajectory
Benerated by the control 7, it follows that

av (L, x)

= -E{IT[AV,(L x(1))+ 724V (x, z(r})]dﬂ'x(!]=x} = 0.

Hence,
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Vealh, x) s V(4 x), Y(Lx)E€T X R™.

Remark:  One should not try to find 4V (¢, x) by subtracting V,(Z x) from
V, (4, x) directly based on their individual Itd’s formulas evaluated along the
trajectories generated by their corresponding -controis. This is due to the fact
that the two state trajectories, generated by u,(t, x) and u,(¢, x) respectively,
are different.

A combination of Theoreéms 1 and 3, where V(t. x) represents the cost func-
tion of the system (1) when driven by control k(¢ x), yields an inequality that
serves as a basis of suboptimal control algorithms, to iteratively reduce the cost
of the performance of the system. This is outlined by the following theorem.

Theorem 4.  Assume that there exist a control ¥) €42, and a corresponding
function V', (¢, x) satisfying Eqs. (7) and (8) of Theorem 1. If there exists a func.
tion V, (¢, x) satisfying the same conditions of Theorem 1, its associated control
us € £2,, has been selected to satisfy

ﬂug+—;—b?AV3,ESlu!+%brfﬂf’5,E, (20)
then.

Vi=zV,. (21)
Proej'.  Since control u, and the corresponding value function V, must satisfy
Egs. (9) and (10), according to Theorem 1, it follows that for every (¢, x)&/
XR":
Vie # Lt ) + VI +bun) + —trViwg™] + sl = 0

This can be rewritten as

VU + Him'ill + iu,+—l—brV|, ) = 0,
that is.
l 2
Vi + Hip = —|!¢1+Ebrvul s (22)
Similarly, one can find, |
2
Vor + Hoymin = -iu2+—;-b’1-’2,“ . (23)
I

Since,
. u::,-l»ib”'V2 25 u1+~1—bTV, 2.
z 2 X 2 ix
it follows from Egs. (22) and (23) that
Voo + Hogin = Vyy + H .

Hence, according to Theorem 2,
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Vallo ;) = Vit x). Y(L x) € T X R",

which proves the theorem.

Remark . Clearly, condition (20) in Theorem 4 is much easier to be tested than
condition (18) in Theorem 3, since {20). does not involve the time derivative v,
and the infinitesimal generator 7 V.

Based on Theorems 3 and 4, the following theorem establishes a sequence of
feedback controls which successively improve the cost of performance of the sys-
tem, and converge to the optimal feedback control.

Theorem 5.  Let a sequence of pairs {u,, V;} satisfy Eqgs. (7), (8) of Theorem
1, and u; be obtained by minimizing the pre-Hamiltonian function corresponding
to the previous cost function V, _,, that is,

wi= =0V, i=1,2 . (24)
then the corresponding cost functions V,, satisfies the inequality.

ViazVi i=12.. (25)

Thus by selecting the pairs {u;, V;} sequentially, in the above manner, the re-
sulting sequence {V¥,} converges monotonically to the optimal cost function V*,

and the corresponding sequence {u,}, converges to the optimal control #*, as- = -

sociated with V¥,

Proof.  Since the control #; of (24) and the corresponding cost function V;
satisfy (9) and (10) of Theorem 1, it follows from (22) of Theorem 4 that

Vie + Hipin = —

w+ Loy | = —ILNAV,- ’
] 2 (¥4 2 tr '
where AV, =V, -V, _,. Therefore, application of (19) of Theorem 2 yields

- , , 1 o
dpii - yu:—ldpi = (v:'r"l'H."min} - {i'i—1f+Hi--lmi;:] + T”brdpixllz

1 ; 1 - 1 v
—TIIAVﬂbIV + Tlldl‘V.?_l,,fiil2 vy avibi?

n

LT
T lavibif=o
From (10),

AVI(T, x(T))

]

Vi(T, x(T)) = Vi(T, x(T)) = 0,

hence, [t¢'s integration formula ap[ilied to 4V, along the trajectory generated
by u}_, leads to the inequality,

AV (1, x)

r
= -E{j [AVic(r, (D) + A s AVi(t, x(1)])dTix(t)= ,r} =0,
‘ .

that jg,
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Viey =z W,

which proves (25).
To show the convergence of the sequence, note that {V,} is a non-negative

and monotonically decreasing sequence that satisfies (7). Therefore, the follow-
ing limits exist: '

lim V, (¢, 2} = V°(¢ x) (26)
and
lim ¥y (8, x) = VIt x) (27)

for all ¢ and x, where V% is the limit of the cost functions. The corresponding
limit of control sequence {u;} can be identified from (24) as,

ul)

I

lim w; (¢ x) = iim_(—%b"V‘_h,(t. x})

[l

—(—;—HV;')U, x). (28)

Clearly, «” and V° thus obtained, still satisfy Eqgs. (9) and (10) of Theorem 1.
However, from the construction of control sequenice {u;}, ¥° minimizes the pre-
Hamiltonian function associated with the value function vV °. In other words, 2"

and V 'f_sati'sfy the Hamilton-Jacobi-Bellman equation for the optimal control of
stochastic system (1)

VI 4+ min (VL0 04+ (luli?) = 0. (29)
wEfl,
Hence,
W'(t, )= u*(, x) and V(L x)= V¥t ), Y(I.x)E I XR" (30)

are the optimal control and the optimal value function of the stochastic control
problem (5).

Remark 1: It follows from this theorem that the optimal feedback control «*
and the optimal cost function V* are related by

u*(t x) = —(—};

=

bTVE)iLn), vitx) €l xR, (31)
which is a relationship, that results from the minimization of the Hamiltonian
function associated with the stochastic system (1).

Remark 2: . As indicated by the conditions, in applying the theorem, assump-
tions must be made a priori, regarding the admissibility of the successively de-
rived control laws and their corresponding value functions. However, for a non-
linear stochastic control system as in (1). the admissibility of the new control
laws is not always easy to show.

Finally, the following theorem presents a method for the construction of an
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upper (or a lower) bound of the optimal cost function V*{t, x). Since the optimal
cost function is extremely difficult to find, its upper (or lower) bounds can pro-
vide a practical measure to evaluate the effectiveness of the suboptimal control-
lers.

Theorem 6.  Assume that there exists a function V*(¢, x) satisfying condi-
. tion (7) of Theorem 1, for which the associated control

wt = —%br‘/;’{r, %) (32)

is an admissible one. Then. V*(¢, x) is an upper (or a lower) bound to the opti-
mal cost function V* (¢, x) of system (1), if it satisfies the following conditions:

Vi+ LV + L x)+ |lul)? = s(t. 1)< 0 (=0), (33)
VAT, x(T)) = ¢(T, x(T)) (= ¢(T, x(T))), (34)

where s(f, x) is continuous and |s(f, x}] <o, for all (¢, x)eIxXR".

Proof . From (31), and the Hamilton-Jacobi-Bellman equation, it is obvious
that the optimal control and the optimal cost function, are related

Vi + Huolx, VI,V u®, 1) = VI + LU ) + Jlull? + 7,V* =0, (35)
and similarly, for «* and V',
Vi + Hi, Vi Vi uS, 1) = Vi + Lt ) + ([l + 2, V* = 0. (36)
For s(f, x)=<0, subtracting (35) from (36) yields
AV, + £, 4V = =s(t, x) + < IDBV, | = 0,
where 4V ="V* (1, x)=V*(¢, x). From assumption (34),

AV(T, x(T))

[

VT, x(T)) = VT, =(T))
o(T, x(T)) = VHT. x(TH = 0.

Therefore, application of 1td's integration formula to AV (f, x) along the trajec-
tory generated by control «* yields,

.
AV(L, x) = —E“ [AV (1, x()+.7, AV (1, x(1)))dT/ x(t)= x} =0
t

So V*(¢, x) is an upper bound to "Ihe optimal cost function V*({, x). For s(¢, x)
=0, subtracting (36) from (35) leads to,

AV, + £0n8V = (1 x) + - [BTAV, [P = 0,

where AV =V*(t, x)—V*(¢, x). It can be shown, by using condition (34) and
Itd's integration formula it follows that
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AV (4L x)

T
= —E{I [AV (1, x(t)+ &, AV (7, 2(1)))dt/ x(t)= x} = (.

In this case, V(¢ x) is a lower bound to the optimal cost function V* (1, x).

Theorems, which lead to the design of simpler suboptimal controllers based
" on the upper and lower bounds of cost functions, may also be constructed. A
more detailed discussion of such derivation for the infinite-time stochastic regu-
lator problem, is given in the next section.

4. The Infinite-time Stochastic Regulator Problem

The infinite-time stochastic regulator problem is defined as a control problem
for nonlinear stochastic system (1), with infinite duration 7 — . All state tra-
jectories generated by admissible controls in £2, must be bounded uniformly in
IXR”

For the infinite-time stochastic regulator problem, and assuming that the sys.
tem 1s stable, the Performance Cost exists and is defined as

f{uv t(}: x{}]

.
[L{¢ x)+ ||a!1"’]d:,-"x{t.;}=x.,}. (37)

In

= lim Ei -—l—,-

7o) |
A discussion of the stability of system (1) with Eq. {37) as T —=, ig given in
the next section. Applying Ité's integration formula before the limit, the cost
function becomes

. .
V(t x) = -E{I [V (T, x(0)+ V. (7, x(r))}dt’:’x{r)=x}, tel, (38)
!

where V(2, x) satisfies V (1, 0)=0 and (8) of Theorem 1 for all the possible state
trajectories, which is true for all x€ Q,.

All the theorems developed in the previous section are still valid for the infi-
nite-time stochastic regulator problem, except that all the terminal conditions at
t=T, in those theorems are no longer required. However, in this case, theorems
can be constructed which can lead to the iterative design of simpler suboptimal
controls based only on the upper and lower bounds of the cost functions. Since
in general the upper and lower bounds can be obfained without solving the par-
tial differential equation (9) of Theorem 1, those theorems have a great potential
for application. Two of such theorems. corresponding to Theorems 3 and 4, are
given in the sequel.

Theorem 7.  Given admissible controls u, and u, €02,, with J, (¢, x) and
J= (1, x) be their corresponding cost functions defined by (37), if there exist func-
tion pairs-V,(4 x), s (1, x)=0 and Vo(t x), s,(t, x)=0 satisfying (11) of
Theorém 2 for u, and u,, respectively, then,

Ji= /2, (39)

when
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Vie + Hygin = Vi + Hypin. (40)

Proof. Following the same procedure used in the proof for Theorem 3, one
can show that

BV, + LAV = (Vo + Hom) = (Vo) + o) + T‘nafﬂ,u? =0,
where 4V =V, ~ V. Therefore, Itd’s integration formula yields,
AV(L, x)= HE{ Jf[dl",{f, x(T))+ e AV (1, .t'{f}]]dtf.f(f]=:¥} =0,
hence, -
Volt, x) = V(L x), Y(t, x)E T X R",
which implies that
(kxS Jim V(1 ) = lim =¥yt 1) = 4, )

The next theorem is the counterpart of Theorem 4, and its proof can be carried
out by the same procedure used in Theorem 4.

- Theorem 8:  Assume that there exist a control ¥, €2, and a function pair

Wil 21, s, (¢, ©)= 0} satisfving (11) of Theorem 2. If there exists a function
pair {¥;(. x), s,(, x)=0) satisfying the same condition of Theorem 2, of which
the associated control », € £2,, has been selected to satisfy

2

1,7, I? 1,7,
!“3""55 Vel = “:"'"z‘b Vil s (41)

then,

L=/, {12)

where J; (£, x) and J,(t, x) are the cost functions of u; and u,, respectively.

Note that neither Theorem 7 nor Theorem 8 is true for the stochastic system
(1) with a cost function defined by (2).

5. Stability Considerations

Stability of the infinite-time approximate control problem, will be treated in a
Mmanner similar to the deterministic case:

It suffices to show that the Performance Index (37), of the system (1), is

bounded for all the controls generated by the Approximation Theory.

Lemma 1.  If Theorems 7 and/or 8 are satisfied, stability of the infinite hori-
on systems, driven by the subsequent controls generated by the approximation
theory, is guarranteed if the first controller #, is selected to yield a bounded J,.

The proof of the above Lemma is clearly established from the statements of
heorems 7 and/or 8.
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In order to prove the stability of the system for the first controller. the fol-
lowing steps are appropriate for consideration;
1. System (1) must be Completely Controllable (CC), for all admissible controls «.
2. Since all the states are assumed available for measurement. system (1) is ob-
viously Completely Observable (CO).

3. The Performance Cost ~ (37) is bounded because, J(u: ¢, x)

=limro« E{UT[TIL(e, )+ lluli®)dt/ s(t)=x} = lim 7o U T[V(Z, 2)).
From It6's integration formula,

;
Vit x) = —E“ [V (x, x{‘r]]+l",}d*r!x(.f}=x}.
1
where
LV x() = —;—tr{g(t, x)g(t, x) V] + VI[£{t, x)+ bt x)u).

Select the first control u,, to satisfy the previous theorems of the Approximation
Theorv, and the condition,

El& Vit x(e)+V, 1= M<=, vt€[LT]
Then. using the Mean Value Theorem,

Vit x) = E[ S V(a, (a)+ V] (T=t)< M(T-t), a€(t T

Then.
o ]
J( t.x) = Jim E J_J [L(z, )+ ull?) de/x()=x} = lim - (V(£, 1))
Ta= T r - T = T
=?1im —I‘L;_—-:—}-EM<3:>. (43)

The boundedness of the Performance Index J(«: ¢, x) of the infinite-time prob-
lem, establishes the stability of the system for all the controllers derived from
the Approximation Theory.

6. Design of Suboptimal Controllers

The optimal feedback control u*(#, x) and its associated V* ({4, x) satisfying
the Hamilton-Jacobi-Bellman equation, Eq. (6), obviously satisfy all the theorems
developed in Sec. 3. However. in most of cases of nonlinear stochastic control
systems, the optimal solution is very difficult, if not impossible, to implement
either because the solution is unavailable or because some of the states are not
available for measure. In both cases. the theory developed in Sec. 3 may serve to
obtain controllers which can make the system stable, and then be successively
modified to approximate the optimal solution. Upper and lower bounds of the
value function of the nonlinear stochastic system may be used to evaluate the
effectiveness of the approximation.

6.1 Exact design procedure This approach, based on the assumption that
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the cost function V(t, x) for a control «(t, x) can be found to satisfy Eqs. (9)
and (10) of Theorem 1, may be implemented according to Theorems 3 and 4. by
the following procedure:

1. Select a feedback control law u,(f, x) for system (1), set i ={).

Find a V(L x) to satisfy Theorem 1 for u,(f, x).
‘Obtain a #;.,(f, x) and a V;,,(¢, x) to satisfy Theorem 1, and Theorems 3 or
4 for u; and V. u;,,is an improved controller.

4. From Theorem 6, find a lower bound V, (1, ) to the optimal cost function
V*(L x). and then use V;,,~V, as a measure to evaluate u,,,(f, ¥) as an
approximation to the optimal control «* (4, x). If acceptable, stop.

5. If the approximation is not acceptable, repeat Step 2 by increasing index by
one and continue. ’

The improved controller «;,, in Step 3 can also be constructed by using Theo-

rem 5, if the corresponding cost function V,., can be obtained. When a lower

bound to the optimal value function is difficult to find, Step 4 can be omitted
and then the criterion for the acceptability of the approximation has to be deter-
mined based on other considerations.

[EU

Example 1. (Linear stochastic systems) In order to better comprehend the
method, the design procedure of a suboptimal controller will be first applied to a
linear stochastic system, the optimal solution of which is well known. The linear
stochastic system is described by the following differential equation:
dx = A(tyxdt + B(t)udt + G(f)dw
The cost function of the system has the quadratic form
Juw; 1y, x)
L :
- Fi.[ [x"™M (t)x+ ||lull?)dt + x(TY Dx(T)/ x{t,) = Xop.
ta
The infinitesimal generator of the linear stochastic process is
FV(L x)
= S GOGET V) + VI[A®)x+ B(t)u).
Assume first a linear nonoptimal control,

uy(t, ) = —K,(1)x,

where K (t) is a feedback matrix. The corresponding cost function is assumed
to be s

Vilt, x) = s5,(t) + £7S,(t)x,

Where 5, and S, can be found by solving Egs. (9) and (10) of Theorem 1, i.e.,

i
‘d%‘* + (A-BK\)'S, + ST(A~BK)) + M + KTK, =0, S, = ®
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and
T
s ()= .[ tr[G(r)G(1)'S,(7)]dr.
]
. The feedback law is improved by using Theorem 5. From Eq. (24),

1 ..
“*2"87(”"’1'-1.1

ui‘{t) I)

]

-B’S; ()x = -K,(H)x. i=2

i and the corresponding cost function is assumed to be

v

Vilt, ) = s;(t) + x7Si(t)x, i=2,

where s; and §; are determined by solving the equations,
% + (A=BK,)"S; + ST(A-BK,)+ M + KTK, = 0, S.(T)= o,
s;i(t) = J-:tr[C(r)G(r)’S,-{rJ]dr,
i As i—, §;(¢) approaches S, the solution of the matrix Riccati equation, i.e.,
% + (A=BKY'S + ST(A-BK)+ M + K'K = 0,

S(N=®, K=058S

and correspondingly, the control approaches to
u(t, x)= =BV S()x = —-K(1)x,

which is the optimal control for the linear stochastic systems with quadratic per-
formance criterion (Wonham, 1970).
This solution demonstrates the use of Theorem 5 to sequentially improve the

control parameters towards the optimal values in a Linear Quadratic Gaussian
sysiem with well known solution.

Example 2.  The second example illustrates the design method by the follow-
ing nonlinear first-order stochastic system:

dx = —xdt + udt + %xdw, (0) = %,

with a cost function [J(u;.#,.x,), selected to represent a minimun error,
minimun input energy specification criterion, for a regulator control problem

J(u; tg, xo) = E{ (10x+ 2% +4° ]dh"x{t,,)=xu}A

o
The infinitesimal generator of the stochastic process becomes

LV, x) = %-xz Vi + (—x+u)V,.
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First assume a linear control law,
u(x)=—ax, a>0.
The curreéponding cost function is assumed to be
| V,(x) - ;5% + 33“.‘
Equation (9) of Theorem 1 yields

[10+a""-'s;(2a+ %)]x"' + []— sz(4a+—g~)]x‘ =0,

which is true for

s = 40+ 44° 5 = 2
! 8a+7 ' ° Ba+5’

Next. select a higher order control law,

a>0.

uy(x) = —ax—bx*. b>0.
Such a controller was selected to be of the same order as the partial derivative of
the ¥, (x) cost function as per Theorem 5 suggests. The corresponding cost func-
tion is assumed to be,

V(x) = q,x° + ¢,x*.
In this case, in order to satisfy Eq. (9), one must solve
lt 10+ a* - q, (2a+ %)];\r2 + [1+ 2ab-2bq,—q, (4a+ -g )] £t
+ (b —4bg,)x® = 0,

which is true for

_ 40+ 44° _ 16a+14 _
N Tgawr 0 BT omotear 0T M
0<a< 5}":)_5 = 42,1875,

To satisfy Theorem 4, controllers u, and u, must satisfy,
iiu!+q|:r+ 2qzx3[} = Jluy+ 5, 2+ 25, 2]

which yields

0<IQEL‘8%___?_= 2.4061.

Their corresponding cost functions can be compared

40+ 44’ x? 4 2 1
Ba+7 8a+5

V1(1)=
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40 + 4(!2 2 162+ 14 4
V. = +
1) = = e

32(4a’+70-40) 5
(8a+5)(675-16a)

AV(x) =Vy(x) - Vi(x) =

Figure 1 illustrates V,, V,. and the corresponding performance improvement for
a= 02723, and various initial states x.

If Theorem 5 is to be used for the above u; and V), u, must be selected ac-
cording to

u(x) = —%V“ = —8X = 25,2°,

and a V, satisfying Eq. (9) of Theorem 1 exists, if

Vy(x) = q,5% + g,x*,
40+ 45!
= L = 27!
0 8s, +7 80,

165, + 14
= _—L—_ = '
9= s ies = 013

a= 02723, s, = 43904

300 -
250 - !
1 |
! g ;
-2 : a Vi(x) — Vi(x)
g : E
3 150+ ; 3 —80
= C S -100+
100 ;o $ ;
; 5 .
: ' =120
50 | ;o
Vy(x) - 140
ﬁ ; |
0 e’ d _160 . o
0 5 0 5
State x State x

Fig.1. Example 2 — Design with Theorem 4.
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Comparing the cost functions, one finds that
Vi(x) = 43904 x% + 0.27861*,
Vy(x) = 27800x% + 0.1393x",
AV (x) = Vo(x) — V (x) = —16104 x% — 0.1393x%

V,. V. and the performance improvement are shown in Fig. 2, for various initial
states x. Comparing Fig. 2 with Fig. 1, one can see that the performance im-
provement in this case is not as big as that made by the design using Theorem

4.

In both cases, since AV =0, the performance of the system has been im-
proved by replacing a linear controller ¥, by a nonlinear controller u,. All the
above controllers make the origin an equilibrium point for the system.

6.2 Approximate design procedures for the regulator problem In

many cases, the selection of a V(¢, x) to satisfy (9) and (10) of Theorem 1 is a
very difficult task. In such a case approximate design procedures, which use the
upper and lower bounds of the cost function obtained through Theorem 2 can be
constructed. For the infinite time stochastic regulator problem, the following de-

sign procedure is proposed based on Theorems 7, 8 in Sec. 4:

300 0 e
250 | ; ~20r¢
‘ Vite) g 10!
200 ;o £
z : 2
: : :
5 150 ! E Valx) - Vi(x)
H =]
3 L g —g0
'; i". E
100 + . £
& -100+
5F !
PR -120
1 ‘_ '
0 ~—= ~140 b
0 5 0 5
State x State x

Fig.2. Example 2 — Design with Theorem 5.
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1. Select a feedback control law u,(t, x) for system (1), set i = 0.

v

For an s;(1, x)=0, find a V,(¢, x) for «; to satisfy Theorem 2 for a lower
bound.

Obtain a «;,(4 x), and for an s5,,,=<0, and find a Vialt, x)for u,,, to sat-
isfy Theorem 2 as an upper bound. u;,,(f, x), 5,0 and V;.,{t, x) found
should also satisfy conditions {40) of Theorem 7 or (41) of Theorem 8 for the
improvement of performance.

Using a lower bound to the optimal cost function, which is determined ac-
cording to Theorem 6, the approximation of the optimal control can be mea-
sured. If acceptable, stop.

If the approximation is not acceptable, repeat Step 2 by increasing index i by
one and continue. '

Example 3. The design method is illustrated with the following nonlinear
first-order stochastic regulator problem:

dx = 1°dt + udt + %xdw, x(f) = x,

with a cost function,

T
T to, x0) = lim F{TL (1022 + x* + u? |t/ 5 (ty)= 1o b.
- W !:

The infinitesimal generator of the stochastic process is

GV a) = —;—xz Vee + (3 +u)V,.

For a linear control law,

u(x)=—-a,x, a >0.

The lower bound of its cost function is assumed to be

Vl(x) = 5112 + 533'4.

Application of Eq. (11) of Theorem 2 leads to

[10+a§— 57(291-—;-)].\'2 + [1 +2s,—32(4a1—%)]x‘ + 45,25 =0,

which is satisfied by

_ 40(1- )+ 44?

§ s —_—
83]"1

2(1-c,)+4s,

o
: 8a,-3

a >%. forany 12 ¢, ¢,> 0.

For a higher order control law,

us(x) = —azx = byx*, a, >0, b, >0,
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the upper bound to its value function is assumed to be
Valx) = g 2% + ¢,x*
In this case, application of (11) yields,
. .[1{}+a§— q, (Zag——;}-)]zz + [1 + éq, -2(g,— as)b, —q2(4az—-% )]x‘
+ [bf—4q,(b,-1))* = 0,

which is true for

_ 40(1+d,)+ 44}
! aaz""l ’
_ (1+dy)b3
27 75,1

1+201“2{‘?.—&2)&2*42(462—%)s 0, a >,3_, by >1,

where d, d ;>0 are arbitrary.

Improvement of performance AV =0 occurs if Eq. (40) or Eq. (41) is satisfied,
which leads to

40(1—¢))+ 4a? 40(1+d,)+ da?
1= —————— 2 ¢, T ——
801_1 8!1!_1
2(1- ¢, 1+d,)+b:
§g = (1 t2]+4$] Zqz= { 2) 2 .
8a,~- 3. 4b, -4

which, with the rest of the inequalities, produce acceptable values for a;, a»
and b,. For example, one can show that

(‘II_:].O, ﬂg=—g‘, bz"—‘Z, ('\"—"Cz=d|=dg=0.1

i§ a set of the acceptable values. The lower and upper bounds of the value func-
tions in this case are found as

Vi(x) = 5519012 + 0.3101x°,
Va(x) = 4.8182x% + 0.0688x",
AV (x) = V,(x) = Vi(x) = —0.7008x% — 0.2413x".

The results are illustrated in Fig. 3. Again, improvement of performance occurs
by replacing adinear controller u, by a nonlinear controller u,, of the same order
as the partial derivative of V,(x). Note that in this case the actual cost function
of control u, cannot be found by simply using the method applied in Example 2.

This approach has a great potential for application since one does not have to
Solve the partial differential equation of Theorem 1 every time.
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350 0 —
] -20}
Sm . L
v ;' —40 }
g 250 r 1 {x) :' g
2 E -60
g ; 2
s 20r ; £ -8l
3 : 5 | VDN
2 150} § ~1007
5 g
5 & -120f
2 100} i $
~140¢
sol / Valx)
: A -160
o| = -180 % !
0 5 0 5
State x State x

Fig.3. Example 3 — Design with Theorem 8.

7. Entropy Reformulation of Suboptimal Control

A reformulation of the Approximation Theory using Entropy as the cost cri-
terion, may provide an approach that integrates this method with the rest of the
Generalized Control Theory created by Saridis (1988). '

It was shown that the optimal control problem can be presented from an En-
tropy point of view, which provides a generalized formulation that answers
many conceptual questions.

The Suboptimal Control problem, may also be reformulated using Jaynes's
Principle of Maximun Entropy (Jaynes, 1957). A Generalized Hamilton-Jacobi-
Bellman equation is derived for some admissible control u(x)=u;(x) using
Jaynes’s Principle of Maximun Entropy. Then the following theorem establishes
the claim for system defined by Eq. (1).

Theorem 9. The performance cost V(u;(x); x, ), of system (1) for an
admissible control x;(x), may be expressed by its associated Entropy
H{u;(x, t)), i=1, ---, derived by Jaynes’s Principle of Maximun Entropy.

Proof.  Derive p(u(x, t)) as Jaynes’ Worst Entropy Probability Density Func-
tion: -

plulx, t))"= exp[—A—-pE{V{u(x, 1), x,. £,]}1. (44)
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Then. the Associated Entropy is
Hlu(x, )] = A + pE{(V[u(x), xo, 4]}, (45)

which may replace the Performance Criterion for Optimization. Jaynes' Principle
of Maximun Entropy implies

dH
S22 =,
dp
The Incompressibility in time of Probability Density Condition implies
g _
dt
which for the selected p(u(x, t)) yields the Gemeralized Hamilton-Jacobi-Bellman
equation for the Approximation Theory of stochastic systems
T
.,
dat ax

Lol a2 (32Y =0 I 46
+ --2—_2"[“(—3';'( oz ) ggr)]— 0 (46)

V{T) =0

Or

f(x, u, t)+ L(x, u, t)

8. Conclusions

In this paper, an approximation theory of optimal control for nonlinear sto-
chastic systems has been developed. The theory demonstrates the following
points: ’

1. The iteration scheme and the theorem for the construction of upper and lower
bounds of the cost functon, proposed by Saridis and Lee (1979) for determin-
istic systems, is generalized to the case of stochastic systems. -

2. A successive design procedure using upper and lower bounds of the exact
cost function has been developed for the infinite-time stochastic regulator
problem. The determination of the upper and lower bounds requires the solu-
tion of a partial differential inequality instead of an equality. Therefore it
provides a degree of flexibility in the design method over the exact design
method. .

Several examples are used to illustrate the application of the proposed ap-
proximation theory to stochastic control. It has been shown that in the case of
linear quadratic Gaussian problems, the approximation theory leads to the exact
solution of optimal control. Stability of the infinite-time suboptimal control prob-
lem was established under not very restrictive conditions, and stable sequences
of controllers can be generated. Moreover, for the actual implementation of the
‘%ﬂSign procedure, the computational problem has to be addressed. A reformula-
tion of the suboptimal stochastic control problem, using Entropy as the basis for
the derivation of the Generalized Hamilton-Jacobi-Bellman equation, is also given
4s an extension of the work by Saridis (1988).
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